Reconstruction of polytopes and Kalai's conjecture on reconstruction of spheres

Joseph Doolittle joint work with Cesar Ceballos

Der Wissenschaftsfonds.

Algorithmic Enumerative Combinatorics July 7, 2022

Outline

- Convex polytopes
- Kalai's conjecture
- Subword complexes

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Main result

Convex polytopes

(Convex) polytope P:

convex hull of finitely many points in Euclidian space.

The graph G(P):

the graph consisting of the vertices and edges of P.

Simple polytope *P*:

number of edges incident to each vertex equals the dimension of P.

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Kalai, 1988: A simple constructive proof.

Theorem (Blind–Mani, 1987)

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

Graph reconstruction holds for arbitrary polytopes (not just simple) in dimension 3.

Theorem (Steinitz, 1916)

A graph is the graph of a (unique) 3-polytope if and only if it is planar and 3-connected.

Theorem (Steinitz, 1916)

A graph is the graph of a (unique) 3-polytope if and only if it is planar and 3-connected.

General graph reconstruction does not hold in higher dimensions.

Example

Let Δ_m be a *m*-dimensional simplex. The following are two non isomorphic 6-dimensional polytopes with the same graph (complete graph on 7 vertices)

$$(\Delta_2 imes \Delta_4)^* \ncong (\Delta_3 imes \Delta_3)^*$$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

(日) (四) (日) (日) (日)

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

 $\begin{array}{rcl} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \\ \text{edges} & \longleftrightarrow & \text{ridges (codim 1 faces)} \end{array}$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

 $\begin{array}{rcl} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \\ \text{edges} & \longleftrightarrow & \text{ridges (codim 1 faces)} \\ & \dots & \longleftrightarrow & \dots \end{array}$

Simple vs simplicial

Simplicial polytope *P*:

all faces are simplices.

The facet-ridge graph $G_{FR}(P)$:

the graph whose vertices are facets of P two facets are connected by an edge if they intersect in a ridge.

Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)

Simplicial polytopes are completely determined by their facet-ridge graphs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)

Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)

Simplicial spheres are completely determined by their facet-ridge graphs.

Reconstruction of polytopes and spheres

Theorem (Blind–Mani, 1987)

Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)

Simplicial spheres are completely determined by their facet-ridge graphs.

A simplicial sphere is a simplicial complex which is homeomorphic to a sphere.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Most spheres are not polytopal

For $d \ge 3$, most *d*-spheres are not polytopal.

- Goodman–Pollack, 1986
- Kalai, 1988
- Pfeifle–Ziegler, 2004

Deciding polytopality of spheres is a difficult problem

Mnëv's Universality theorem: Realization spaces of polytopes can take arbitrary (semi-algebraic) shapes and thus can exhibit all kinds of pathologies.

The realizability problem for 4-polytopes is NP-hard.

Goal

Our initial goal was:

Look for a counterexample to Kalai's Conjecture among a special family of simplicial spheres which are conjectured to be polytopal. (kill two conjectures at once)

Instead:

We proved the conjecture for this family. (spherical subword complexes)

Rest of the talk:

Introduce subword complexes, state our main result, give proof sketch.

Simplical Complex Δ : A collection of subsets of a ground set *E*, s.t. $\sigma \in \Delta$ and $\tau \in \sigma$ implies $\tau \in \Delta$

faces: subsets in Δ vertices: singleton sets facets: maximal sets ridges: facets missing a single element

 $\Delta = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\} \}$

Symmetric group S_{n+1} : group of permutations of $\{1, \ldots, n+1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symmetric group S_{n+1} : group of permutations of $\{1, \ldots, n+1\}$

generators $\{s_1, \ldots, s_n\}$, $s_i = (i \ i + 1)$ length of w: smallest r such that $w = s_{i_1} \ldots s_{i_r}$ longest element: permutation $[n + 1, \ldots, 1]$ reduced expression for w: expression for w of minimal length

A D N A 目 N A E N A E N A B N A C N

Symmetric group S_{n+1} : group of permutations of $\{1, \ldots, n+1\}$

generators $\{s_1, \ldots, s_n\}$, $s_i = (i \ i + 1)$ length of w: smallest r such that $w = s_{i_1} \ldots s_{i_r}$ longest element: permutation $[n + 1, \ldots, 1]$ reduced expression for w: expression for w of minimal length

A D N A 目 N A E N A E N A B N A C N

In this talk: **finite Coxeter groups** (very similar to the symmetric group)

