# Reconstruction of polytopes and Kalai＇s conjecture on reconstruction of spheres 

Joseph Doolittle joint work with Cesar Ceballos




Der Wissenschaftsfonds．

Algorithmic Enumerative Combinatorics July 7， 2022

## Outline

- Convex polytopes
- Kalai's conjecture
- Subword complexes
- Main result


## Convex polytopes

(Convex) polytope $P$ :
convex hull of finitely many points in Euclidian space.
The graph $G(P)$ : the graph consisting of the vertices and edges of $P$.


P

$G(P)$

Simple polytope $P$ :
number of edges incident to each vertex equals the dimension of $P$.

## Reconstruction of polytopes

Theorem (Blind-Mani, 1987)
If $P$ is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of $P$.


P

$G(P)$

## Reconstruction of polytopes

Theorem (Blind-Mani, 1987)
If $P$ is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of $P$.


P

$G(P)$

## Reconstruction of polytopes

Theorem (Blind-Mani, 1987)
If $P$ is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of $P$.


P

$G(P)$

## Reconstruction of polytopes

Theorem (Blind-Mani, 1987)
If $P$ is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of $P$.


P

$G(P)$

Kalai, 1988: A simple constructive proof.

## Reconstruction of polytopes

Theorem (Blind-Mani, 1987)
If $P$ is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of $P$.

Graph reconstruction holds for arbitrary polytopes (not just simple) in dimension 3.

Theorem (Steinitz, 1916)
A graph is the graph of a (unique) 3-polytope if and only if it is planar and 3 -connected.

Theorem (Steinitz, 1916)
A graph is the graph of a (unique) 3-polytope if and only if it is planar and 3-connected.

General graph reconstruction does not hold in higher dimensions.

## Example

Let $\Delta_{m}$ be a $m$-dimensional simplex. The following are two non isomorphic 6 -dimensional polytopes with the same graph (complete graph on 7 vertices)

$$
\left(\Delta_{2} \times \Delta_{4}\right)^{*} \not \neq\left(\Delta_{3} \times \Delta_{3}\right)^{*}
$$

## Duality of polytopes

Every nonempty $d$-polytope $P$ in $\mathbb{R}^{d}$ admits a dual polytope in $\mathbb{R}^{d}$ :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where $P$ is assumed to contain the origin in its interior.


## Duality of polytopes

Every nonempty $d$-polytope $P$ in $\mathbb{R}^{d}$ admits a dual polytope in $\mathbb{R}^{d}$ :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where $P$ is assumed to contain the origin in its interior.


Under this duality:

$$
\begin{aligned}
P & \longleftrightarrow P^{*} \\
\text { vertices } & \longleftrightarrow \text { facets (higher dim faces) }
\end{aligned}
$$

## Duality of polytopes

Every nonempty $d$-polytope $P$ in $\mathbb{R}^{d}$ admits a dual polytope in $\mathbb{R}^{d}$ :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where $P$ is assumed to contain the origin in its interior.


Under this duality:

$$
\begin{aligned}
& P \longleftrightarrow P^{*} \\
& \text { vertices } \longleftrightarrow \\
& \text { facets (higher dim faces) } \\
& \text { edges } \longleftrightarrow \text { ridges (codim } 1 \text { faces) }
\end{aligned}
$$

## Duality of polytopes

Every nonempty $d$-polytope $P$ in $\mathbb{R}^{d}$ admits a dual polytope in $\mathbb{R}^{d}$ :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where $P$ is assumed to contain the origin in its interior.


Under this duality:

$$
\begin{aligned}
& P \longleftrightarrow P^{*} \\
& \text { vertices } \longleftrightarrow \\
& \text { facets (higher dim faces) } \\
& \text { edges } \longleftrightarrow \\
& \text { ridges (codim } 1 \text { faces) } \\
& \ldots \longleftrightarrow
\end{aligned}
$$

## Simple vs simplicial

Simplicial polytope $P$ :
all faces are simplices.
The facet-ridge graph $G_{F R}(P)$ :
the graph whose vertices are facets of $P$
two facets are connected by an edge if they intersect in a ridge.

$$
\begin{aligned}
P \text { is simple } & \longleftrightarrow P^{*} \text { is simplicial } \\
G(P) & =G_{F R}\left(P^{*}\right)
\end{aligned}
$$



## Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

## Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)
Simplicial spheres are completely determined by their facet-ridge graphs.

## Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)
Simplicial spheres are completely determined by their facet-ridge graphs.
A simplicial sphere is a simplicial complex which is homeomorphic to a sphere.

## Most spheres are not polytopal

For $d \geq 3$, most $d$-spheres are not polytopal.

- Goodman-Pollack, 1986
- Kalai, 1988
- Pfeifle-Ziegler, 2004

Deciding polytopality of spheres is a difficult problem
Mnëv's Universality theorem: Realization spaces of polytopes can take arbitrary (semi-algebraic) shapes and thus can exhibit all kinds of pathologies.

The realizability problem for 4-polytopes is NP-hard.


## Goal

## Our initial goal was:

Look for a counterexample to Kalai's Conjecture among a special family of simplicial spheres which are conjectured to be polytopal. (kill two conjectures at once)

## Instead:

We proved the conjecture for this family.
(spherical subword complexes)

## Rest of the talk:

Introduce subword complexes, state our main result, give proof sketch.

## Subword complexes preliminaries

Simplical Complex $\Delta$ : A collection of subsets of a ground set $E$, s.t. $\sigma \in \Delta$ and $\tau \in \sigma$ implies $\tau \in \Delta$
faces: subsets in $\Delta$
vertices: singleton sets facets: maximal sets ridges: facets missing a single element

$\Delta=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\}\}$

## Subword complexes preliminaries

Symmetric group $\mathbb{S}_{n+1}$ :
group of permutations of $\{1, \ldots, n+1\}$

## Subword complexes preliminaries

## Symmetric group $\mathbb{S}_{n+1}$ :

group of permutations of $\{1, \ldots, n+1\}$
generators $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i}=(i i+1)$
length of $w$ : smallest $r$ such that $w=s_{i_{1}} \ldots s_{i_{r}}$
longest element: permutation $[n+1, \ldots, 1]$
reduced expression for $w$ : expression for $w$ of minimal length

## Subword complexes preliminaries

## Symmetric group $\mathbb{S}_{n+1}$ :

group of permutations of $\{1, \ldots, n+1\}$
generators $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i}=(i i+1)$
length of $w$ : smallest $r$ such that $w=s_{i_{1}} \ldots s_{i_{r}}$
longest element: permutation $[n+1, \ldots, 1]$
reduced expression for $w$ : expression for $w$ of minimal length

In this talk: finite Coxeter groups
(very similar to the symmetric group)

## Subword complexes

$W$ finite Coxeter group with generating set $S$
$Q=\left(q_{1}, \ldots, q_{m}\right)$ a word in $S$
$\pi \in W$

## Subword complexes

$W$ finite Coxeter group with generating set $S$
$Q=\left(q_{1}, \ldots, q_{m}\right)$ a word in $S$
$\pi \in W$

Definition (Knutson-Miller, 2004)
The subword complex $\Delta(Q, \pi)$ is the simplicial complex whose
faces $\longleftrightarrow$ subwords $P$ of $Q$ such that $Q \backslash P$ contains a reduced expression of $\pi$

Knutson-Miller. Gröbner geometry of Schubert polynomials. Ann. Math., 161(3), '05 Knutson-Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1), '04

## Subword complexes - Example 1

In type $A_{2}$ :

$$
W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{(12),\left(\begin{array}{ll}
2 & 3)\}
\end{array}\right.\right.
$$

## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& \left.W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& \left.W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
q_{2} \\
0
\end{gathered}
$$

$\Delta(Q, \pi)$ is isomorphic to

- $q_{1}$
$q_{4} O$


## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& \left.Q=\begin{array}{c}
,, s_{1}, s_{2}, s_{1}
\end{array}\right) \\
& q_{1}, q_{2}, \quad,
\end{aligned} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1} .
$$

$\Delta(Q, \pi)$ is isomorphic to

$q_{4} \bigcirc$
$\stackrel{\circ}{q_{5}}$

## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
s_{1},,,_{2}, s_{1} \\
, q_{2}, q_{3},
\end{array},
\end{aligned} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1} .
$$

$\Delta(Q, \pi)$ is isomorphic to

$q_{4} \bigcirc$

## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
s_{1}, s_{2},,, s_{1} \\
, \quad, q_{3}, q_{4},
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1}
\end{aligned}
$$

