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Introduction

At a conference in Brasov (Romania) organised by Alin Bostan and
Killian Raschel, Mircea Merca posed a series of conjectures which
caught the attention of the audience. Professor Christian
Krattenthaler and myself were part of the audience. Later during
that day Professor Krattenthaler said to me that he can reduce all
the identities to identities which I could prove using my expertise.
The conjectures which are now stated as theorems will be shown in
the next slides.
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Theorem 1

Theorem (conjectured in [7, Id. 5.1])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 361 is a square. Then

∞
∑

n=0

(−1)t(n)qan =
(q, q6, q7; q7)∞
(q, q4; q5)∞

, (1)

where

t(n) =

{

0, if n ≡ 0, 1, 3, 5, 10, 12, 14, 15 (mod 16),

1, otherwise.

C. Krattenthaler, M. Merca and C.-S. Radu Two different proofs of the Merca conjectures



(a; q)∞ :=
∞
∏

i=0

(1− aqi ),

(a1, a2, . . . , am; q) :=
m
∏

j=1

(aj ; q)∞.
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Theorem 2

Theorem (conjectured in [7, Id. 5.2])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 529 is a square. Then

∞
∑

n=0

(−1)t(n)qan =
(q, q6, q7; q7)∞
(q2, q3; q5)∞

, (2)

where

t(n) =

{

0, if n ≡ 0, 2, 3, 6, 9, 12, 13, 15 (mod 16),

1, otherwise.
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Theorem 3

Theorem (conjectured in [7, Id. 5.3, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 121 is a square. Then

∞
∑

n=0

(−1)⌊(n+4)/8⌋qan =
(q2, q5, q7; q7)∞
(q, q4; q5)∞

. (3)
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Theorem 4

Theorem (conjectured in [7, Id. 5.4])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 289 is a square. Then

∞
∑

n=0

(−1)t(n)qan =
(q2, q5, q7; q7)∞
(q2, q3; q5)∞

, (4)

where

t(n) =

{

0, if n ≡ 0, 1, 3, 5, 10, 12, 14, 15 (mod 16),

1, otherwise.
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Theorem 5

Theorem (conjectured in [7, Id. 5.5, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 1 is a square. Then

∞
∑

n=0

(−1)⌊(n+4)/8⌋qan =
(q3, q4, q7; q7)∞
(q, q4; q5)∞

. (5)
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Theorem 6

Theorem (conjectured in [7, Id. 5.6])

Let (an)n≥0 be the sequence of non-negative integers m such that
840m + 169 is a square. Then

∞
∑

n=0

(−1)t(n)qan =
(q3, q4, q7; q7)∞
(q2, q3; q5)∞

, (6)

where

t(n) =

{

0, if n ≡ 0, 1, 2, 4, 11, 13, 14, 15 (mod 16),

1, otherwise.
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Theorem 7

Theorem (conjectured in [7, Id. 6.1, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
240m + 1 is a square. Then

∞
∑

n=0

(−1)⌊(n+2)/4⌋qan =
(q, q7, q8; q8)∞ (q6, q10; q16)∞

(q, q4; q5)∞
. (7)
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Theorem 8

Theorem (conjectured in [7, Id. 6.2])

Let (an)n≥0 be the sequence of non-negative integers m such that
240m + 49 is a square. Then

∞
∑

n=0

(−1)⌊5n/4⌋qan =
(q, q7, q8; q8)∞ (q6, q10; q16)∞

(q2, q3; q5)∞
. (8)
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Theorem 9

Theorem (conjectured in [7, Id. 6.5, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
240m + 121 is a square. Then

∞
∑

n=0

(−1)⌊(n+2)/4⌋qan =
(q3, q5, q8; q8)∞ (q2, q14; q16)∞

(q, q4; q5)∞
. (9)
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Theorem 10

Theorem (conjectured in [7, Id. 6.6])

Let (an)n≥0 be the sequence of non-negative integers m such that
240m + 169 is a square. Then

∞
∑

n=0

(−1)⌊5n/4⌋qan =
(q3, q5, q8; q8)∞ (q2, q14; q16)∞

(q2, q3; q5)∞
. (10)
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Theorem 11

Theorem (conjectured in [7, Id. 6.3, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
15m + 1 is a square. Then

∞
∑

n=0

(−1)⌊(n+2)/4⌋qan =
(q2, q6, q8; q8)∞ (q4, q12; q16)∞

(q, q4; q5)∞
. (11)

C. Krattenthaler, M. Merca and C.-S. Radu Two different proofs of the Merca conjectures



Theorem 12

Theorem (conjectured in [7, Id. 6.4, corrected])

Let (an)n≥0 be the sequence of non-negative integers m such that
15m + 4 is a square. Then

∞
∑

n=0

(−1)⌊(n+2)/4⌋qan =
(q2, q6, q8; q8)∞ (q4, q12; q16)∞

(q2, q3; q5)∞
. (12)
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Theorem 13

Theorem (conjectured in [7, Id. 6.7])

We have

∞
∑

n=−∞

qn(5n+1) =
(q, q9, q10; q10)∞ (q8, q12; q20)∞

(q, q4; q5)∞
. (13)
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Theorem 14

Theorem (conjectured in [7, Id. 6.8])

We have

∞
∑

n=0

(

qn(n+1) − q5n(n+1)+1
)

=
(q, q9, q10; q10)∞ (q8, q12; q20)∞

(q2, q3; q5)∞
.

