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The definition of a k-regular partition depends on whether you are
doing group theory or partitions.
For group theory, k-regular means no part appears k or more times.
For partitions, k-regular means no part is divisible by k .
Of course, these two definitions are tied together in:
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Glaisher’s Theorem
The number of partitions of N in which no part is repeated k or
more times equals the number of partitions of N into parts not
divisible by k .

When discussing partitions with distinct parts we mean by k-regular
that no part is divisible by k .
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There is a general theorem on k-regular partitions with distinct
parts. In this theorem the parts are required to be “close together”
rather than separated.

Theorem (Olsson et al.)

The number of k-regular partitions of n into distinct parts equals
the number of partitions of n in which only multiples of k may be
repeated, the smallest part is < k , the difference between
consecutive parts is ≤ k , and < k if either part is divisible by k .
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For example, when k = 4 the eight 4-regular partitions of 12 with
distinct parts are

11+1, 10+2, 9+3, 9+2+1, 7+5, 7+3+2, 6+5+1, 6+3+2+1.

The partitions satisfying the closeness conditions are

7 + 4 + 1, 7 + 3 + 2, 6 + 5 + 1, 6 + 4 + 2, 6 + 3 + 2 + 1,

5 + 4 + 3, 5 + 4 + 2 + 1, 4 + 4 + 3 + 1.

Note: 4 + 4 + 4 is excluded because the smallest part is not < 4.
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Krishna Alladi was the first to state the following general theorem
on k-regular partitions with distinct parts.

Alladi’s Theorem
The number of k-regular partitions of n with distinct parts equals
the number of partitions of n into odd parts that are not divisible
by k .
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Figure: Krishnaswami Alladi 1

1https://akuncu.files.wordpress.com/2019/10/alladi1.jpg
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The cases k = 1 and k = 2 are tautologies.
k = 3 fits into Schur’s 1926 Theorem.

Schur’s Theorem
The number of partitions of n into distinct parts not divisible by 3
equals the number of partitions of n into parts ≡ ±1 (mod 6)
equals the number of partitions of n in which parts differ by at least
3 and multiples of 3 differ by at least 6.
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Figure: Issai Schur 2

2https://upload.wikimedia.org/wikipe...commons/1/1f/Schur.jpg
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While the k = 1 and k = 2 cases of Alladi’s Theorem are
tautologies, both Alladi and Schur proved identities for 2-regular
partitions with distinct parts.

Alladi’s Theorem
The number of 2-regular partitions of n with distinct parts equals
the number of partitions of n where

i 2 is not a part
ii difference between parts is ≥ 6 with strict inequality if either

part is even.
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For example, for n = 20, the seven 2-regular partitions with distinct
parts are:

19 + 1, 17 + 3, 15 + 5, 13 + 7, 11 + 9, 11 + 5 + 3 + 1, 9 + 7 + 3 + 1.

The partitions of 20 satisfying (i) and (ii) are

20, 19 + 1, 17 + 3, 16 + 4, 15 + 5, 14 + 6, 13 + 7.
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Schur’s Theorem

The number of 2-regular partitions of n with distinct parts equals
the number of partitions of n in which

i no part is congruent to 2 (mod 4), and
ii parts differ by ≥ 4 with strict inequality if either part is a

multiple of 4.
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Here the second class of partitions at n = 20 is

20, 19 + 1, 17 + 3, 16 + 4, 15 + 5, 13 + 7, 13 + 6 + 1.
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Now for Schur’s k = 3 Theorem, Alladi added a fourth set of
partitions to the three in Schur’s Theorem:
The number of partitions of n into distinct parts not divisible by k
(i.e. k-regular partitions with distinct parts) equals the number of
partitions of n into odd parts none repeated more than k − 1 times.
For N = 9 we have the following:

Distinct, none ≡ 0 (mod 3) 8 + 1 7 + 2 5 + 4
≡ ±1 (mod 6) 7 + 1 + 1 5 +

∑4
i=1 1

∑9
i=1 1

ai − ai+1 ≥ 3, (≥ 6 mults 3) 9 8 + 1 7 + 2
odd parts, at most twice 9 7 + 1 + 1 5 + 3 + 1
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There are numerous proofs and refinements of Schur’s Theorem.
Some proofs are
INTRINSIC
and some are
EXTRINSIC.

Intrinsic proofs rely on factorization of polynomial generating
functions.
Extrinsic proofs rely on some sort of q-hypergeometric identity.
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To illustrate we begin with Gleissberg’s refinement of Schur’s
Theorem:

Gleissberg’s Theorem

Let A(m, n) denote the number of partitions of n into m distinct
parts not divisible by three. Let B(m, n) denote the number of
partitions of n into parts differing by 3 and by at least 6 between
multiples of 3 m denotes the total number of parts plus the number
divisible by 3 (i.e. multiples of 3 are counted twice). Then

A(m, n) = B(m, n).
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Let βN(m, n) denote the number of partitions counted by B(m, n)
where the largest part is ≤ N.
Define

dN(x ; q) = dN(x) :=
∑

m,n≥0

βN(m, n)xmqn.

