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Partitions and rank

Write p(n) for the number of partitions of n.

MacMahon provided Hardy and Ramanujan p(n) values through
n = 200. In 1919, Ramanujan proved (analytically) that

p(5n + 4) ≡ 0 mod 5,

p(7n + 5) ≡ 0 mod 7, and

p(11n + 6) ≡ 0 mod 11.

In 1944, a young Freeman Dyson defined the rank of
λ = (λ1, . . . , λℓ) as λ1 − ℓ and conjectured that this simple
partition statistic combinatorially verifies the modulo 5 and 7
results by grouping the appropriate partitions into 5 or 7 equally
numerous classes. Proven correct by Atkin–Swinnerton-Dyer, 1954.
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Partitions and rank

Dyson, Some guesses in the theory of partitions, Eureka 1944

After a few preliminaries I state certain properties of partitions
which I am unable to prove; these guesses are then transformed
into algebraic identities which are also unproved, although there is
conclusive evidence in their support; finally, I indulge in some even
vaguer guesses concerning the existence of identities which I am
not only unable to prove but also unable to state.

The rank statistic shows the modulo 5 and 7 results, but not the
modulo 11 identity. Dyson suggested that some “more recondite”
partition statistic should. He gave it a name (“crank”) and a
purpose, but no definition!
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Partitions and crank

Definition (Andrews–Garvan 1988)

Given a partition λ, let ω(λ) be the number of ones in λ and let
µ(λ) be the number of parts of λ greater than ω(λ). Then

crank(λ) =

{
λ1 if ω(λ) = 0,

ω(λ)− µ(λ) if ω(λ) > 0.

They showed that this definition of the “elusive crank” does all
that Dyson hoped for and gives a combinatorial verification of the
modulo 5 and 7 identities, too (with different groupings).
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Some crank results

For integers m and n > 1, let M(n,m) be the number of partitions
of n with crank m. We use standard q-series notation.

Theorem (Garvan 1988)

∑
n≥0

M(m, n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1qn(n−1)/2+n|m|(1− qn),

M(m, n) = M(−m, n).

Compare the “not completely different” rank generating function∑
n≥0

N(m, n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1qn(3n−1)/2+n|m|(1− qn).
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Bounded crank

Given j ≥ 0, we’re interested in the number of partitions λ of n
with crank(λ) ≥ j .

∑
m≥j

∑
n≥0

M(m, n)qn =
1

(q; q)∞

∑
n≥0

(−1)nqn(n+1)/2+j(n+1) (G)

=
∑
n≥0

q(n+1)(n+j)

(q; q)n(q; q)n+j
(HSY)

Note that there is no alternating sum in the Hopkins–Sellers–Yee
expression, more conducive to combinatorial proofs.
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Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ is the largest rectangle of
size d × (d + j) that fits inside the Ferrers diagram of λ.

· · ·
· · ·
· · ·

(5, 4, 4, 2, 2) has 0-Durfee rectangle (Durfee square) size 3× 3,
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Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle
of size d × (d + j) that fits inside the Ferrers diagram of λ.

· ·
· ·
· ·
· ·

(5, 4, 4, 2, 2) has 0-Durfee rectangle (Durfee square) size 3× 3,
1-Durfee rectangle size 3× 4, 2-Durfee rectangle size 2× 4, etc.
Also, −1-Durfee rectangle size 3× 2, −2-Durfee rectangle size
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Proof ingredient: symmetry insight

Use crank(λ) ≤ −j rather than crank(λ) ≥ j .

Equal count since M(m, n) = M(−m, n), but nonpositive cranks
only come from the second part of the definition:

crank(λ) =

{
λ1 if ω(λ) = 0, ← only positive crank

ω(λ)− µ(λ) if ω(λ) > 0.
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Combinatorial proof

H., Sellers, Yee 2022

∑
m≥j

∑
n≥0

M(m, n)qn =
∑
m≤−j

∑
n≥0

M(m, n)qn =
∑
d≥0

q(d+1)(d+j)

(q; q)d(q; q)d+j

Nonpositive crank means ω(λ) > 0. For crank −j , consider the
j-Durfee rectangle, size d × (d + j).
Claim: ω(λ) ≥ d + j . If ω(λ) < d + j , then µ(λ) ≥ d since

λd ≥ d + j (i.e., all parts in the j-Durfee rectangle) and

crank(λ) = µ(λ)− ω(λ) > d − (d + j) = −j .
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Combinatorial proof

H., Sellers, Yee 2022

∑
m≥j

∑
n≥0

M(m, n)qn =
∑
m≤−j

∑
n≥0

M(m, n)qn =
∑
d≥0

q(d+1)(d+j)

(q; q)d(q; q)d+j

Nonpositive crank implies ω(λ) > 0. Consider the j-Durfee
rectangle, size d × (d + j). Since crank(λ) ≤ −j , we know
ω(λ) ≥ d + j .
The generating function for such λ: The j-Durfee rectangle

contributes d(d + j) towards the partition weight, ω(λ) gives at
least (d + j), together (d + 1)(d + j). Boxes to the right of the
j-Durfee rectangle account for (q; q)d , boxes below (q; q)d+j .
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Mex

The mex of a partition is the smallest missing (positive) part, e.g.,

mex(2, 2, 2) = 1, mex(3, 1, 1, 1) = 2, mex(3, 2, 1) = 4.