(14)
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Theorem 15

Theorem (conjectured in [7, Id. 6.9])

We have

1 +

∞
∑

n=1

(

qn
2
+ q5n

2)

=
(q2, q8, q10; q10)∞ (q6, q14; q20)∞

(q, q4; q5)∞
. (15)
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Theorem 16

Theorem (conjectured in [7, Id. 6.10])

We have

∞
∑

n=−∞

qn(5n+2) =
(q2, q8, q10; q10)∞ (q6, q14; q20)∞

(q2, q3; q5)∞
. (16)
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Theorem 17

Theorem (conjectured in [7, Id. 6.11])

We have

∞
∑

n=0

(

qn(n+1) + q5n(n+1)+1
)

=
(q3, q7, q10; q10)∞ (q4, q16; q20)∞

(q, q4; q5)∞
.

(17)
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Theorem 18

Theorem (conjectured in [7, Id. 6.12])

We have

∞
∑

n=−∞

qn(5n+3) =
(q3, q7, q10; q10)∞ (q4, q16; q20)∞

(q2, q3; q5)∞
. (18)
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Theorem 19

Theorem (conjectured in [7, Id. 6.13])

We have

∞
∑

n=−∞

qn(5n+4) =
(q4, q6, q10; q10)∞ (q2, q18; q20)∞

(q, q4; q5)∞
. (19)
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Theorem 20

Theorem (conjectured in [7, Id. 6.14])

We have

∞
∑

n=1

(

qn
2−1 − q5n

2−1
)

=
(q4, q6, q10; q10)∞ (q2, q18; q20)∞

(q2, q3; q5)∞
. (20)
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Taking into consideration that there are 20 different identities that
appear to be similar in nature, one naturally is led to suggest an
algorithmic proof method, in contrast to looking at each identity
individually and trying to find an optimal proof based on its
particular form . Algorithmic proofs are part of RISC (Research
Institute for Symbolic Computation) expertise.
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Eg = Eg (q;N) := qNB2(g/N)/2(qg , qN−g ; qN)∞, (21)

where B2(x) = x2 − x + 1
6 . Each theorem presented above is

transformed into an identity of the form

r
∑

j=1

cj
∏

g

E
a
(j)
g

g = 0. (22)

where a
(j)
g satisfies the following conditions (see next slide).
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∑

g

a
(j)
g ≡ 0 (mod 12) and

∑

g

g2a
(j)
g ≡ 0 (mod y(N)),

(23)
where y(N) = 2N if N is even, and y(N) = N if N is odd. When
(23) are satisfied a Theorem by Yifan Yang gives that

r
∑

j=1

cj
∏

g

E
a
(j)
g

g

is a modular function for the group Γ1(N).
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Theorem

Let f be a holomorphic modular function, and let AN ⊂ Q ∪ {∞}
be a complete set of cusps for Γ1(N), with ∞ ∈ AN . Assume that
∑

a∈AN
Ord(f ; a,N) > 0. Then f is the zero function.

Theorem (YifanYang)

Ord(Eg ; c ,N) =
1

2
gcd(Dc ,N)B2({Ncg/ gcd(Dc ,N)}), (24)

where Dc is the denominator of c and Nc is the numerator of c,
while {α} denotes the fractional part of the rational number α. In

particular the order of
∏

g E
a
(j)
g

g at c then is

∑

g

a
(j)
g Ord(Eg ; c ,N).
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Corollary

Let f :=
∑r

j=1 cj
∏

g E
a
(j)
g

g . Then

∑

a∈A

Ord(f ; a,N)

> Ord(f ;∞,N) +
∑

a∈AN\{∞}

min
j∈{1,...,r}

∑

g

a
(j)
g Ord(Eg ; a,N).

In particular

Ord(f ;∞,N) +
∑

a∈AN\{∞}

min
j∈{1,...,r}

∑

g

a
(j)
g Ord(Eg ; a,N) > 0

implies that f = 0.

