The birth of the strong components

Sergey Dovgal, Élie de Panafieu, Dimbinaina Ralaivaosaona, Vonjy Rasendrahasina, Stephan Wagner
Université de Bourgogne, Nokia Bell Labs, Stellenbosch University, Antananarivo university, Uppsala University
Algorithmic and Enumerative Combinatorics 2022

Simple digraph. Labeled vertices, unlabeled directed edges, loops and multiple edges forbidden

What about 2-cycles? Distinction between strict and simple digraphs.
$D(n, p) . n$ vertices, each possible directed edge is present with probability p.

Multidigraph. Labeled vertices, labeled directed edges, loops and multiple edges allowed

Multigraph $D(n, p)$. The number of edges between any two vertices follows a Poisson law of parameter p.

Simpler formulae with multidigraphs, see the arXiv article for the simple digraph versions.

Strong component. Maximal set of vertices, any oriented pair of them linked by a directed path.

Directed Acyclic Graph (DAG). No directed cycle.

Condensation. Each vertex of a digraph belongs to a unique strong component. Contracting each strong component to a vertex turns the digraph into a DAG

Exact enumeration of DAGs by Liskovets, Wright, Gessel, Robinson, between 1969 and 1977.

Asymptotic probability of DAGs in $D(n, p)$ for fixed p by Bender Richmond Robinson Wormald 1986. Quadratic expected number of edges.

Our result $p=\lambda / n$. Linear expected number of edges.

$a_{1} \approx-2.338107$ is the smallest zero of $\operatorname{Ai}(z)$

$$
\alpha(\lambda)=\frac{\lambda^{2}-1}{2 \lambda}-\log (\lambda), \quad \beta(\lambda)=(2 \lambda)^{-1 / 3}(\lambda-1), \quad \gamma(\lambda)=\frac{2^{-2 / 3}}{\operatorname{Ai}^{\prime}\left(a_{1}\right)} \lambda^{5 / 6} e^{(\lambda-1) / 6}
$$

Consider $D(n, p)$
Sub- and super-critical. Karp 1990 and Luczak 1990
$p<1 / n-\epsilon$. all strong components have bounded size, are either cycles or single vertices w.h.p.
$p>1 / n+\epsilon$. there exists a unique strong component of size $\Theta(n)$, while all the other strong components have logarithmic size w.h.p.

Critical.
. Luczak Seierstad 2009 obtained the width of the transition window $p=n^{-1}\left(1+\Theta\left(n^{-1 / 3}\right)\right)$ and the size $\Theta\left(n^{1 / 3}\right)$ of the largest component (see also Coulson 2019).
. Goldschmidt Stephenson 2021 gave the scaling limit.

Denser digraphs Cooper Frieze 2004. Sizes of the largest components in a random digraph with a given degree sequence.

Elementary digraph. Each strong component is a single vertex or a cycle.

Our result. $D(n, p)$ with $p=n^{-1}\left(1+\mu n^{-1 / 3}\right)$, probability of elementary digraphs, or with one complex strong component.

combinatorial family

\mathcal{A}

disjoint union

$$
\mathcal{C}=\mathcal{A} \uplus \mathcal{B}
$$

relabeled Cartesian product

$$
\mathcal{C}=\mathcal{A} \times \mathcal{B}
$$

generating function

$$
A(z)=\sum_{a \in \mathcal{A}} \frac{z^{|a|}}{|a|!}=\sum_{n \geq 0}\left|\mathcal{A}_{n}\right| \frac{z^{n}}{n!}
$$

sum

$$
C(z)=A(z)+B(z)
$$

$$
C(z)=\sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}}\binom{|a|+|b|}{|a|} \frac{z^{|a|+|b|}}{(|a|+|b|)!}=A(z) B(z)
$$

Set. If $\mathcal{B}=\operatorname{Set}(\mathcal{A})$, then

$$
B(z)=\sum_{k} \frac{A(z)^{k}}{k!}=e^{A(z)} .
$$

Example. Generating function of graphs

$$
G(z)=\sum_{n} 2^{\binom{n}{2}} \frac{z^{n}}{n!} .
$$

A graph is a set of connected components

$$
G(z)=e^{C(z)}
$$

So the exponential gf of connected graphs is

$$
C(z)=\log \left(\sum_{n} 2^{\binom{n}{2}} \frac{z^{n}}{n!}\right) .
$$

Arrow product. $\mathcal{C}=\mathcal{A} \oplus \mathcal{B}$.