Terminology from combinatorial game theory (at least by 1973,
Grundy values), combination of minimal excluded number.

References in partitions:

Grabner–Knopfmacher 2006 “least gap”

Andrews 2011 “smallest number that is not a summand”

Andrews–Newman 2019 “minimal excludant”/mex
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Splitting the mexes

Definition

Let ma,b(n) be the number of partitions of n with mex congruent
to a modulo b.

Also, write superscript e for the number of partitions with an even
number of parts, similarly for superscript o.

n 2 3 4 5 6 7 8 9 10 11 12

m1,2(n) 1 2 3 4 6 8 12 16 23 30 42

m1,4(n) 1 1 2 2 4 4 7 8 13 15 23
m3,4(n) 0 1 1 2 2 4 5 8 10 15 19

mo
1,2(n) 1 1 2 2 3 4 6 8 11 15 21

me
1,2(n) 0 1 1 2 3 4 6 8 12 15 21
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Splitting the mexes

H., Sellers, Yee 2022

mo
1,2(n) =

{
me

1,2(n) + (−1)m+1 when n = m(3m ± 1),

me
1,2(n) otherwise.

Combinatorial proof comes down to considering triples (π, µ, ν)
where π is a partition into distinct even parts, µ is a partition into
odd parts, and ν is a partition into distinct odd parts.

A sign-reversing involutions leaves just (π, ∅, ∅), then apply
Franklin’s bijection to (π1/2, π2/2, . . .).
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Splitting the mexes

Andrews, Newman 2019

m1,2(n) is almost always even and is odd exactly when
n = m(3m ± 1) for some m.

HSY proof:

m1,2(n) = mo
1,2(n) +me

1,2(n)

=

{
2me

1,2(n) + (−1)m+1 when n = m(3m ± 1),

2me
1,2(n) otherwise.
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Connecting crank and mex

Andrews, Newman 2020; H., Sellers 2020

The number of partitions of n with nonnegative crank equals the
number of partitions of n with odd mex. I.e., M≥0(n) = m1,2(n).

Generalization: For j a part in λ, let mexj(λ) to be the least
integer greater than j that is not a part of λ.

H., Sellers, Stanton 2022

The number of partitions λ of n with crank(λ) ≥ j equals the
number of partitions of n with odd mexj that include j as a part.

Recent combinatorial proof by Isaac Konan.
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Frobenius symbols

(5, 4, 4, 2, 2) Ferrers diagram and Frobenius symbol

•
•
• (

4 2 1
4 3 0

)

Andrews 2011

The number of partitions of n with no 0 in the top row of their
Frobenius symbols equals m1,2(n) (and now M≥0(n).)
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Crank and Frobenius symbols

H., Sellers, Stanton 2022

The number of partitions of n − j with no j in the top row of their
Frobenius symbols equals the number of partitions λ of n with
crank(λ) ≥ j .

d

d + j

d + j

−→

d

d + j
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Crank and Frobenius symbols

H., Sellers, Yee 2022

The number of partitions λ of n with crank(λ) = 0 equals the
number of partitions of n whose Frobenius symbol has no 0 and
the first two entries of the bottom row differ by 1.

Andrews, Dastidar, Morill 2021

The number of partitions λ of n with crank(λ) > j equals one-half
the number of j ’s in the Frobenius symbols of all partitions of n.
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Frobenius symbols in disguise

Blecher–Knopfmacher 2022 consider partitions with “fixed points”
where λi = i . A partition (in nonincreasing order) has 0 or 1 fixed
points. They wonder whether there are always more partitions of n
without fixed points than with fixed points.

E.g., (5, 4, 4, 2, 2) does not have a fixed point, (5, 4, 3, 3, 2) does.

•
•
• (

4 2 1
4 3 0

)
,

•
•
• (

4 2 0
4 3 1

)
A partition without a fixed point has no 0 in the top row of its

Frobenius symbol. With a fixed point, the top row does end in 0.
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Frobenius symbols in disguise

The answer to Blecher and Knopfmacher’s open question is yes.

no fixed point ? fixed point

↕ ↕
top Frob. no 0 top Frob. 0

↕ ↕
m1,2(n) m0,2(n)

↕ ↕
M≥0(n) M<0(n)

↕ ↕
M≥0(n) > M>0(n)

Greater by the number of crank 0 partitions.
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Frobenius symbols in disguise

Concatenable spiral self-avoiding walks: Guttmann, Hirschhorn,
Wormald 1984

@
@
@
@@

z z z z
z z z
z
z

z

More with an odd or even number of turns?
# turns odd ∼ m1,2(n), # turns even ∼ m0,2(n). . .
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Where are the split odd mexes?

Recall m1,2(n) = m1,4(n) +m3,4(n). Where are these as subsets of
the nonpositive crank partitions? Of Frobenius symbols with no 0
on the top? Of partitions without fixed points? Of CSSAWs with
an odd number of turns?

Huh, Kim 2021

m1,4(n) = Me
≤0(n), m3,4(n) = Mo

≤0(n).

Note that Konan’s (current) bijection does not show this.

We don’t yet know the m1,4(n), m3,4(n) subsets for the other
equinumerous sets.

Also, how do the refinements such as me
1,2(n) and mo

3,4(n)
manifest in nonnegative crank partitions? Might help with bijective
proofs relating those statistics.
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