Alternating Sign Matrices With Reflective Symmetry and Plane Partitions: $n+3$ Pairs of Equivalent Statistics

Hans Höngesberg
Joint work with Ilse Fischer

Universität Wien

Algorithmic and Enumerative Combinatorics (AEC)

$$
4 \text { - } 8 \text { July } 2022
$$

Outline

1 Alternating Sign Matrices and Descending Plane Partitions

2 Reflective Symmetry

3 ($n+3$)-Parameter Refinement of Alternating Sign Matrices
$4(n+3)$-Parameter Refinement of Pairs of Plane Partitions

5 Sketch of the Proof

Alternating sign matrices and descending plane partitions

Definition (Mills, Robbins, Rumsey 1980s)
An alternating sign matrix (ASM) of order n is an $n \times n$-matrix with entries $-1,0$ or +1 such that

- the entries in each row and each column sum to 1 , and
- the nonzero entries alternate in sign along each row and each column.

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1 \\
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Alternating sign matrices and descending plane partitions

Definition (Andrews 1979)
A descending plane partition (DPP) of order n is the filling of a shifted Young diagram with positive integers less than or equal to n such that

- the entries weakly decrease along rows
- and strictly decrease down columns, and
- the first part in each row is strictly larger than the length of the row
- but less than or equal to the length of the previous row.

1110	10	10	7	5	4	4	3
7	7	6	5	3	1		
	5	5	4	2			
		4	3	1			
			2				

ASMs and DPPs are equinumerous

Theorem (Andrews 1979, Zeilberger 1996)
ASMs and DPPs of the same order are equinumerous.
Example for $\mathrm{n}=3$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \emptyset \begin{array}{lllll|l|l|l|l|l|l|}
\hline 3 & 3 & 3 & 1 \\
\hline
\end{array} \begin{array}{|l|l|l|l|}
\hline 3 & 2 & 3 & 3 \\
\hline
\end{array} \begin{array}{|l|l|l|}
\hline 3 & & \\
\hline
\end{array}
\end{aligned}
$$

Given $n+3$ statistics on generalised vertically symmetric ASMs of order $2 n+1$, what do corresponding plane partition objects look like?

$$
\begin{gathered}
\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \\
v X_{2} \prod_{i=1}^{2}\left(u X_{i}+w+v X_{i}^{-1}\right)
\end{gathered}
$$

Plane partitions in disguise

Theorem (Krattenthaler 2006)
There is a bijective correspondence between DPPs of order n and cyclically symmetric lozenge tilings of a hexagon with alternating side lengths $n-1$ and $n+1$ and a central triangular hole of size 2 .

Adding a reflective symmetry I

Cyclically and vertically symmetric lozenge tilings of a hexagon with alternating side lengths $2 n$ and $2 n+2$ and a central triangular hole of size 2 :

Fundamental domain:

Monotone triangles

Theorem

ASMs of order n are in bijective correspondence with monotone triangles with bottom row $1,2, \ldots, n$.

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \longleftrightarrow\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \longleftrightarrow \begin{array}{llll}
& & & \\
& 1 & & 3
\end{array}
$$

Definition

A monotone triangle (MT) of order n is a triangular array of integers with n rows such that the entries

- strictly increase along rows,
- weakly increase along \nearrow-diagonals, and
- weakly increase along \-diagonals.

Adding a reflective symmetry II

Theorem
Vertically symmetric ASMs (VSASMs) of order $2 \mathrm{n}+1$ are in bijective correspondence with MTs of order n with bottom row $0,2, \ldots, 2 n-2$.

Arrowed monotone triangles

Definition (Aigner, Fischer)
An arrowed monotone triangle (AMT) of order n is a MT of order n where each entry e carries a decoration from $\{\nwarrow, \nearrow, \nearrow \chi\}$ such that the following two conditions are satisfied:

■ If e has a \nwarrow-neighbor and is equal to it, then e must carry \nearrow.

- If e has a \nearrow-neighbor and is equal to it, then e must carry \nwarrow.