Note that Ord(f ;∞,N) = m , if f = cmq
m + cm+1q

m+1 + . . . and
cm 6= 0.
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Let f :=
∑r

j=1 cj
∏

g E
a
(j)
g

g , and define the bound for f , Bound(f )
by

Bound(f ) :=
∑

a∈AN\{∞}

min
j∈{1,...,r}

∑

g

a
(j)
g Ord(Eg ; a,N) > 0,

By the above corollary if Ord(f ;∞,N) > −Bound(f ), then f = 0.
To prove that f = 0, we need to compute the set AN , luckily the
computer algebra Magma does this for us. Next, we need to
compute Bound(f ), which depends on AN , finally we check by
computer that f = 0 + 0q + 0q2 + · · ·+ 0q−B(f ) + . . . .
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Proof of Theorem 1

∞
∑

n=0

(−1)t(n)qan =

∞
∑

k=0

(−1)kq
1

840
((210k+19)2−361) +

∞
∑

k=0

(−1)kq
1

840
((210k+61)2−361)

−
∞
∑

k=0

(−1)kq
1

840
((210k+79)2−361) +

∞
∑

k=0

(−1)kq
1

840
((210k+89)2−361)

−
∞
∑

k=0

(−1)kq
1

840
((210k+121)2−361) +

∞
∑

k=0

(−1)kq
1

840
((210k+131)2−361)

−
∞
∑

k=0

(−1)kq
1

840
((210k+149)2−361) −

∞
∑

k=0

(−1)kq
1

840
((210k+191)2−361)
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=
∞
∑

k=0

(−1)kq
105k2

2
+ 19k

2 +
∞
∑

k=0

(−1)kq
105k2

2
+ 61k

2
+4−

∞
∑

k=0

(−1)kq
105k2

2
+ 79k

2
+7

+
∞
∑

k=0

(−1)kq
105k2

2
+ 89k

2
+9−

∞
∑

k=0

(−1)kq
105k2

2
+ 121k

2
+17+

∞
∑

k=0

(−1)kq
105k2

2
+ 131k

2
+20

−
∞
∑

k=0

(−1)kq
105k2

2
+ 149k

2
+26 −

∞
∑

k=0

(−1)kq
105k2

2
+ 191k

2
+43. (25)
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∞
∑

n=0

(−1)t(n)qan =
∞
∑

k=−∞

(−1)kq
105k2

2
+ 19k

2 +
∞
∑

k=−∞

(−1)kq
105k2

2
+ 61k

2
+4

−
∞
∑

k=−∞

(−1)kq
105k2

2
+ 79k

2
+7 +

∞
∑

k=−∞

(−1)kq
105k2

2
+ 89k

2
+9.
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Jacobi triple product identity

∞
∑

n=0

(−1)t(n)qan = (q105, q62, q43; q105)∞+q4 (q105, q83, q22; q105)∞

− q7 (q105, q92, q13; q105)∞ + q9 (q105, q97, q8; q105)∞. (26)
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Theorem 1 reduces to this

0 = (q105, q62, q43; q105)∞ + q4 (q105, q83, q22; q105)∞

−q7 (q105, q92, q13; q105)∞+q9 (q105, q97, q8; q105)∞−
(q, q6, q7; q7)∞
(q, q4; q5)∞

.
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Always divide everything by one of the terms

0 = 1 + q4
(q105, q83, q22; q105)∞
(q105, q62, q43; q105)∞

− q7
(q105, q92, q13; q105)∞
(q105, q62, q43; q105)∞

+q9
(q105, q97, q8; q105)∞
(q105, q62, q43; q105)∞

−
(q, q6, q7; q7)∞

(q, q4; q5)∞ (q105, q62, q43; q105)∞
.

to make sure that each term is a modular function.
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N=105

0 = 1+
E22

E43
−

E13

E43
+

E8

E43
−

E7E8E13E15E20E22E27E28E35E42E48E50

E4E9E11E16E19E24E26E31E39E44E46E51
.

(27)
In order to rewrite the last term we used that

(q7; q7) = (q7, q14, q21, . . . , q105; q105),

and similar “blow-ups” for other terms. We set

f := 1+
E22

E43
−
E13

E43
+

E8

E43
−
E7E8E13E15E20E22E27E28E35E42E48E50

E4E9E11E16E19E24E26E31E39E44E46E51
.

