Perfect Matchings in Cubic Graphs

Peter Horak ${ }^{1}$, Dongryul Kim²

University of Washington ${ }^{1}$, Stanford University ${ }^{2}$

This talk is dedicated to the memory of

GERT SABIDUSSI 1929-2022

Cycles, 2-factors, perfect matchings

Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897).

Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897). 2-factors: J. Petersen, Acta Math. 15(1891).

Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897). 2-factors: J. Petersen, Acta Math. 15(1891).

Confined to cubic graphs G.

Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897). 2-factors: J. Petersen, Acta Math. 15(1891).

Confined to cubic graphs G.
For cubic graphs

$$
2-\operatorname{Fac}(G)=\operatorname{PerMat}(G)
$$

Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897).
2-factors: J. Petersen, Acta Math. 15(1891).

Confined to cubic graphs G.
For cubic graphs

$$
2-\operatorname{Fac}(G)=\operatorname{PerMat}(G)
$$

where, for a graph $G, \operatorname{PerMat}(G)$ \# of perfect matchings of G.

Results

Results

Confirming an old conjecture of Lovasz and Plummer

Results

Confirming an old conjecture of Lovasz and Plummer

Theorem

(Loius Esperet et al. 2011.) There are exponentially many perfect matchings in cubic graphs.

Results

Confirming an old conjecture of Lovasz and Plummer

Theorem

(Loius Esperet et al. 2011.) There are exponentially many perfect matchings in cubic graphs.

Restriction of a general result:

Results

Confirming an old conjecture of Lovasz and Plummer

Theorem

(Loius Esperet et al. 2011.) There are exponentially many perfect matchings in cubic graphs.

Restriction of a general result:

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$. CM

Results

Confirming an old conjecture of Lovasz and Plummer

Theorem

(Loius Esperet et al. 2011.) There are exponentially many perfect matchings in cubic graphs.

Restriction of a general result:

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$. CM

Connected Cubic Graphs

Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered, then

Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered, then

Theorem

(Galbiati, 1981) For a connected cubic (multi) graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 2^{n}+1
$$

This bound is tight, attained by a cycle of length $2 n$ and putting parallel edges alternatively.

Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered, then

Theorem

(Galbiati, 1981) For a connected cubic (multi) graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 2^{n}+1
$$

This bound is tight, attained by a cycle of length $2 n$ and putting parallel edges alternatively.

Simple connected cubic graphs

Simple connected cubic graphs

Small values of $n \quad$ CM

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices
$M(2)=\left\{K_{4}\right\}$

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices

$$
\begin{aligned}
& M(2)=\left\{K_{4}\right\} \\
& M(3)=\left\{K_{3,3}\right\}
\end{aligned}
$$

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices

$$
\begin{aligned}
& M(2)=\left\{K_{4}\right\} \\
& M(3)=\left\{K_{3,3}\right\} \\
& M(4)=\left\{K_{4,4}-F, \text { a perfect matching }\right\}
\end{aligned}
$$

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices

$$
\begin{aligned}
& M(2)=\left\{K_{4}\right\} \\
& M(3)=\left\{K_{3,3}\right\} \\
& M(4)=\left\{K_{4,4}-F, \text { a perfect matching }\right\} \\
& M(5)=\{\text { Möbius ladder on } 10 \text { vertices }\}
\end{aligned}
$$

Simple connected cubic graphs

Small values of $n \quad$ CM

$$
\begin{aligned}
& \text { for } n=2, \operatorname{PerMat}(G)=3, \quad \text { for } n=3, \quad \operatorname{PerMat}(G) \leq 6 \\
& \text { for } n=4, \operatorname{PerMat}(G) \leq 9, \quad \text { for } n=5, \quad \operatorname{PerMat}(G) \leq 13 .
\end{aligned}
$$

$M(n)$ the set of extremal graphs on $2 n$ vertices

$$
\begin{aligned}
& M(2)=\left\{K_{4}\right\} \\
& M(3)=\left\{K_{3,3}\right\} \\
& M(4)=\left\{K_{4,4}-F, \text { a perfect matching }\right\} \\
& M(5)=\{\text { Möbius ladder on } 10 \text { vertices }\}
\end{aligned}
$$

Möbius ladder on 10 vertices

Möbius ladder on 10 vertices

Circular ladder on 12 vertices $\quad C_{6} \times K_{2}$

Main Result

Main Result

Theorem

(P.H + Dongryul Kim 2022) Let G be a simple connected cubic graph on $2 n$ vertices. Then, for $n \geq 6$,

$$
\operatorname{PerMat}(G) \leq 4 f_{n-1}
$$

where f_{n} denotes the nth Fibonacci number. This bound is tight.