$n+3$ statistics

We assign the following weight to an AMT of order n :

$$
\begin{aligned}
& u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \nearrow \\
& \times \prod_{i=1}^{n} X_{i}^{\left(\sum \text { entries in row } i\right)-\left(\sum \text { entries in row } i-1\right)+(\# \nearrow \text { in row } i)-(\# \nwarrow \text { in row } i)} .
\end{aligned}
$$

The weight of

is equal to

$$
u^{7} v^{8} w^{6} X_{1}^{4} X_{2}^{3} X_{3}^{6} X_{4}^{7} X_{5}^{4} X_{6}^{5} .
$$

Which families of (nonintersecting) lattice paths or plane partition objects have the same generating function as AMTs of order n with bottom row $0,2, \ldots, 2 n-2$?
\square three signed combinatorial models in terms of lattice paths - one signless combinatorial model in terms of pairs of nlane partitions

Which families of (nonintersecting) lattice paths or plane partition objects have the same generating function as AMTs of order n with bottom row $0,2, \ldots, 2 n-2$?

- three signed combinatorial models in terms of lattice paths
- one signless combinatorial model in terms of pairs of plane partitions

Pairs of plane partitions

$12 \geqslant$	9	7	7	5
$10 \geqslant$	8	6	6	4
$8 \geqslant$	6	5	3	
$6 \geqslant$	4	4		
$4 \geqslant$	3	2		
$2 \geqslant$	2			

	>			
$6 \geqslant$	6	5	4	2
$5 \geqslant$	5	4	3	1
$4 \geqslant$	4	2	1	
$3 \geqslant$	3	1		
$2 \geqslant$	2	1		
$1 \geqslant$	1			

Pairs (P, Q) of plane partitions of the same shape:

- n rows allowing rows of length 0
- P is column-strict
$\square \mathrm{Q}$ is row-strict
- Row restrictions on P and Q

Weight:

$$
w^{\binom{n+1}{2}-\# \text { entries in } Q} \prod_{i=1}^{n} X_{i}^{n-1}\left(u X_{i}\right)^{\# 2 i-1 \text { in } P}\left(v X_{i}^{-1}\right)^{\# 2 i \text { in } P}
$$

Magog triangles \times symplectic tableaux

6	5	4	2
5	4	3	1
4	2	1	
3	1		
2	1		
1			

Magog triangle

Symplectic tableau

9	7	7	5
8	6	6	4
6	5	3	
4	4		
3	2		
2			

5	4	4	3
$\overline{4}$	$\overline{3}$	$\overline{3}$	$\overline{2}$
$\overline{3}$	3	2	
$\overline{2}$	$\overline{2}$		
2	$\overline{1}$		
$\overline{1}$			

- Expansion into symplectic symmetric functions
- independently conjectured by Aigner

Sketch of the proof

- Starting point: operator formula for AMTs
- Transforming into antisymmetriser formula
- Specialising the bottom row: bialternant-type formula
- Several ways to transform into Jacobi-Trudi-type formula
- Signed enumeration of families of lattice paths via Lindström-Gessel-Viennot
- Eliminating the sign yields (two proofs of) plane partition interpretation

Generating function of AMTs

Schur polynomials $s_{\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)}\left(X_{1}, \ldots, X_{n}\right)$ are the generating functions of Gelfand-Tsetlin patterns with bottom row $k_{1}, k_{2}, \ldots, k_{n}$ with respect to the weight

$$
\prod_{i=1}^{n} X_{i}^{\left(\sum \text { entries in row } i\right)-\left(\sum \text { entries in row } i-1\right)}
$$

We have the following analogy:
Theorem (Aigner, Fischer)
The generating function of AMTs with bottom row $k_{1}, k_{2}, \ldots, k_{n}$ is

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(u X_{i}+v X_{i}^{-1}+w\right) \\
& \times \prod_{1 \leqslant i<j \leqslant n}\left(u E_{k_{i}}+v E_{k_{j}}^{-1}+w E_{k_{i}} E_{k_{j}}^{-1}\right) s_{\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)}\left(X_{1}, \ldots, X_{n}\right),
\end{aligned}
$$

where E_{x} denotes the shift operator, defined as $E_{x} p(x):=p(x+1)$.