(28)
and pretend that f 6= 0.
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The cusps of Γ1(105), A105

[oo,0,1/13,1/12,2/23,1/11,3/32,2/21,1/10,3/29,5/48,2/19,

3/28,4/37,1/9,5/44,4/35,3/26,8/69,5/43,2/17,3/25,4/33,1/8,

6/47,5/39,9/70,4/31,11/84,13/99,5/38,7/53,2/15,13/96,8/59,

3/22,7/51,1/7,5/34,4/27,29/195,18/121,3/20,48/319,79/525,

5/33,16/105,7/45,18/115,8/51,4/25,17/105,1/6,6/35,

11/63,18/103,7/40,8/45,23/129,5/28,7/39,9/50,11/60,9/49,

12/65,5/27,19/102,30/161,13/69,17/90,4/21,1/5,109/525,

27/130,19/91,23/110,22/105,47/222,18/85,33/155,3/14,

14/65,68/315,13/60,41/189,64/295,29/133,19/87,26/119,23/105,

9/41,20/91,11/50,11/49,9/40,71/315,23/102,30/133,

17/75,27/119,8/35,13/56,44/189,7/30,13/55,5/21,6/25,

9/35,11/42,59/225,37/140,23/87,53/200,13/49,4/15,62/231,

51/190,47/175,32/119,368/1365,17/63,13/48,29/105,31/112,

46/165,41/147,59/210,69/245,2/7,13/45,17/63,71/245,7/24,

92/315,45/154,43/147,31/105,34/115,29/98,52/175,

25/84,94/315,19/63,32/105,13/42,24/77,11/35,16/45,113/315,

48/133,38/105,23/63,11/30,31/84,13/35,37/98,8/21,67/175,
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523/1365,29/75,64/165,41/105,124/315,2/5,43/105,41/100,

26/63,31/75,44/105,103/245,47/105,16/35,7/15,8/15,19/35,

39/70,137/245,47/84,17/30,4/7,97/168,41/70,37/63,13/21,

152/245,87/140,22/35,19/30,24/35,46/63,11/15,23/30,27/35].
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Last step

Based on this Bound(f ) = −148. It is routine to verify that
f = 0 + 0q + · · ·+ 0q148 + · · · . This implies that f must be the
zero function.
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All 20 theorems are proven in this way, this has been done and the
paper was sent back to professor Krattenthaler. Normally at this
point the paper would have been finished (from my point of view)
but Professor Krattenthaler did not send any email for a while
after sending him this. The reason comes in the next slides.
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Second proof idea by professor Krattenthaler

θ(α; q) := (α, q/α; q)∞.

Weierstraß’ addition formula:

θ(xy ; q) θ(x/y ; q) θ(uv ; q) θ(u/v ; q)−

θ(xv ; q) θ(x/v ; q) θ(uy ; q) θ(u/y ; q)

=
u

y
θ(yv ; q) θ(y/v ; q) θ(xu; q) θ(x/u; q). (29)
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Two specialisations of the Weierstrass formula

(u3/qN , q4N/u3, q3N ; q3N)∞ +
qN

u
(u3/q2N , q5N/u3, q3N ; q3N)∞

=
(u2/qN , q2N/u2, qN ; qN)∞

(u, qN/u; qN)∞
. (30)

(u3/q2N , q5N/u3, q3N ; q3N)∞−
q3N

u2
(u3/q4N , q7N/u3, q3N ; q3N)∞

=
(u2/q2N , q3N/u2, qN ; qN)∞

(u/qN , q2N/u; qN)∞
. (31)
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Proof of Theorem 1 Our point of departure is (26). By (30) with
N = 35 and u = q26, respectively with N = 35 and u = q19, we get

∞
∑

n=0

(−1)t(n)qan =
(q17, q18, q35; q35)∞

(q26, q9; q35)∞
+ q4

(q3, q32, q35; q35)∞
(q19, q16; q35)∞

.

If we now replace q by q35 and choose u = q10, v = q3, x = q14,
and y = q6 in (29), we obtain

θ(q17; q35) θ(q11; q35) θ(q16; q35) θ(q4; q35)

+ q4θ(q9; q35) θ(q3; q35) θ(q24; q35) θ(q4; q35)

= θ(q20; q35) θ(q8; q35) θ(q13; q35) θ(q7; q35),

and thus the above right-hand side becomes

θ(q20; q35) θ(q8; q35) θ(q13; q35) θ(q7; q35) (q35; q35)∞
θ(q16; q35) θ(q9; q35) θ(q11; q35) θ(q4; q35)

,

which is equivalent to the right-hand side of (1).
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All other theorems are proven in a similar fashion. At this point we
felt that our expertise was not really needed in this problem.
However professor Krattenthaler suggested that we could still be of
help for the last substitution, there four parameters needed to be
found in order to match the formula and although professor
Krattenthaler could find almost all of them by hand, two of them
gave problems, and he asked me whether I could automatize this.
It took me some days to make a program based on exhaustive
search which could find all substitutions automatically, by this time
professor Krattenthaler was done also with the last two examples.
The only advantage of our program was that we could find
substitutions of the form qr with r a positive integer while some of
the substitutions found by professor Krattenthaler had r a half
integer.
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Thank you!
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