Main Result

Theorem

(P.H + Dongryul Kim 2022) Let G be a simple connected cubic graph on $2 n$ vertices. Then, for $n \geq 6$,

$$
\operatorname{PerMat}(G) \leq 4 f_{n-1}
$$

where f_{n} denotes the nth Fibonacci number. This bound is tight.
$M(6)=\left\{C_{6} \times K_{2} ;\right.$ Extrem $\left.(6)\right\} ;$

Main Result

Theorem

(P.H + Dongryul Kim 2022) Let G be a simple connected cubic graph on $2 n$ vertices. Then, for $n \geq 6$,

$$
\operatorname{PerMat}(G) \leq 4 f_{n-1}
$$

where f_{n} denotes the nth Fibonacci number. This bound is tight.
$M(6)=\left\{C_{6} \times K_{2} ;\right.$ Extrem $\left.(6)\right\}$;
For $n \geq 7, M(n)=\{\operatorname{Extrem}(n)\}$

Main Result

Theorem

(P.H + Dongryul Kim 2022) Let G be a simple connected cubic graph on $2 n$ vertices. Then, for $n \geq 6$,

$$
\operatorname{PerMat}(G) \leq 4 f_{n-1}
$$

where f_{n} denotes the nth Fibonacci number. This bound is tight.
$M(6)=\left\{C_{6} \times K_{2} ;\right.$ Extrem $\left.(6)\right\}$;
For $n \geq 7, M(n)=\{\operatorname{Extrem}(n)\}$

Extrem(n) a ladder with a $K_{3,3}$ included at both ends.

The main idea of the proof

The main idea of the proof

Theorem

(Bregman-Minc inequality 1973) Let $A=\left(a_{i j}\right)$ be a binary square matrix, row sum $r_{i}=\sum_{1 \leq j \leq n} a_{i j}$ for $i=1, \ldots, n$. Then

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

The main idea of the proof

Theorem

(Bregman-Minc inequality 1973) Let $A=\left(a_{i j}\right)$ be a binary square matrix, row sum $r_{i}=\sum_{1 \leq j \leq n} a_{i j}$ for $i=1, \ldots, n$. Then

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

$\operatorname{PerMat}(G)=\operatorname{per}(I(G)) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}, I(G)$..IM. balanced bipartite graph

The main idea of the proof

Theorem

(Bregman-Minc inequality 1973) Let $A=\left(a_{i j}\right)$ be a binary square matrix, row sum $r_{i}=\sum_{1 \leq j \leq n} a_{i j}$ for $i=1, \ldots, n$. Then

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

$\operatorname{PerMat}(G)=\operatorname{per}(I(G)) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}, I(G)$..IM. balanced bipartite graph

$$
\operatorname{PerMat}(G) \leq \prod_{i=1}^{n} 6^{1 / 3}=6^{n / 3} \text { for cubic bipartite graphs }
$$

A one-to-one correspondence between a binary square matrices and a simple balanced bipartite graphs. Each term of permanent $a_{1 \sigma(1)} \ldots a_{n \sigma(n)}=1$ corresponds to a perfect matching, and vice versa.

A one-to-one correspondence between a binary square matrices and a simple balanced bipartite graphs. Each term of permanent $a_{1 \sigma(1)} \ldots a_{n \sigma(n)}=1$ corresponds to a perfect matching, and vice versa.

A one-to-one correspondence between a binary square matrices and a simple balanced bipartite graphs. Each term of permanent $a_{1 \sigma(1)} \ldots a_{n \sigma(n)}=1$ corresponds to a perfect matching, and vice versa.

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.
(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.

As shown above, obvious for balanced bipartite graphs
(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.

As shown above, obvious for balanced bipartite graphs
By a clever trick Noga Alon and Friedland extended Bregman-Minc inequality from bipartite graphs to all simple cubic graphs.

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.

As shown above, obvious for balanced bipartite graphs
By a clever trick Noga Alon and Friedland extended Bregman-Minc inequality from bipartite graphs to all simple cubic graphs.

Our main theorem was first proved for connected bipartite cubic graphs

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.

As shown above, obvious for balanced bipartite graphs
By a clever trick Noga Alon and Friedland extended Bregman-Minc inequality from bipartite graphs to all simple cubic graphs.

Our main theorem was first proved for connected bipartite cubic graphs and then the same trick has been used to extend it to all connected cubic graphs.

Theorem

(Noga Alon et al. 2008) For a simple cubic graph G on $2 n$ vertices,

$$
\operatorname{PerMat}(G) \leq 6^{n / 3}
$$

This bound is tight, attained by the disjoint union of bipartite complete graphs $K_{3,3}$.

