The calculus of series-divisors

Hartosh Singh Bal and Gaurav Bhatnagar*

"The partition-frequency enumeration matrix" (Ramanujan J. (to appear))
"Glaisher's divisors and infinite products" (preprint)

Ramanujan's recurrence relation

$$
\sum_{d=1}^{n} \sigma(d) p(n-d)=n p(n)
$$

Berndt: Part IV

$$
\sigma(n)=\sum_{d \mid n} d
$$

$$
\prod_{j=1}^{\infty} \frac{1}{1-q^{j}}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}=\sum_{n=0}^{\infty} p(n) q^{n}
$$

J W Glaisher (1885)

$$
\begin{gathered}
d_{1}(n)=\sum_{d \mid n} d=\sigma(n) \\
d_{2}(n)=\sum_{\substack{d \mid n \\
d \text { odd }}} d=\sigma(n)-2 \sigma(n / 2) \\
d_{3}(n)=\sum_{\substack{d \mid n \\
d \text { even }}} d=2 \sigma(n / 2) \\
d_{4}(n)=\sum_{d \mid n}^{n / d \text { odd }} d=\sigma(n)-\sigma(n / 2) \\
d_{5}(n)=\sum_{d \mid n}^{n / d \text { even }} d=\sigma(n / 2) \\
d_{6}(n)=\sum_{d \mid n}(-1)^{d-1} d=\sigma(n)-4 \sigma(n / 2) \\
d_{7}(n)=\sum_{d \mid n}(-1)^{n / d-1} d=\sigma(n)-2 \sigma(n / 2)
\end{gathered}
$$

Questions:

- Given a divisor function, what partition function does it correspond to (if any)?
- Is it easy to know which one?
- What type of results come out from such a correspondence?
* Can this correspondence be used in the "other" theory?

Definition: series-divisor

The series divisor

$$
Q(q)=\sum_{k=0}^{\infty} P(n) q^{n}
$$

$$
\sum_{k=1}^{\infty} k P(k) q^{k}=\sum_{k=1}^{\infty} \sigma^{Q}(k) q^{k} \sum_{k=0}^{\infty} P(k) q^{k} . \quad n P(n)=\sum_{k=1}^{n} \sigma^{Q}(k) P(n-k)
$$

$$
\text { The coefficient of } q \frac{d}{d q}(Q(q)
$$

Idea \# 1: Sum Lemma. The series divisor of a product of two series is the sum of their series-divisors. That is

$$
\sigma^{A B}(k)=\sigma^{A}(k)+\sigma^{B}(k)
$$

Calculus of series-divisors

$$
\sum_{k=1}^{\infty} k P(k) q^{k}=\sum_{k=1}^{\infty} \sigma^{Q}(k) q^{k} \sum_{k=0}^{\infty} P(k) q^{k}
$$

$$
\begin{aligned}
1-q & \rightsquigarrow(-1,-1,-1,-1,-1,-1, \ldots) \\
\frac{1}{1-q} & \rightsquigarrow(1,1,1,1,1,1,1, \ldots) \\
\frac{1}{1-q^{2}} & \rightsquigarrow(0,2,0,2,0,2,0, \ldots) \\
\frac{1}{1-q^{3}} & \rightsquigarrow(0,0,3,0,0,3,0, \ldots) \\
\frac{1}{1-q^{4}} & \rightsquigarrow(0,0,0,4,0,0,0, \ldots) \\
\frac{1}{1+q} & \rightsquigarrow(1,-1,1,-1,1,-1,1, \ldots)
\end{aligned}
$$

Calculus (cont.)

$$
\begin{aligned}
\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots} \rightsquigarrow & (1,1,1,1,1,1,1,1,1,1, \ldots) \\
& +(0,2,0,2,0,2,0,2,0,2, \ldots) \\
& +(0,0,3,0,0,3,0,0,3,0, \ldots) \\
& +(0,0,0,4,0,0,0,4,0,0, \ldots) \\
& =(1,1+2,1+3,1+2+4, \ldots) \\
\rightsquigarrow & (\sigma(1), \sigma(2), \sigma(3), \sigma(4), \ldots)
\end{aligned}
$$