From operator formula to antisymmetriser

Using the antisymmetriser

$$
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]:=\sum_{\sigma \in \mathfrak{G}_{n}} \operatorname{sgn} \sigma \cdot f\left(X_{\sigma(1)}, \ldots, X_{\sigma(\mathfrak{n})}\right),
$$

we rewrite the generating function

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(u X_{i}+v X_{i}^{-1}+w\right) \\
& \times \prod_{1 \leqslant i<j \leqslant n}\left(u E_{k_{i}}+v E_{k_{j}}^{-1}+w E_{k_{i}} E_{k_{j}}^{-1}\right) s_{\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)}\left(X_{1}, \ldots, X_{n}\right),
\end{aligned}
$$

as

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, x_{n}}\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(u X_{j}+v X_{i}^{-1}+w\right) \prod_{i=1}^{n} X_{i}^{k_{i}+n-i}\right]}{\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)} .
$$

The special case of VSASMs

For the case of VSASMs, we set $k_{i}=2 i-2$. We also multiply the generating function with the symmetric expression

$$
\prod_{1 \leqslant i<j \leqslant n}\left(u-v X_{i}^{-1} X_{j}^{-1}\right)
$$

Thus, the generating function

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(u X_{j}+v X_{i}^{-1}+w\right) \prod_{i=1}^{n} X_{i}^{k_{i}+n-i}\right]}{\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)}
$$

becomes
$\prod_{i=1}^{n} X_{i}^{n-2} \frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(u X_{j}+v X_{i}^{-1}+w\right)\left(u X_{j}-v X_{i}^{-1}\right)\right]}{\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)}$.

Antisymmetriser lemma

Lemma (Aigner, Fischer, Konvalinka, Nadeau, Tewari 2020)
Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ be two sets of indeterminants. Then

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(Y_{i}^{j}-Z_{i}^{j}\right)=\overline{\text { ASym }}\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(Y_{j}-Z_{i}\right)\right]
$$

with

$$
\overline{\operatorname{ASym}}[f(\mathbf{Y} ; \mathbf{Z})]:=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn} \sigma \cdot f\left(Y_{\sigma(1)}, \ldots, Y_{\sigma(\mathfrak{n})} ; Z_{\sigma(1)}, \ldots, Z_{\sigma(\mathfrak{n})}\right) .
$$

Now set $Y_{j}=u^{2} X_{j}^{2}+u w X_{j}$ and $Z_{i}=v^{2} X_{i}^{-2}+v w X_{i}^{-1}, \ldots$.

From antisymmetriser to bialternant

... apply the antisymmetriser lemma to
$\prod_{i=1}^{n} X_{i}^{n-2} \frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(u X_{j}+v X_{i}^{-1}+w\right)\left(u X_{j}-v X_{i}^{-1}\right)\right]}{\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)}$ and divide again by

$$
\prod_{1 \leqslant i<j \leqslant n}\left(u-v X_{i}^{-1} X_{j}^{-1}\right)
$$

to obtain the following bialternant-type formula

$$
\prod_{i=1}^{n} X_{i}^{n-1} \frac{\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\frac{\left(u^{2} X_{i}^{2}+u w X_{i}\right)^{j}-\left(v^{2} X_{i}^{-2}+v w X_{i}^{-1}\right)^{j}}{u X_{i}-v X_{i}^{-1}}\right)}{\prod_{1 \leqslant i<j \leqslant n}\left(\left(u X_{j}-v X_{j}^{-1}\right)-\left(u X_{i}-v X_{i}^{-1}\right)\right)} .
$$