As shown above, obvious for balanced bipartite graphs
By a clever trick Noga Alon and Friedland extended Bregman-Minc inequality from bipartite graphs to all simple cubic graphs.

Our main theorem was first proved for connected bipartite cubic graphs and then the same trick has been used to extend it to all connected cubic graphs.

A formula for PerMat(G)

Theorem

For a cubic graph G of order $2 n$,

$$
\operatorname{PerMat}(G)=\mathrm{E}(X), \text { the expected value of } X
$$

where X is a random variable defined on the set of all 2-colorings c on the edges of G, each coloring equally likely, and $X(c)=(-3)^{m_{c}}$, where m_{c} is the number of vertices of G incident in c with three edges of the same color.

A formula for PerMat(G)

Theorem

For a cubic graph G of order $2 n$,

$$
\operatorname{PerMat}(G)=\mathrm{E}(X), \text { the expected value of } X
$$

where X is a random variable defined on the set of all 2-colorings c on the edges of G, each coloring equally likely, and $X(c)=(-3)^{m_{c}}$, where m_{c} is the number of vertices of G incident in c with three edges of the same color.

Not feasible for practical calculation but might turn out to have a theoretical value.

"Sketch" of the proof.

"Sketch" of the proof.

Due to the connection with quantum physics, bra-ket notation

"Sketch" of the proof.

Due to the connection with quantum physics, bra-ket notation 2-dimensional real vector space

$$
B=\mathbb{R}|0\rangle \oplus \mathbb{R}|1\rangle=\{a|0\rangle+b|1\rangle: a, b \in \mathbb{R}\}
$$

"Sketch" of the proof.

Due to the connection with quantum physics, bra-ket notation 2-dimensional real vector space

$$
B=\mathbb{R}|0\rangle \oplus \mathbb{R}|1\rangle=\{a|0\rangle+b|1\rangle: a, b \in \mathbb{R}\}
$$

Let

$$
\alpha=|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \in B \otimes B
$$

"Sketch" of the proof.

Due to the connection with quantum physics, bra-ket notation 2-dimensional real vector space

$$
B=\mathbb{R}|0\rangle \oplus \mathbb{R}|1\rangle=\{a|0\rangle+b|1\rangle: a, b \in \mathbb{R}\}
$$

Let

$$
\alpha=|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \in B \otimes B
$$

and linear map β is given by

$$
\begin{aligned}
\beta: B \otimes B \otimes B & \rightarrow \mathbb{R}, \\
\left|s_{1}\right\rangle \otimes\left|s_{2}\right\rangle \otimes\left|s_{3}\right\rangle & \mapsto \begin{cases}1 & \text { there are exactly two } 0 \text { among } s_{1}, s_{2}, s_{3}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

where $s_{1}, s_{2}, s_{3} \in\{0,1\}$, basis of $B \otimes B \otimes B$.

Then the evaluation:

Then the evaluation:

$$
\beta^{\otimes V(G)}\left(\alpha^{\otimes E(G)}\right)=\operatorname{PerMat}(G)
$$

Then the evaluation:

$$
\beta^{\otimes V(G)}\left(\alpha^{\otimes E(G)}\right)=\operatorname{PerMat}(G)
$$

Changing basis

$$
|x\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \quad|y\rangle=\frac{1}{\sqrt{2}}(-|0\rangle+|1\rangle) .
$$

leads to

Then the evaluation:

$$
\beta^{\otimes V(G)}\left(\alpha^{\otimes E(G)}\right)=\operatorname{PerMat}(G)
$$

Changing basis

$$
|x\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \quad|y\rangle=\frac{1}{\sqrt{2}}(-|0\rangle+|1\rangle)
$$

leads to

$$
\alpha=|x\rangle \otimes|x\rangle+|y\rangle \otimes|y\rangle
$$

and the evaluation applies in this case as well.

Closing remarks

It is counter-intuitive that a unique extremal graph is not 3-connected.

Closing remarks

It is counter-intuitive that a unique extremal graph is not 3-connected.

Conjecture

Let G be a simple 3-connected cubic graph on $2 n$ vertices, where $n \geq 3$.
Then

$$
\operatorname{PerMat}(G) \leq f_{n}+2 f_{n-1}+2,
$$

with equality attained if and only if G is isomorphic to the circular ladder graph or the Möbius ladder graph

Verified by a computer for $n \leq 9$.

Verified by a computer for $n \leq 9$.

The difference between the 3-connected case and the general case is by a small constant.

Verified by a computer for $n \leq 9$.

The difference between the 3-connected case and the general case is by a small constant.

Unlike the maximal graphs, the graphs that minimize the number of perfect matchings tend to be complicated

Erdos - Dongryul Kim

1913-1996

1997 -