Thus the name: series-divisor

Ramanujan

$$
\sum_{d=1}^{n} \sigma(d) p(n-d)=n p(n)
$$

A1: The correspondence

$$
\begin{gathered}
d_{1}(n)=\sigma(n) \\
d_{2}(n)=\sigma(n)-2 \sigma(n / 2)
\end{gathered}
$$

Partitions with all parts odd

$$
d_{3}(n)=2 d_{5}(n)=2 \sigma(n / 2) \cdots \prod_{k=1}^{\infty} \frac{1}{1-q^{2 k}}=\sum_{k=0}^{\infty} p_{e}(k) q^{k} \quad \text { Partitions with all parts even }
$$

$$
2 d_{4}(n)=2(\sigma(n)-\sigma(n / 2))
$$

$$
(-1)^{n+1} 2 d_{4}(n)
$$

$$
d_{6}(n)=\sigma(n)-4 \sigma(n / 2)=
$$

Triangular numbers
$d_{7}(n)=\sigma(n)-2 \sigma(n / 2)=m p \prod_{k=1}^{\infty}\left(1+q^{k}\right)=\sum_{k=0}^{\infty} p_{d}(k) q^{k} \quad$ Partitions with distinct parts

A2: Overpartitions

$$
n \bar{p}(n)=2 \sum_{i=1}^{n} d_{4}(i) \bar{p}(n-i)=2 \sum_{i=1}^{n}(\sigma(i)-\sigma(i / 2)) \bar{p}(n-i)
$$

Proof

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{n}}{1-q^{n}}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)\left(1-q^{2 n-1}\right)} \rightsquigarrow d_{1}(n)+d_{2}(n)=2 d_{4}(n)
$$

$$
d_{1}(n)=\sum_{d \mid n} d
$$

$$
d_{2}(n)=\sum_{\substack{d \mid n \\ n \text { odd }}} d
$$

$$
d_{4}(n)=\sum_{\substack{d \mid n \\ n / d \text { odd }}} d=\sigma(n)-\sigma(n / 2)
$$

A3: Analogues of Ramanujan's

recurrence

$$
\begin{aligned}
n p_{e}(n) & =\sum_{i=1}^{n} d_{3}(i) p_{e}(n-i)=2 \sum_{i=1}^{n} \sigma(i / 2) p_{e}(n-i) \\
n p_{d}(n) & =\sum_{i=1}^{n} d_{2}(i) p_{o}(n-i)=\sum_{i=1}^{n} d_{7}(i) p_{d}(n-i) \\
& =\sum_{i=1}^{n}(\sigma(i)-2 \sigma(i / 2)) p_{d}(n-i) \\
n \bar{p}(n) & =2 \sum_{i=1}^{n} d_{4}(i) \bar{p}(n-i)=2 \sum_{i=1}^{n}(\sigma(i)-\sigma(i / 2)) \bar{p}(n-i)
\end{aligned}
$$

Some more

$$
\begin{aligned}
& n r_{m}(n)=m \sum_{j=1}^{n} 2(-1)^{j+1}(\sigma(j)-\sigma(j / 2)) r_{m}(n-j) \\
& n t_{m}(n)=m \sum_{j=1}^{n}(\sigma(j)-4 \sigma(j / 2)) t_{m}(n-j)
\end{aligned}
$$

$r_{m}(n):=$ the number of ways n can be written as an ordered sum of m squares $t_{m}(n):=$ the number of ways n can be written as an ordered sum of m triangular numbers

Special cases

$$
\begin{aligned}
& r_{1}(0)=r_{4}(0)=r_{8}(0)=1 \\
& r_{1}(n)= \begin{cases}2, & \text { if } n=j^{2} \text { for some } j>0 \\
0, & \text { otherwise }\end{cases} \\
& r_{4}(n)=8(\sigma(n)-4 \sigma(n / 4)) \\
& r_{8}(n)=(-1)^{n+1} 16\left(\sigma_{3}(n)-16 \sigma_{3}(n / 2)\right)=(-1)^{n+1} 16 \widetilde{\sigma}_{3}(n) \\
& t_{1}(0)=t_{4}(0)=t_{8}(0)=1
\end{aligned} \begin{aligned}
t_{1}(n)= \begin{cases}1, & \text { if } n=j(j+1) / 2 \text { for some } j>0 \\
0, & \text { otherwise }\end{cases} \\
t_{4}(n)=\sigma(2 n+1) \\
t_{8}(n)=\sigma_{3}(n+1)-\sigma_{3}((n+1) / 2)=\bar{\sigma}_{3}(n+1)
\end{aligned}
$$