From bialternant to Jacobi-Trudi I

Lemma (Aigner, Fischer)
Let $f_{j}(Y)$ be a formal Laurent series for $1 \leqslant j \leqslant n$, and define

$$
f_{j}\left[Y_{1}, \ldots, Y_{i}\right]=\sum_{k \in \mathbb{Z}}\left\langle Y^{k}\right\rangle f_{j}(Y) \cdot h_{k-i+1}\left(Y_{1}, \ldots, Y_{i}\right),
$$

where $\left\langle Y^{k}\right\rangle f_{j}(Y)$ denotes the coefficient of Y^{k} in $f_{j}(Y)$ and h_{k-i+1} denotes the complete homogeneous symmetric polynomial of degree $k-i+1$. Then

$$
\frac{\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(f_{j}\left(Y_{i}\right)\right)}{\prod_{1 \leqslant i<j \leqslant n}\left(Y_{j}-Y_{i}\right)}=\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(f_{j}\left[Y_{1}, \ldots, Y_{i}\right]\right) .
$$

This lemma can be applied to our bialternant-type formula in several ways. By using the Lindström-Gessel-Viennot lemma, we finally get the different combinatorial interpretations in terms of (non-intersecting) lattice paths.

From bialternant to Jacobi-Trudi II

By applying the previous lemma with $Y_{i}=u X_{i}+v X_{i}^{-1}$, we obtain

$$
\prod_{i=1}^{n} X_{i}^{n-1} \operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)
$$

with $a_{i, j}$ equal to

$$
\begin{aligned}
& \sum_{p \geqslant 1} w^{2 i-p}\binom{i}{2 i-p} \\
& \times \sum_{q \geqslant 1,2 \mid(p-q)}(-u v)^{(p-q) / 2}\binom{(p+q) / 2-1}{(p-q) / 2} \\
& \times h_{q-j}\left(u X_{1}+v X_{1}^{-1}, \ldots, u X_{j}+v X_{j}^{-1}\right) .
\end{aligned}
$$

Lattice paths interpretation

Family of n lattice paths:

- Starting points $(-1,1)$, $(-2,2), \ldots,(-n, n)$
- Endpoints $(0,1),(1,0), \ldots,(n-1,-n+2)$
- Three regions with different step sets
- $\{(x, y) \mid x \leqslant 0\}$
- $\{(x, y) \mid x \geqslant 0, y \geqslant 1\}$
- $\{(x, y) \mid x \geqslant 0, y \leqslant 1\}$
- Odd and even paths may intersect in the second region
- Signed generating function

Eliminating the sign: Sign-reversing involutions!

Lemma

Let p, j be positive integers, then

$$
\sum_{q \geqslant 1,2 \mid(p-q)}(-u v)^{(p-q) / 2}\binom{(p+q) / 2-1}{(p-q) / 2} h_{q-j}\left(u X_{1}+v X_{1}^{-1}, \ldots, u X_{j}+v X_{j}^{-1}\right)
$$

is the generating function of lattice paths from $(0, p)$ to $(j-1,-j+2)$ with step sets as given below, but without steps of type $(0,-2)$ and without consecutive pairs of horizontal steps with the first step being blue and the second step being red.

$$
\begin{array}{cc}
\{(x, y) \mid x \geqslant 0, y \geqslant 1\}: & \{(x, y) \mid x \geqslant 0, y \leqslant 1\}: \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

First sign-reversing involution

$(-u v)\left(v X_{1}^{-1}\right)\left(u X_{1}\right)\left(v X_{1}^{-1}\right)$
$=-u^{2} v^{3} X_{1}^{-1}$

$$
=-u^{2} v^{3} X_{1}^{-1}
$$

$$
\begin{gathered}
(-u v)(-u v)\left(v X_{1}^{-1}\right) \\
=u^{2} v^{3} X_{1}^{-1}
\end{gathered}
$$

Second sign-reversing involution

\longrightarrow changes the sign of the family of paths
Remainder: Paths that touch (intersections do not contain centers) but don't intersect in any other sense

Remaining lattice paths: read off plane partitions

Thank you for your attention!

