Growing Connections Between Partition Crank，Mex，and Frobenius Symbols

Brian Hopkins，Saint Peter＇s University
Jersey City，New Jersey，USA
Joint work with James Sellers，Dennis Stanton，and Ae Ja Yee

Algorithmic and Enumerative Combinatorics
Vienna，Austria
8 July 2022

- partition rank and crank
- a combinatorial crank result
- minimal excluded part (mex)
- connecting mex \& crank
- Frobenius symbols
- further connections and questions
- references

Write $p(n)$ for the number of partitions of n.
MacMahon provided Hardy and Ramanujan $p(n)$ values through $n=200$. In 1919, Ramanujan proved (analytically) that

- $p(5 n+4) \equiv 0 \bmod 5$,
- $p(7 n+5) \equiv 0 \bmod 7$, and
- $p(11 n+6) \equiv 0 \bmod 11$.

Write $p(n)$ for the number of partitions of n.
MacMahon provided Hardy and Ramanujan $p(n)$ values through $n=200$. In 1919, Ramanujan proved (analytically) that

- $p(5 n+4) \equiv 0 \bmod 5$,
- $p(7 n+5) \equiv 0 \bmod 7$, and
- $p(11 n+6) \equiv 0 \bmod 11$.

In 1944, a young Freeman Dyson defined the rank of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ as $\lambda_{1}-\ell$ and conjectured that this simple partition statistic combinatorially verifies the modulo 5 and 7 results by grouping the appropriate partitions into 5 or 7 equally numerous classes. Proven correct by Atkin-Swinnerton-Dyer, 1954.

Dyson, Some guesses in the theory of partitions, Eureka 1944

After a few preliminaries I state certain properties of partitions which I am unable to prove; these guesses are then transformed into algebraic identities which are also unproved, although there is conclusive evidence in their support; finally, I indulge in some even vaguer guesses concerning the existence of identities which I am not only unable to prove but also unable to state.

The rank statistic shows the modulo 5 and 7 results, but not the modulo 11 identity. Dyson suggested that some "more recondite" partition statistic should. He gave it a name ("crank") and a purpose, but no definition!

Definition (Andrews-Garvan 1988)

Given a partition λ, let $\omega(\lambda)$ be the number of ones in λ and let $\mu(\lambda)$ be the number of parts of λ greater than $\omega(\lambda)$. Then

$$
\operatorname{crank}(\lambda)= \begin{cases}\lambda_{1} & \text { if } \omega(\lambda)=0 \\ \omega(\lambda)-\mu(\lambda) & \text { if } \omega(\lambda)>0\end{cases}
$$

They showed that this definition of the "elusive crank" does all that Dyson hoped for and gives a combinatorial verification of the modulo 5 and 7 identities, too (with different groupings).

For integers m and $n>1$, let $M(n, m)$ be the number of partitions of n with crank m. We use standard q-series notation.

Theorem (Garvan 1988)

$$
\begin{aligned}
\sum_{n \geq 0} M(m, n) q^{n} & =\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 1}(-1)^{n-1} q^{n(n-1) / 2+n|m|}\left(1-q^{n}\right) \\
M(m, n) & =M(-m, n)
\end{aligned}
$$

Compare the "not completely different" rank generating function

$$
\sum_{n \geq 0} N(m, n) q^{n}=\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 1}(-1)^{n-1} q^{n(3 n-1) / 2+n|m|}\left(1-q^{n}\right)
$$

Bounded crank

Given $j \geq 0$, we're interested in the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$.

$$
\begin{align*}
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n} & =\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2+j(n+1)} \tag{G}\\
& =\sum_{n \geq 0} \frac{q^{(n+1)(n+j)}}{(q ; q)_{n}(q ; q)_{n+j}} \tag{HSY}
\end{align*}
$$

Bounded crank

Given $j \geq 0$, we're interested in the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$.

$$
\begin{align*}
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n} & =\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2+j(n+1)} \tag{G}\\
& =\sum_{n \geq 0} \frac{q^{(n+1)(n+j)}}{(q ; q)_{n}(q ; q)_{n+j}} \tag{HSY}
\end{align*}
$$

Note that there is no alternating sum in the Hopkins-Sellers-Yee expression, more conducive to combinatorial proofs.

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ is the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1 -Durfee rectangle size 3×4,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1 -Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4, etc.

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1 -Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4, etc. Also, -1 -Durfee rectangle size 3×2,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1 -Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4, etc. Also, -1 -Durfee rectangle size $3 \times 2,-2$-Durfee rectangle size 4×2, etc.

Proof ingredient: symmetry insight

Use $\operatorname{crank}(\lambda) \leq-j$ rather than $\operatorname{crank}(\lambda) \geq j$.

