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Introduction. Simple digraph models

Simple digraph. Labeled vertices, unlabeled directed edges, loops and
multiple edges forbidden

What about 2-cycles? Distinction between strict and simple digraphs.

D(n, p). n vertices, each possible directed edge is present with probability p.



Introduction. Multidigraph model

Multidigraph. Labeled vertices, labeled directed edges, loops and multiple
edges allowed
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Multigraph D(n, p). The number of edges between any two vertices follows
a Poisson law of parameter p.

Simpler formulae with multidigraphs, see the arXiv article for the simple
digraph versions.



Introduction. Digraph structure

Strong component. Maximal set of vertices, any oriented pair of them
linked by a directed path.

Directed Acyclic Graph (DAG). No directed cycle.

Condensation. Each vertex of a digraph belongs to a unique strong
component. Contracting each strong component to a vertex turns the
digraph into a DAG
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Introduction. Directed Acyclic Graphs (DAGs)

Exact enumeration of DAGs by Liskovets, Wright, Gessel, Robinson,
between 1969 and 1977.

Asymptotic probability of DAGs in D(n, p) for fixed p by Bender Richmond
Robinson Wormald 1986. Quadratic expected number of edges.

Our result p = λ/n. Linear expected number of edges.



Introduction. Directed Acyclic Graphs (DAGs)

a1 ≈ −2.338107 is the smallest zero of Ai(z)

α(λ) =
λ2 − 1

2λ
− log(λ), β(λ) = (2λ)−1/3(λ− 1), γ(λ) =

2−2/3

Ai′(a1)
λ5/6e(λ−1)/6



Introduction. Directed Acyclic Graphs (DAGs)
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Introduction. Typical digraph structure

Consider D(n, p)

Sub- and super-critical. Karp 1990 and Luczak 1990

p < 1/n− ε. all strong components have bounded size, are either cycles
or single vertices w.h.p.

p > 1/n+ ε. there exists a unique strong component of size Θ(n), while
all the other strong components have logarithmic size w.h.p.

Critical.

. Luczak Seierstad 2009 obtained the width of the transition window
p = n−1(1 + Θ(n−1/3)) and the size Θ(n1/3) of the largest component
(see also Coulson 2019).

. Goldschmidt Stephenson 2021 gave the scaling limit.

Denser digraphs Cooper Frieze 2004. Sizes of the largest components in a
random digraph with a given degree sequence.



Introduction. Typical digraph structure

Elementary digraph. Each strong component is a single vertex or a cycle.

Our result. D(n, p) with p = n−1(1 + µn−1/3), probability of elementary
digraphs, or with one complex strong component.
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Symbolic method. Exponential generating functions

combinatorial family generating function

A A(z) =
∑
a∈A

z|a|

|a|! =
∑
n≥0

|An|
zn

n!

disjoint union sum

C = A ] B C(z) = A(z) +B(z)

relabeled Cartesian product product

C = A× B C(z) =
∑
a∈A
b∈B

(
|a|+ |b|
|a|

)
z|a|+|b|

(|a|+ |b|)! = A(z)B(z)



Symbolic method. Set and connected graphs

Set. If B = Set(A), then

B(z) =
∑
k

A(z)k

k!
= eA(z).

Example. Generating function of graphs

G(z) =
∑
n

2(n2) z
n

n!
.

A graph is a set of connected components

G(z) = eC(z)

So the exponential gf of connected graphs is

C(z) = log

(∑
n

2(n2) z
n

n!

)
.



Symbolic method. Arrow product

Arrow product. C = A©→B.

Relabel a pair of digraphs a from A and b from B,

write a on the left and b on the right,

add arbitrary edges from left to right.



Symbolic method. Graphic generating functions

An,m = number of digraph from A with n vertices and m edges.

Exponential gf. A(z, w) =
∑
n,m

An,m
wm

m!

zn

n!

Graphic gf. Â(z, w) =
∑
n,m

An,me
−n2w/2w

m

m!

zn

n!
.

Product. Corresponds to the arrow product C = A©→B

Ĉ(z, w)=
∑
k+`=n

e−n
2w/2

(
n

k

)
ek`w

(∑
m

Ak,m
wm

m!

)(∑
m

B`,m
wm

m!

)
zn

n!

=
∑
k+`=n

e−k
2w/2e−`

2w/2

(∑
m

Ak,m
wm

m!

)(∑
m

B`,m
wm

m!

)
zk

k!

z`

`!
= Â(z, w)B̂(z, w).

Arcless digraphs. Ŝet(z, w) =
∑
n≥0

e−n
2w/2 z

n

n!
.