- Relabel a pair of digraphs from \mathcal{A} and b from \mathcal{B},
- write a on the left and b on the right,
- add arbitrary edges from left to right.

$A_{n, m}=$ number of digraph from \mathcal{A} with n vertices and m edges.
Exponential gf. $\quad A(z, w)=\sum_{n, m} A_{n, m} \frac{w^{m}}{m!} \frac{z^{n}}{n!}$
Graphic gf.

$$
\hat{A}(z, w)=\sum_{n, m} A_{n, m} e^{-n^{2} w / 2} \frac{w^{m}}{m!} \frac{z^{n}}{n!} .
$$

Product. Corresponds to the arrow product $\mathcal{C}=\mathcal{A} \oplus \mathcal{B}$

$$
\begin{aligned}
\hat{C}(z, w) & =\sum_{k+\ell=n} e^{-n^{2} w / 2}\binom{n}{k} e^{k \ell \ell}\left(\sum_{m} A_{k, m} \frac{w^{m}}{m!}\right)\left(\sum_{m} B_{\ell, m} \frac{w^{m}}{m!}\right) \frac{z^{n}}{n!} \\
& =\sum_{k+\ell=n} e^{-k^{2} w / 2} e^{-\ell^{2} w / 2}\left(\sum_{m} A_{k, m} \frac{w^{m}}{m!}\right)\left(\sum_{m} B_{\ell, m} \frac{w^{m}}{m!}\right) \frac{z^{k}}{k!} \frac{z^{\ell}}{\ell!}=\hat{A}(z, w) \hat{B}(z, w) .
\end{aligned}
$$

Arcless digraphs.

$$
\widehat{\operatorname{Set}}(z, w)=\sum_{n \geq 0} e^{-n^{2} w / 2} \frac{z^{n}}{n!} .
$$

DAG (Directed Acyclic Graph) (Robinson, Gessel, Liskovets). Consider $\widehat{\mathrm{DAG}}(z, w, u)$ where u marks the sources (in-degree 0), and apply inclusion-exclusion

$$
\widehat{\mathrm{DAG}}(z, w, u+1)=\widehat{\operatorname{Set}}(z, w) \times \widehat{\mathrm{DAG}}(z, w)
$$

The only DAG without source is the empty DAG, so for $u=-1$

$$
\begin{gathered}
1=\widehat{\mathrm{DAG}}(z, w, 0)=\widehat{\operatorname{Set}}(-z, w) \times \widehat{\mathrm{DAG}}(z, w), \\
\widehat{\mathrm{DAG}}(z, w)=\frac{1}{\widehat{\operatorname{Set}}(-z, w)} .
\end{gathered}
$$

Undirected multigraphs and (multi)digraphs.

$$
\operatorname{MG}(z, w)=\sum_{n \geq 0} e^{n^{2} w / 2} \frac{z^{n}}{n!}, \quad \hat{D}(z, w)=\sum_{n \geq 0} e^{n^{2} w} e^{-n^{2} w / 2} \frac{z^{n}}{n!}=\operatorname{MG}(z, w) .
$$

Arcless digraphs.

$$
\widehat{\operatorname{Set}}(z, w)=\sum_{n \geq 0} e^{-n^{2} w / 2} \frac{z^{n}}{n!} .
$$

Exponential Hadamard product.

$$
\sum_{n} a_{n} \frac{z^{n}}{n!} \odot_{z} \sum_{n} b_{n} \frac{z^{n}}{n!}=\sum_{n} a_{n} b_{n} \frac{z^{n}}{n!} .
$$

Translation between exponential and graphic gfs.

$$
\begin{aligned}
& \hat{A}(z, w)=\sum_{n, m} A_{n, m} e^{-n^{2} w / 2} \frac{w^{m}}{m!} \frac{z^{n}}{n!}=A(z, w) \odot_{z} \widehat{\operatorname{Set}}(z, w), \\
& A(z, w)=\hat{A}(z, w) \odot_{z} \operatorname{MG}(z, w) .
\end{aligned}
$$

Strongly connected digraphs (Robinson, Gessel, Liskovets). Consider $\hat{D}(z, w, u)$ where u marks the source-like components and apply inclusion-exclusion

$$
\hat{D}(z, w, u+1)=\left(e^{\operatorname{Strong}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)\right) \hat{D}(z, w)
$$

The only digraph without source-like component is the empty digraph, so for $u=-1$

$$
\begin{array}{r}
1=\left(e^{-\operatorname{Strong}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)\right) \operatorname{MG}(z, w), \\
\operatorname{Strong}(z, w)=-\log \left(\operatorname{MG}(z, w) \odot_{z} \frac{1}{\operatorname{MG}(z, w)}\right) .
\end{array}
$$