$$
8 \sum_{j=1}^{n} d_{6}(j) \bar{\sigma}_{3}(n+1-j)=n \bar{\sigma}_{3}(n+1)
$$

Idea\#2: Power recursion

$$
Q(q)^{r}=\sum_{n=0}^{\infty} P_{r}(n) q^{n}
$$

$$
\sum_{j=0}^{n}(n-(r / s+1) j) P_{r}(n-j) P_{s}(j)=0
$$

Gould (1974): s=1.
General case can be obtained from there. Actually, r and s can be anything

$$
n P_{r}(n)=\sum_{j=1}^{\infty}(-1)^{j+1}(2 j+1)(n+(r / 3-1) j(j+1) / 2) P_{r}(n-j(j+1) / 2)
$$

Lehmer (1951): used a special case

Proof of the power recursion

$$
\begin{aligned}
& r Q(q)^{r} \sum_{n=1}^{\infty} \sigma^{Q}(n) q^{n}=\sum_{n=0}^{\infty} n P_{r}(n) q^{n} \\
& s Q(q)^{s} \sum_{n=1}^{\infty} \sigma^{Q}(n) q^{n}=\sum_{n=0}^{\infty} n P_{s}(n) q^{n}
\end{aligned}
$$

Eliminate the generating function of series divisors
$\frac{r}{s}\left(\sum_{n=0}^{\infty} P_{r}(n) q^{n}\right)\left(\sum_{n=0}^{\infty} n P_{s}(n) q^{n}\right)=\left(\sum_{n=0}^{\infty} n P_{r}(n) q^{n}\right)\left(\sum_{n=0}^{\infty} P_{s}(n) q^{n}\right)$
Compare coefficients of q^{n} on both sides

$$
\sum_{j=0}^{n}(n-(r / s+1) j) P_{r}(n-j) P_{s}(j)=0
$$

A3 (cont.)

$$
\begin{gathered}
n r_{m}(n)=-2 \sum_{k=1}^{\infty}\left(n-(m+1) k^{2}\right) r_{m}\left(n-k^{2}\right) \\
n t_{m}(n)=-\sum_{k=1}^{\infty}(n-(m+1) k(k+1) / 2) t_{m}(n-k(k+1) / 2) \\
\text { Williams (2011)/Venkov (1970) } \\
\text { Bhatnagar (2022-online) }
\end{gathered}
$$

$$
\begin{gathered}
2 n \sigma(2 n+1)=\sum_{j=1}^{\infty}(5 j(j+1)-2 n) \sigma(2 n+1-j(j+1)) \\
\text { If } 5 \nmid n \text {, then } \sum_{j=0}^{\infty} \sigma(2 n+1-j(j+1)) \equiv 0(\bmod 5)
\end{gathered}
$$

Example

$$
\sum_{j=0}^{\infty} \sigma(2 n+1-j(j+1)) \equiv 0 \quad(\bmod 5)
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
0 & 1 & 3 & 4 & 7 & 6 & 12 & 8 & 15 & 13
\end{array} \\
& n=1: \quad \sigma(3)+\sigma(3-2)=4+5=5 \\
& n=2: \quad \sigma(5)+\sigma(5-2)+\sigma(5-6)=6+4+0=10 \\
& n=3: \quad \sigma(7)+\sigma(7-2)+\sigma(7-6)=8+6+1=15 \\
& n=4: \quad \sigma(9)+\sigma(7)+\sigma(3)=13+8+4=25
\end{aligned}
$$

Two more for overpartitions

$$
\begin{gathered}
\sigma(n)=\sum_{i=-\infty}^{\infty}(-1)^{i}\left(n-\frac{i(3 i-1)}{2}\right) p\left(n-\frac{i(3 i-1)}{2}\right) \\
\sum_{i=1}^{n} \sigma(n-i) \sigma(i)=\sum_{i=-\infty}^{\infty}(-1)^{i+1}\left(\frac{i(3 i-1)}{2}\right)\left(n-\frac{i(3 i-1)}{2}\right) p\left(n-\frac{i(3 i-1)}{2}\right)
\end{gathered}
$$