Subword complexes

W finite Coxeter group with generating set S $Q = (q_1, \ldots, q_m)$ a word in S $\pi \in W$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Subword complexes

W finite Coxeter group with generating set S $Q = (q_1, \ldots, q_m)$ a word in S $\pi \in W$

Definition (Knutson–Miller, 2004) The subword complex $\Delta(Q, \pi)$ is the simplicial complex whose

$$\begin{array}{rcl} \mbox{faces} & \longleftrightarrow & \mbox{subwords} \ P \ \mbox{of} \ Q \ \mbox{such that} \ \ Q \setminus P \\ & \mbox{contains a reduced expression of} \ \pi \end{array}$$

Knutson-Miller. Gröbner geometry of Schubert polynomials. Ann. Math., 161(3), '05 Knutson-Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1), '04

In type A_2 : $W = \mathbb{S}_3$, $S = \{s_1, s_2\} = \{(1 \ 2), (2 \ 3)\}$

In type
$$A_2$$
:
 $W = \mathbb{S}_3$, $S = \{s_1, s_2\} = \{(1 \ 2), (2 \ 3)\}$
 $Q = \begin{pmatrix} s_1, s_2, s_1, s_2, s_1 \\ q_1, q_2, q_3, q_4, q_5 \end{pmatrix}$ and $\pi = [3 \ 2 \ 1]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

In type
$$A_3$$
:
 $W = \mathbb{S}_4$, $S = \{s_1, s_2, s_3\} = \{(1 \ 2), (2 \ 3), (3 \ 4)\}$
 $Q = \begin{pmatrix} s_1, s_2, s_1, s_2, s_1, s_3 \\ q_1, q_2, q_3, q_4, q_5, q_6 \end{pmatrix}$ and $\pi = [3 \ 2 \ 1] = s_1 s_2 s_1 = s_2 s_1 s_2$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Subword complexes

Conjecture (Knutson–Miller, Ceballos–Labbé-Stump, ...) *Spherical subword complexes are polytopal.*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Subword complexes

Conjecture (Knutson–Miller, Ceballos–Labbé-Stump, ...) Spherical subword complexes are polytopal.

Special cases include:

- Cyclic polytopes
- Duals of associahedra
- Cluster complexes of cluster algebras of finite type
- Duals of pointed-pseudotriangulation polytopes
- Simplicial multi-associahedra (conjectured)

Woo, Pilaud–Pocchiola, Serrano–Stump, Stump, C.-Labbé–Stump, Rote–Santos–Streinu, Jonsson, ...

A D N A 目 N A E N A E N A B N A C N

Theorem (Ceballos–D.)

Spherical subword complexes of finite type are completely determined by their facet-ridge graph. In other words, they satisfy Kalai's Conjecture.

Our current proof is <u>not</u> constructive.

It is based on the topological tools developed by Blind and Mani.

For $P,\,Q$ simplical spheres with a facet-ridge isomorphism $f,\,{\rm define}\,\,g:P\to Q$ by

$$g(\sigma) = \bigcap \{ f(F) | \mathsf{F} \text{ facet of } P, \sigma \subset F \}.$$

A simplicial complex is **strongly vertex decomposable** if for each vertex, the deletion and link of that vertex is **vertex decomposable**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $P,\,Q$ simplical spheres with a facet-ridge isomorphism $f,\,{\rm define}\,\,g:P\to Q$ by

$$g(\sigma) = \bigcap \{ f(F) | \mathsf{F} \text{ facet of } P, \sigma \subset F \}.$$

A simplicial complex is **strongly vertex decomposable** if for each vertex, the deletion and link of that vertex is **vertex decomposable**.

A simplicial complex is **vertex decomposable** if it is pure, and for a vertex, the deletion and link of that vertex is vertex decomposable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

If σ a (d-2)-face of P, either $g(\sigma)$ is a (d-2)-face of Q or $\tilde{H}_{d-2}(Q \setminus f(\sigma))$ is nontrivial.

Lemma

If P, Q are both strongly vertex decomposable, $\tilde{H}_{d-2}(Q \setminus f(\sigma))$ is trivial.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Theorem (Ceballos-D.)

Spherical subword complexes of finite type are strongly vertex decomposable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

- Simplicial spheres are conjectured to be completely determined by their facet-ridge graph.
- Simplicial polytopes are completely determined by their facet-ridge graph.
- Spherical subword complexes are conjectured to be polytopes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spherical subword complexes of finite type are completely determined by their facet-ridge graph.