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Cycles, 2-factors, perfect matchings

Max number of cycles: W. Ahrens, Math. Ann. 49(1897).

2-factors: J. Petersen, Acta Math. 15(1891).

Confined to cubic graphs G .

For cubic graphs

2-Fac(G ) = PerMat(G )

where, for a graph G , PerMat(G ) # of perfect matchings of G .
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Results

Confirming an old conjecture of Lovasz and Plummer

Theorem
(Loius Esperet et al. 2011.) There are exponentially many perfect
matchings in cubic graphs.

Restriction of a general result:

Theorem
(Noga Alon et al. 2008) For a simple cubic graph G on 2n vertices,

PerMat(G ) ≤ 6n/3

This bound is tight, attained by the disjoint union of bipartite complete
graphs K3,3. CM
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Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered,
then

Theorem
(Galbiati, 1981) For a connected cubic (multi) graph G on 2n vertices,

PerMat(G ) ≤ 2n + 1.

This bound is tight, attained by a cycle of length 2n and putting parallel
edges alternatively.

Peter Horak1 , Dongryul Kim2 (Institute) Perfect Matchings 5 / 18



Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered,
then

Theorem
(Galbiati, 1981) For a connected cubic (multi) graph G on 2n vertices,

PerMat(G ) ≤ 2n + 1.

This bound is tight, attained by a cycle of length 2n and putting parallel
edges alternatively.

Peter Horak1 , Dongryul Kim2 (Institute) Perfect Matchings 5 / 18



Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered,
then

Theorem
(Galbiati, 1981) For a connected cubic (multi) graph G on 2n vertices,

PerMat(G ) ≤ 2n + 1.

This bound is tight, attained by a cycle of length 2n and putting parallel
edges alternatively.

Peter Horak1 , Dongryul Kim2 (Institute) Perfect Matchings 5 / 18



Connected Cubic Graphs

If only connected cubic graphs but not necessarily simple are considered,
then

Theorem
(Galbiati, 1981) For a connected cubic (multi) graph G on 2n vertices,

PerMat(G ) ≤ 2n + 1.

This bound is tight, attained by a cycle of length 2n and putting parallel
edges alternatively.

Peter Horak1 , Dongryul Kim2 (Institute) Perfect Matchings 5 / 18



Simple connected cubic graphs

Small values of n CM

for n = 2,PerMat(G ) = 3, for n = 3, PerMat(G ) ≤ 6
for n = 4,PerMat(G ) ≤ 9, for n = 5, PerMat(G ) ≤ 13.

M(n) the set of extremal graphs on 2n vertices

M(2) = {K4}
M(3) = {K3,3}
M(4) = {K4,4 − F , a perfect matching}
M(5) = {Möbius ladder on 10 vertices}
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Möbius ladder on 10 vertices

Circular ladder on 12 vertices C6 ×K2
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Main Result

Theorem
(P.H + Dongryul Kim 2022) Let G be a simple connected cubic graph on
2n vertices. Then, for n ≥ 6,

PerMat(G ) ≤ 4fn−1,

where fn denotes the nth Fibonacci number. This bound is tight.

M(6) = {C6 ×K2; Extrem(6)};

For n ≥ 7, M(n) = {Extrem(n)}
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Extrem(n) a ladder with a K3,3 included at both ends.
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The main idea of the proof

Theorem
(Bregman—Minc inequality 1973) Let A = (aij ) be a binary square matrix,
row sum ri = ∑

1≤j≤n
aij for i = 1, ..., n. Then

per(A) ≤
n

∏
i=1
(ri !)1/ri

PerMat(G ) = per(I (G )) ≤
n

∏
i=1
(ri !)1/ri , I (G ) ..IM. balanced bipartite graph

PerMat(G ) ≤
n

∏
i=1
61/3 = 6n/3 for cubic bipartite graphs
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A one-to-one correspondence between a binary square matrices and a
simple balanced bipartite graphs. Each term of permanent
a1σ(1)...anσ(n) = 1 corresponds to a perfect matching, and vice versa.
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Theorem
(Noga Alon et al. 2008) For a simple cubic graph G on 2n vertices,

PerMat(G ) ≤ 6n/3

This bound is tight, attained by the disjoint union of bipartite complete
graphs K3,3.

As shown above, obvious for balanced bipartite graphs

By a clever trick Noga Alon and Friedland extended Bregman—Minc
inequality from bipartite graphs to all simple cubic graphs.

Our main theorem was first proved for connected bipartite cubic graphs
and then the same trick has been used to extend it to all connected cubic
graphs.
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A formula for PerMat(G)

Theorem
For a cubic graph G of order 2n,

PerMat(G ) = E(X ), the expected value of X

where X is a random variable defined on the set of all 2-colorings c on the
edges of G, each coloring equally likely, and X (c) = (−3)mc , where mc is
the number of vertices of G incident in c with three edges of the same
color.

Not feasible for practical calculation but might turn out to have a
theoretical value.
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"Sketch" of the proof.

Due to the connection with quantum physics, bra-ket notation

2-dimensional real vector space

B = R|0〉 ⊕R|1〉 = {a|0〉+ b|1〉 : a, b ∈ R}

Let
α = |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 ∈ B ⊗ B,

and linear map β is given by

β : B ⊗ B ⊗ B → R,

|s1〉 ⊗ |s2〉 ⊗ |s3〉 7→
{
1 there are exactly two 0 among s1, s2, s3,

0 otherwise.

where s1, s2, s3 ∈ {0, 1}, basis of B ⊗ B ⊗ B.
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Then the evaluation:

β⊗V (G )(α⊗E (G )) = PerMat(G ).

Changing basis

|x〉 = 1√
2
(|0〉+ |1〉), |y〉 = 1√

2
(−|0〉+ |1〉).

leads to

α = |x〉 ⊗ |x〉+ |y〉 ⊗ |y〉
and the evaluation applies in this case as well.
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Closing remarks

It is counter-intuitive that a unique extremal graph is not 3-connected.

Conjecture
Let G be a simple 3-connected cubic graph on 2n vertices, where n ≥ 3.
Then

PerMat(G ) ≤ fn + 2fn−1 + 2,
with equality attained if and only if G is isomorphic to the circular ladder
graph or the Möbius ladder graph
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Verified by a computer for n ≤ 9.

The difference between the 3-connected case and the general case is by a
small constant.

Unlike the maximal graphs, the graphs that minimize the number of
perfect matchings tend to be complicated
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