Gleissberg’s proof of his theorem avoided generating functions.
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The generating function version of Gleissberg’s Theorem is:

d3N(x) = (1 + xq)(1 + xq2)d3N−4(xq3).

Note: this implies

d∞(x) = (1 + xq)(q + xq2)d∞(xq3)

and iteration yields

d∞(x) =
∞∏
n=1
3-n

(1 + xqn).

Gleissberg’s Theorem is an example of an intrinsic proof of Schur’s
Theorem.
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Intrinsic proofs all rely on recurrences. Here is a sketch of the
polynomial version of Gleissberg’s proof:
First

d3N−1(x) = d3N−2(x) + xq3N−1d3N−4

d3N−2(x) = d3N−3(x) + xq3N−2d3N−5

d3N−3(x) = d3N−4(x) + xq3N−3d3N−7.
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Second, one eliminates instances of d3j−2 and d3j−3 to obtain

d3N−1(x) = (1 + xq3N−1 + xq3N−2)d3N−4(x)

+ x2q3N−3(1− q3N−3)d3N−7
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Third, replace x by xq3 in the original recurrences. Then eliminate
instances of d3j−1 and d3j−2 revealing that d3N+3(x) and
d3N−1(xq3) satisfy the same second-order recurrence.
Finally one shows by computation that for N = 1 and N = 2,

d3N(x) = (1 + xq)(1 + xq2)d3N−4(xq3).
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Here is an extrinsic proof of Schur’s Theorem:
Recall

d3N−1(x) = (1 + xq3N−1 + xq3N−2)d3N−4

+ x2q3N−3(1− q3N−3)d3N−7.

Set dN = d3N−1/(q3; q3)N .

Hence

(1q3N)dN = (1 + xq3N−1 + xq3N−2)dN−1

+ x2q3N−3(1− q3N−3)dN−2.

Let F (t) =
∑
N≥0

dNt
N .
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Multiply the last equation by tN and sum over N ≥ 0:

F (t)− F (tq3) = tF (t) + t(xq2 + xq)F (tq3) + t2x2q3F (tq3).

So
(1− t)F (t) = (1 + txq + txq2 + t2x2q3)F (tq3)

Iterating yields

F (t) =
∞∏

N=0

(1 + xtq3N+1)(1 + xq3N+2)

(1− tq3N)
.
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Or

(1− t)
∑
N≥0

d3N−1t
N

(q3; q3)N
=

(−xtq; q3)∞(−xtq2; q3)∞
(tq3; q3)∞

.

Letting t → 1− and applying Abel’s Lemma,

d∞ = (−xq; q3)∞(−xq2; q3)∞.
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Now their is a Gleissbergesque theorem for Alladi’s addition to
Schur’s Theorem:

Theorem
Let C (m, n) denote the number of partitions of n into m odd parts
none repeated more than twice. Let D(m, n) denote the number of
partitions of n into parts that differ by at least 3 (and at least 6
between multiples of 3) where m counts the number of parts plus
the number of even parts (i.e. each even part is counted twice).
Then

C (m, n) = D(m, n).
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Just as with Gleissberg, there is an intrinsic proof here as well.
Let ∆N(m, n) denote the number of partitions counted by D(m, n)
where the largest part is ≤ N. Define

δN(x ; q) = δN(x) :=
∑

m,n≥0

∆N(m, n)xmqn.

Now
δ6N+2(x) := (1 + xq + x2q2)δ6N−1(xq2).

Let N →∞ and iterate

δ∞(x) :=
∞∏
n=0

(1 + xq2n+1 + x2q4n+2).
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Indeed, much more is true:

d6N−1(x) =
N∏
j=1

(1 + xq2j−1 + x2q4j−2)

polynomial︷ ︸︸ ︷
(1 + O(q2N)).

Not only is this an “intrinsic-er” proof, it also reveals that the Alladi
contribution to Schur’s Theorem is more intrinsic than the original
formulation by Schur.
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I should note that this is only a small part of the story of 3-regular
partitions with distinct parts.
I have told only that part of the story which illustrates the nature of
intrinsic and extrinsic proofs.
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Actually, prior to much of the discovery of the material just
presented on k = 3, the 5-regular partitions with distinct parts
arose in a problem in group theory considered by Jorn Olsson and
Christine Bessenrodt.
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In the 1974 A. M. S. memoir The General Rogers-Ramanujan
Theorem, we find

Conjecture 2 (slightly altered)

The number of 5-regular partitions of N with distinct parts equals
the number of N of the form

N =
∞∑
i=1

fi · i (fi is the frequency of i)

where
a If 5 - i , then fi ≤ 1.
b fi + fi+1 + · · ·+ fi+4 ≤ 2.
c f5i + f5i+1 + · · ·+ f5i+4 ≤ 2.
d f5i+2 + f5i+3 ≤ 1.
e f5i+4 + f5i+6 ≤ 1.
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Thus if n = 10 the 5-regular partitions with distinct parts are

9 + 1, 8 + 2, 7 + 3, 6 + 4, 6 + 3 + 1, 4 + 3 + 2 + 1.