Equal count since $M(m, n)=M(-m, n)$, but nonpositive cranks only come from the second part of the definition:

$$
\operatorname{crank}(\lambda)=\left\{\begin{array}{ll}
\lambda_{1} & \text { if } \omega(\lambda)=0, \\
\omega(\lambda)-\mu(\lambda) & \text { if } \omega(\lambda)>0 .
\end{array} \quad \leftarrow\right. \text { only positive crank }
$$

Combinatorial proof

H., Sellers, Yee 2022

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{m \leq-j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{d \geq 0} \frac{q^{(d+1)(d+j)}}{(q ; q)_{d}(q ; q)_{d+j}}
$$

Nonpositive crank means $\omega(\lambda)>0$. For crank $-j$, consider the j-Durfee rectangle, size $d \times(d+j)$.

Claim: $\omega(\lambda) \geq d+j$. If $\omega(\lambda)<d+j$, then $\mu(\lambda) \geq d$ since $\lambda_{d} \geq d+j$ (i.e., all parts in the j-Durfee rectangle) and

$$
\operatorname{crank}(\lambda)=\mu(\lambda)-\omega(\lambda)>d-(d+j)=-j
$$

Combinatorial proof

H., Sellers, Yee 2022

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{m \leq-j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{d \geq 0} \frac{q^{(d+1)(d+j)}}{(q ; q)_{d}(q ; q)_{d+j}}
$$

Nonpositive crank implies $\omega(\lambda)>0$. Consider the j-Durfee rectangle, size $d \times(d+j)$. Since crank $(\lambda) \leq-j$, we know $\omega(\lambda) \geq d+j$.

The generating function for such λ : The j-Durfee rectangle contributes $d(d+j)$ towards the partition weight, $\omega(\lambda)$ gives at least $(d+j)$, together $(d+1)(d+j)$. Boxes to the right of the j-Durfee rectangle account for $(q ; q)_{d}$, boxes below $(q ; q)_{d+j}$.

The mex of a partition is the smallest missing (positive) part, e.g.,

$$
\operatorname{mex}(2,2,2)=1, \quad \operatorname{mex}(3,1,1,1)=2, \quad \operatorname{mex}(3,2,1)=4
$$

Terminology from combinatorial game theory (at least by 1973, Grundy values), combination of minimal excluded number.

References in partitions:

- Grabner-Knopfmacher 2006 "least gap"
- Andrews 2011 "smallest number that is not a summand"
- Andrews-Newman 2019 "minimal excludant" /mex

Definition

Let $m_{a, b}(n)$ be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Splitting the mexes

H., Sellers, Yee 2022

$$
m_{1,2}^{o}(n)= \begin{cases}m_{1,2}^{e}(n)+(-1)^{m+1} & \text { when } n=m(3 m \pm 1) \\ m_{1,2}^{e}(n) & \text { otherwise }\end{cases}
$$

Combinatorial proof comes down to considering triples (π, μ, ν) where π is a partition into distinct even parts, μ is a partition into odd parts, and ν is a partition into distinct odd parts.

A sign-reversing involutions leaves just ($\pi, \emptyset, \emptyset$), then apply Franklin's bijection to ($\pi_{1} / 2, \pi_{2} / 2, \ldots$).

Splitting the mexes

Andrews, Newman 2019

$m_{1,2}(n)$ is almost always even and is odd exactly when $n=m(3 m \pm 1)$ for some m.

HSY proof:

$$
\begin{aligned}
m_{1,2}(n) & =m_{1,2}^{o}(n)+m_{1,2}^{e}(n) \\
& = \begin{cases}2 m_{1,2}^{e}(n)+(-1)^{m+1} & \text { when } n=m(3 m \pm 1), \\
2 m_{1,2}^{e}(n) & \text { otherwise } .\end{cases}
\end{aligned}
$$

Connecting crank and mex

Andrews, Newman 2020; H., Sellers 2020

The number of partitions of n with nonnegative crank equals the number of partitions of n with odd mex. I.e., $M_{\geq 0}(n)=m_{1,2}(n)$.

Connecting crank and mex

Andrews, Newman 2020; H., Sellers 2020

The number of partitions of n with nonnegative crank equals the number of partitions of n with odd mex. I.e., $M_{\geq 0}(n)=m_{1,2}(n)$.

Generalization: For j a part in λ, let $\operatorname{mex}_{j}(\lambda)$ to be the least integer greater than j that is not a part of λ.

H., Sellers, Stanton 2022

The number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$ equals the number of partitions of n with odd mex $_{j}$ that include j as a part.

Recent combinatorial proof by Isaac Konan.