Digraphs where strong components must belong to a family S

$$
\begin{aligned}
\hat{D}_{S}(z, w, u+1) & =\left(e^{u S(z, w)} \odot_{z} \widehat{\operatorname{Set}(z, w)}\right) \hat{D}_{S}(z, w) \\
\hat{D}_{S}(z, w) & =\frac{1}{e^{-S(z, w)} \odot_{z} \widehat{\operatorname{Set}(z, w)}}
\end{aligned}
$$

Elementary digraphs. Strong components are single points or cycles

$$
\hat{D}_{\text {elem }}(z, w)=\frac{1}{(1-w z) e^{-z} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

Elementary digraph plus one strong component in S.

$$
\hat{D}_{\text {elem }, S}(z, w)=\frac{(1-w z) S(z, w) e^{-z} \odot_{z} \widehat{\operatorname{Set}}(z, w)}{\left((1-w z) e^{-z} \odot_{z} \widehat{\operatorname{Set}}(z, w)\right)^{2}}
$$

Linearization.

$$
\begin{aligned}
\hat{A}(z, w) & =\sum_{n} A_{n}(w) e^{-n^{2} w / 2} \frac{z^{n}}{n!} \\
& =\sum_{n} A_{n}(w) \frac{1}{\sqrt{2 \pi w}} \int_{-\infty}^{+\infty} e^{-n i x} \exp \left(-\frac{x^{2}}{2 w}\right) d x \frac{z^{n}}{n!} \\
& =\frac{1}{\sqrt{2 \pi w}} \int_{-\infty}^{+\infty} A\left(z e^{-i x}, w\right) \exp \left(-\frac{x^{2}}{2 w}\right) d x
\end{aligned}
$$

Generalized deformed exponential. Define

$$
\phi_{r}(z, w)=\frac{1}{\sqrt{2 \pi w}} \int_{-\infty}^{+\infty}\left(1-w z e^{-i x}\right)^{r} \exp \left(-\frac{x^{2}}{2 w}-z e^{-i x}\right) d x
$$

then the gfs of DAGs and elementary digraphs are

$$
\widehat{\mathrm{DAG}}(z, w)=\frac{1}{\phi_{0}(z, w)}, \quad \hat{D}_{\text {elem }}(z, w)=\frac{1}{\phi_{1}(z, w)}
$$

Multidigraphs $D(n, p)$. The number of edges between any two vertices follows a Poisson law of parameter p.

Probability for a random $D(n, p)$ (multi)digraph to belong to \mathcal{F}

$$
\mathbb{P}_{n, p}(\mathcal{F})=\sum_{G \in \mathcal{F}_{n}} \frac{\left(n^{2} p\right)^{m(G)}}{m(G)!} e^{-n^{2} p} \frac{1}{n^{2 m(G)}}=e^{-n^{2} p / 2} n!\left[z^{n}\right] \hat{F}(z, p)
$$

Thus

$$
\begin{aligned}
\mathbb{P}_{n, p}(\mathrm{DAG}) & =e^{-n^{2} p / 2} n!\left[z^{n}\right] \frac{1}{\phi_{0}(z, p)} \\
\mathbb{P}_{n, p}(\text { elementary }) & =e^{-n^{2} p / 2} n!\left[z^{n}\right] \frac{1}{\phi_{1}(z, p)}
\end{aligned}
$$

$$
\phi_{r}(z, p)=\frac{1}{\sqrt{2 \pi p}} \int_{-\infty}^{+\infty}\left(1-p z e^{-i x}\right)^{r} \exp \left(-\frac{x^{2}}{2 p}-z e^{-i x}\right) d x
$$

Asymptotics estimates of $\phi(z, p)$ as $p \rightarrow 0$ in 3 zones, using the saddle-point method.

Isolated zeros of $\phi(z(p), p)$.
Singularity analysis of $\left[z^{n}\right] \frac{1}{\phi_{r}(z, p)}$ for $p=\lambda / n$ with $\lambda<1, \lambda>1$ or $\lambda=1+\mu n^{-1 / 3}$.

Numerical tests. We checked almost all assertions using computer algeba systems
https://gitlab.com/sergey-dovgal/strong-components-aux

Open problems and futur research.
. work on $D(n, m)$ instead of $D(n, p)$
. full description of the structure distribution in the critical window
. limit probability of satisfiability for 2-SAT formulae in the critical window.