Glaisher

$$
\left.\left.\begin{array}{rl}
2 d_{4}(n)= & 2(\sigma(n)-\sigma(n / 2))
\end{array}\right)=n \bar{p}(n)+2 \sum_{i=1}^{\infty}(-1)^{i}\left(n-i^{2}\right) \bar{p}\left(n-i^{2}\right)\right)
$$

A4

Proof of Ramanujan's recurrences

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{24}=\sum_{n=0}^{\infty} \tau(n+1) q^{n}
$$

$p(5 m+4) \equiv 0 \quad(\bmod 5)$

$\tau(5 n+5) \equiv 0 \quad(\bmod 5)$

Jacobi

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{3}=\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) q^{\frac{k(k+1)}{2}}
$$

$$
\begin{array}{ll}
\text { Notation } & Q(q)^{r}=\sum_{n=0}^{\infty} P_{r}(n) q^{n} \\
Q(q)=\prod_{j=1}^{\infty} \frac{1}{1-q^{j}}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots} \\
r=1: & P_{1}(n)=p(n)=\text { partitions } \\
r=-24: & P_{-24}(n)=\tau(n+1)=\text { Ramanujan's } \tau \text { function } \\
r=-3: & P_{-3}(n)= \begin{cases}(-1)^{k}(2 k+1) & \text { if } n=\frac{k(k+1)}{2} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

The proof!

$P_{r}(5 m+4) \equiv 0(\bmod 5)$, if $r \equiv 1(\bmod 5)$

$$
n P_{r}(n)=\sum_{j=1}^{\infty}(-1)^{j+1}(2 j+1)(n+(r / 3-1) j(j+1) / 2) P_{r}(n-j(j+1) / 2)
$$

$$
\begin{aligned}
& m=0: 4 P_{r}(4)=(9+r) P_{r}(3)-5(r+1) P_{r}(2) \text { so } P_{r}(4) \equiv 0(\bmod 5) \\
& (-1)^{j+1}(2 j+1)(n+(r / 3-1) j(j+1) / 2) P_{r}(n-j(j+1) / 2) \\
& j \equiv 4,5(\bmod 5): \quad(* * *) P_{r}(5 m+4-5 k) \equiv 0(\bmod 5) \\
& j \equiv 3(\bmod 5): \quad(-1)^{j+1} 2(2 r-2) P_{r}(* *) \equiv 0 \quad(\bmod 5) \\
& j \equiv 2(\bmod 5): \quad(-1)^{j+1} 5(1+r) P_{r}(* *) \equiv 0 \quad(\bmod 5) \\
& j \equiv 1(\bmod 5): \quad(-1)^{j+1} 5(1+r) P_{r}(* *) \equiv 0(\bmod 5)
\end{aligned}
$$

(1) $P_{r}(5 m+1) \equiv 0(\bmod 5)$, if $r \equiv 0(\bmod 5)$
(2) $P_{r}(5 m+2) \equiv 0(\bmod 5)$, if $r \equiv 2(\bmod 5)$
(3) $P_{r}(5 m+3) \equiv 0(\bmod 5)$, if $r \equiv 4(\bmod 5)$
(4) $P_{r}(5 m+4) \equiv 0(\bmod 5)$, if $r \equiv 1(\bmod 5)$

Some cases of Chan and Wang (2019) covered (r can be rational)

Let $r \equiv 0(\bmod 3)$. Then

$$
P_{r}(3 m+k) \equiv 0(\bmod 3) \text { for } k=1,2 .
$$

Thank you

Hartosh Singh Bal (Caravan) and Gaurav Bhatnagar (Ashoka) July 7, 2022

Ramanujan's entry

$$
\text { Let } f(q)=\sum_{k=1}^{\infty} \frac{A_{k} q^{k}}{k} \text { and } e^{f(q)}=\sum_{n=0}^{\infty} P_{n} q^{n}
$$

Then

$$
P_{0}=1 \quad n P_{n}=\sum_{k=1}^{n} A_{k} P_{n-k}
$$

Berndt: Part II

$$
\sum_{d=1}^{n} \sigma(d) p(n-d)=n p(n)
$$

Berndt: Part IV