Exact enumeration. Directed Acyclic Graphs (DAGs)

DAG (Directed Acyclic Graph) (Robinson, Gessel, Liskovets). Consider

D̂AG(z, w, u) where u marks the sources (in-degree 0), and apply
inclusion-exclusion

D̂AG(z, w, u+ 1) = Ŝet(uz,w)× D̂AG(z, w)

The only DAG without source is the empty DAG, so for u = −1

1 = D̂AG(z, w, 0) = Ŝet(−z, w)× D̂AG(z, w),

D̂AG(z, w) =
1

Ŝet(−z, w)
.



Exact enumeration. Generating function translation

Undirected multigraphs and (multi)digraphs.

MG(z, w) =
∑
n≥0

en
2w/2 z

n

n!
, D̂(z, w) =

∑
n≥0

en
2we−n

2w/2 z
n

n!
= MG(z, w).

Arcless digraphs.

Ŝet(z, w) =
∑
n≥0

e−n
2w/2 z

n

n!
.

Exponential Hadamard product.∑
n

an
zn

n!
�z
∑
n

bn
zn

n!
=
∑
n

anbn
zn

n!
.

Translation between exponential and graphic gfs.

Â(z, w) =
∑
n,m

An,me
−n2w/2w

m

m!

zn

n!
= A(z, w)�z Ŝet(z, w),

A(z, w) = Â(z, w)�z MG(z, w).



Exact enumeration. Strongly connected digraphs

Strongly connected digraphs (Robinson, Gessel, Liskovets). Consider D̂(z, w, u)
where u marks the source-like components and apply inclusion-exclusion

D̂(z, w, u+ 1) =
(
eu Strong(z,w) �z Ŝet(z, w)

)
D̂(z, w)

The only digraph without source-like component is the empty digraph, so
for u = −1

1 =
(
e− Strong(z,w) �z Ŝet(z, w)

)
MG(z, w),

Strong(z, w) = − log

(
MG(z, w)�z

1

MG(z, w)

)
.



Exact enumeration. Digraphs with constrained strong components

Digraphs where strong components must belong to a family S

D̂S(z, w, u+ 1) =
(
euS(z,w) �z Ŝet(z, w)

)
D̂S(z, w)

D̂S(z, w) =
1

e−S(z,w) �z Ŝet(z, w)

Elementary digraphs. Strong components are single points or cycles

D̂elem(z, w) =
1

(1− wz)e−z �z Ŝet(z, w)

Elementary digraph plus one strong component in S.

D̂elem,S(z, w) =
(1− wz)S(z, w)e−z �z Ŝet(z, w)(

(1− wz)e−z �z Ŝet(z, w)
)2



Asymptotics. Integral representation

Linearization.

Â(z, w) =
∑
n

An(w)e−n
2w/2 z

n

n!

=
∑
n

An(w)
1√
2πw

ˆ +∞

−∞
e−nix exp

(
− x

2

2w

)
dx
zn

n!

=
1√
2πw

ˆ +∞

−∞
A
(
ze−ix, w

)
exp

(
− x

2

2w

)
dx

Generalized deformed exponential. Define

φr(z, w) =
1√
2πw

ˆ +∞

−∞
(1− wze−ix)r exp

(
− x

2

2w
− ze−ix

)
dx

then the gfs of DAGs and elementary digraphs are

D̂AG(z, w) =
1

φ0(z, w)
, D̂elem(z, w) =

1

φ1(z, w)
.



Asymptotics. Probabilities

Multidigraphs D(n, p). The number of edges between any two vertices
follows a Poisson law of parameter p.

Probability for a random D(n, p) (multi)digraph to belong to F

Pn,p(F) =
∑
G∈Fn

(n2p)m(G)

m(G)!
e−n

2p 1

n2m(G)
= e−n

2p/2n![zn]F̂ (z, p).

Thus

Pn,p(DAG) = e−n
2p/2n![zn]

1

φ0(z, p)
,

Pn,p(elementary) = e−n
2p/2n![zn]

1

φ1(z, p)
.



Asymptotics. Generalized deformed exponential

φr(z, p) =
1√
2πp

ˆ +∞

−∞
(1− pze−ix)r exp

(
−x

2

2p
− ze−ix

)
dx

Asymptotics estimates of φ(z, p) as p→ 0 in 3 zones, using the saddle-point
method.

Isolated zeros of φ(z(p), p).

Singularity analysis of [zn]
1

φr(z, p)
for p = λ/n with λ < 1, λ > 1 or

λ = 1 + µn−1/3.



Conclusion

Numerical tests. We checked almost all assertions using computer algeba
systems

https://gitlab.com/sergey-dovgal/strong-components-aux

Open problems and futur research.

. work on D(n,m) instead of D(n, p)

. full description of the structure distribution in the critical window

. limit probability of satisfiability for 2-SAT formulae in the critical
window.