$\Delta(Q, \pi)$ is isomorphic to

$\stackrel{\circ}{q_{5}}$

## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& \left.Q=\begin{array}{c}
s_{1}, s_{2}, s_{1}, \\
, \quad, \quad, q_{4}, q_{5}
\end{array}\right) \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1}
\end{aligned}
$$

$\Delta(Q, \pi)$ is isomorphic to


## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2),(23)\}
\end{array}\right.\right. \\
& \left.Q=\underset{q_{1}, \quad, \quad, \quad, q_{5}}{\left(\begin{array}{c}
, ~
\end{array}, s_{1}, s_{2}\right.}\right) \text { and } \pi=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
\end{aligned}
$$

$\Delta(Q, \pi)$ is isomorphic to


## Subword complexes - Example 1

In type $A_{2}$ :

$$
\begin{aligned}
& \left.W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
\end{aligned}
$$

$\Delta(Q, \pi)$ is isomorphic to


## Subword complexes - Example 2

In type $A_{3}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}, s_{3}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
\end{aligned}
$$

## Subword complexes - Example 2

In type $A_{3}$ :

$$
\begin{aligned}
& W=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right\} \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}, s_{3}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}
\end{array} \text { and } \pi=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
\end{aligned}
$$

$\Delta(Q, \pi)$ is isomorphic to


## Subword complexes

Conjecture (Knutson-Miller, Ceballos-Labbé-Stump, ...)
Spherical subword complexes are polytopal.

## Subword complexes

## Conjecture (Knutson-Miller, Ceballos-Labbé-Stump, ...)

Spherical subword complexes are polytopal.
Special cases include:

- Cyclic polytopes
- Duals of associahedra
- Cluster complexes of cluster algebras of finite type
- Duals of pointed-pseudotriangulation polytopes
- Simplicial multi-associahedra (conjectured)

Woo, Pilaud-Pocchiola, Serrano-Stump, Stump, C.-Labbé-Stump, Rote-Santos-Streinu, Jonsson, ...

## Our main theorem

Theorem (Ceballos-D.)
Spherical subword complexes of finite type are completely determined by their facet-ridge graph. In other words, they satisfy Kalai's Conjecture.

Our current proof is not constructive.
It is based on the topological tools developed by Blind and Mani.

## Proof Sketch

For $P, Q$ simplical spheres with a facet-ridge isomorphism $f$, define $g: P \rightarrow Q$ by

$$
g(\sigma)=\bigcap\{f(F) \mid \mathrm{F} \text { facet of } P, \sigma \subset F\}
$$

A simplicial complex is strongly vertex decomposable if for each vertex, the deletion and link of that vertex is vertex decomposable.

## Proof Sketch

For $P, Q$ simplical spheres with a facet-ridge isomorphism $f$, define $g: P \rightarrow Q$ by

$$
g(\sigma)=\bigcap\{f(F) \mid \mathrm{F} \text { facet of } P, \sigma \subset F\}
$$

A simplicial complex is strongly vertex decomposable if for each vertex, the deletion and link of that vertex is vertex decomposable.

A simplicial complex is vertex decomposable if it is pure, and for a vertex, the deletion and link of that vertex is vertex decomposable.

## Proof Sketch

## Lemma

If $\sigma$ a $(d-2)$-face of $P$, either $g(\sigma)$ is a $(d-2)$-face of $Q$ or $\tilde{H}_{d-2}(Q \backslash f(\sigma))$ is nontrivial.

Lemma
If $P, Q$ are both strongly vertex decomposable, $\tilde{H}_{d-2}(Q \backslash f(\sigma))$ is trivial.

## Proof Sketch

Theorem (Knutson-Miller, 2004)
Subword complexes are vertex decomposable spheres or balls.

## Proof Sketch

Theorem (Knutson-Miller, 2004)
Subword complexes are vertex decomposable spheres or balls.
Theorem (Ceballos-D.)
Spherical subword complexes of finite type are strongly vertex decomposable.

## Summary

- Simplicial spheres are conjectured to be completely determined by their facet-ridge graph.
- Simplicial polytopes are completely determined by their facet-ridge graph.
- Spherical subword complexes are conjectured to be polytopes.
- Spherical subword complexes of finite type are completely determined by their facet-ridge graph.