Frobenius symbols

$(5,4,4,2,2)$ Ferrers diagram and Frobenius symbol

$$
\left(\begin{array}{lll}
4 & 2 & 1 \\
4 & 3 & 0
\end{array}\right)
$$

Andrews 2011

The number of partitions of n with no 0 in the top row of their Frobenius symbols equals $m_{1,2}(n)$ (and now $M_{\geq 0}(n)$.)

Crank and Frobenius symbols

H., Sellers, Stanton 2022

The number of partitions of $n-j$ with no j in the top row of their Frobenius symbols equals the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$.

Crank and Frobenius symbols

H., Sellers, Yee 2022

The number of partitions λ of n with $\operatorname{crank}(\lambda)=0$ equals the number of partitions of n whose Frobenius symbol has no 0 and the first two entries of the bottom row differ by 1.

Andrews, Dastidar, Morill 2021

The number of partitions λ of n with $\operatorname{crank}(\lambda)>j$ equals one-half the number of j 's in the Frobenius symbols of all partitions of n.

Frobenius symbols in disguise

Blecher-Knopfmacher 2022 consider partitions with "fixed points" where $\lambda_{i}=i$. A partition (in nonincreasing order) has 0 or 1 fixed points. They wonder whether there are always more partitions of n without fixed points than with fixed points.
E.g., (5, 4, 4, 2, 2) does not have a fixed point, (5, 4, 3, 3, 2) does.

Blecher-Knopfmacher 2022 consider partitions with "fixed points" where $\lambda_{i}=i$. A partition (in nonincreasing order) has 0 or 1 fixed points. They wonder whether there are always more partitions of n without fixed points than with fixed points.
E.g., (5, 4, 4, 2, 2) does not have a fixed point, (5, 4, 3, 3, 2) does.

$$
\left(\begin{array}{lll}
4 & 2 & 1 \\
4 & 3 & 0
\end{array}\right)
$$

A partition without a fixed point has no 0 in the top row of its Frobenius symbol. With a fixed point, the top row does end in 0 .

The answer to Blecher and Knopfmacher's open question is yes.

Greater by the number of crank 0 partitions.

Frobenius symbols in disguise

Concatenable spiral self-avoiding walks: Guttmann, Hirschhorn, Wormald 1984

More with an odd or even number of turns? \# turns odd $\sim m_{1,2}(n)$, \# turns even $\sim m_{0,2}(n) \ldots$

Where are the split odd mexes?

Recall $m_{1,2}(n)=m_{1,4}(n)+m_{3,4}(n)$. Where are these as subsets of the nonpositive crank partitions? Of Frobenius symbols with no 0 on the top? Of partitions without fixed points? Of CSSAWs with an odd number of turns?

Where are the split odd mexes?

Recall $m_{1,2}(n)=m_{1,4}(n)+m_{3,4}(n)$. Where are these as subsets of the nonpositive crank partitions? Of Frobenius symbols with no 0 on the top? Of partitions without fixed points? Of CSSAWs with an odd number of turns?

Huh, Kim 2021

$$
m_{1,4}(n)=M_{\leq 0}^{e}(n), \quad m_{3,4}(n)=M_{\leq 0}^{o}(n) .
$$

Note that Konan's (current) bijection does not show this.
We don't yet know the $m_{1,4}(n), m_{3,4}(n)$ subsets for the other equinumerous sets.

Also, how do the refinements such as $m_{1,2}^{e}(n)$ and $m_{3,4}^{o}(n)$ manifest in nonnegative crank partitions? Might help with bijective proofs relating those statistics.

- G. E. Andrews, M. G. Dastidar, T. Morrill, A Stanley-Elder theorem on cranks and Frobenius symbols, Res. Number Theory 7 (2021) 56.
- G. E. Andrews, D. Newman, The minimal excludant in integer partitions, J. Integer Seq. 23 (2020) 20.2.3.
- A. Blecher, A. Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022) 23-41.
- B. Hopkins, J. A. Sellers, Turning the partition crank, Amer. Math. Monthly 127 (2020) 654-657.
- B. Hopkins, J. A. Sellers, D. Stanton, Dyson's crank and the mex of integer partitions, J. Combin. Theory Ser. A 185 (2022) 105523.
- B. Hopkins, J. A. Sellers, A. J. Yee, Combinatorial perspectives on the crank and mex partition statistics, Electron. J. Combin. 29 (2022) P2.11.
- J. Huh, B. Kim. On the number of equivalence classes arising from partition involutions II, Discrete Math. 344 (2021) 112410.
- I. Konan, A bijective proof of a generalization of the non-negative crank-odd mex identity, arXiv:2203.04267.