The partitions satisfying (a)-(e) are

10, 9 + 1, 8 + 2, 7 + 3, 6 + 3 + 1, 5 + 5.

Note that 6 + 4 is out by (e) and 4 + 3 + 2 + 1 is out by (d).
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I remark that in Schur’s Theorem the difference condition part may
be stated

fi + fi+1 + fi+2 ≤ 1

and
f3i + f3i+1 + f3i+2 + f3i+3 ≤ 1.
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Now there are 15 possible partitions that satisfy (a)-(e) and have
parts in [5j + 1, 5j + 5]. These are ordered lexicographically and
then 15 polynomial generating functions SN(j , x) are defined where
the “largest” part(s) equal j and all parts satisfy (a)-(e) and are
≤ 5N + 5.
THEN

SN(15, x) = (1 + xq)(1 + xq2)(1 + xq3)(1 + xq4)SN−1(9, xq5).
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After this lengthy introduction, we now arrive at something which
(I hope) is new. The obvious question is: what about 4-regular
partitions into distinct parts?
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In the case of 4-regular partitions into distinct parts, the only result
I could find involved overpartitions.
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Overpartitions are partitions in which the first occurrence of a
number may be overlined. Thus the eight overpartitions of 3 are:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.
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Theorem
The number of 4-regular partitions of n into distinct parts equals
the number of overpartitions of n subject to the following
conditions

a Only odd parts ≥ 3 may be overlined.
b The difference between any two parts is ≥ 4 and at > 4 if one

of the parts is divisible by 4.
c Also, the difference is > 4 if the larger part is overlined.
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For example, the six 4-regular partitions of 10 into distinct parts are
10, 9 + 1, 7 + 3, 7 + 2 + 1, 6 + 3 + 1, 5 + 3 + 2. The overpartitions
satisfying (a), (b), and (c) are

10, 9 + 1, 9 + 1, 8 + 2, 7 + 3, 7 + 3.

Note: 7 + 3 is excluded by (c).
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Given all that has gone before, we would expect a Gleissbergesque
refinement.

Theorem
Let A(m, n) denote the number of 4-regular partitions of n into
distinct parts. Let B(m, n) denote the number of overparitions of n
subject to the conditions (a), (b), and (c), where m denotes the
number of parts plus the number of overlined parts plus the number
of parts divisible by 4.
Then

A(m, n) = B(m, n).
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We shall give an extrinsic proof of this theorem because there is a
60+ -year-old Lemma buried in the literature that nails it and
makes life easy.
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Lemma
Let λn be defined by

∑
n≥0

λnx
n

(q; q)n
=
∞∏
n=1

(1 + a1xq
n + a2x

2q2n + a3x
3q3n)

(1− xqn−1)

and let Dn be defined by

D−1 = 0,D0 = 1,D1 = 1 + a1q,

D2 = 1 + a1q + a1q
2 + a2

1q
3 + a2q

2 − a2q
3 + a3q

3,

if n > 2,Dn = (1 + a1q
n)Dn−1 + a2q

n(1− qn−1)Dn−2

+ a3q
2n−1(a1 + qn−1)Dn−3 + a2

3q
3n−3Dn−4.

Then Dn =
∑

0≤2s≤n

[
n − s

s

]
as3q

(n+1)s−(s
2)λn−2s

where
[
A

B

]
is the q-binomial coefficient.
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q → q6, a1 = q−1 + q−2 + q−4,

a2 = q−3 + q−5 + q−6, a3 = q−7

yields via Abel’s Lemma again

The “Big” Göllnitz Theorem
The number of partitions of n into distinct parts congruent to 2, 4,
or 5 (mod 6) equals the number of partitions of n where

a Neither 1 nor 3 are parts.
b Parts differ by at least 6 and by more than 6 if one of the parts

is congruent to 0, 1, or 3 (mod 6).
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For our theorem on 4-regular partitions with distinct parts,

q → q4

a1 = t(q−1 + q−2 + q−3),

a2 = t2(q−3 + q−4 + q−5),

a3 = t3q−6

In this case the numbers have the following order:

1 < 2 < 3 < 3 < 4 < 5 < 5 < 6 < 7 < 7 < · · ·
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In this case,

D4n−1 =
∑

0≤2s≤n

[
n − s

s

]
q4
t3sq4ns−2s2λn−2s
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Of course, Alladi’s Theorem tells us that the number of 4-regular
partitions of n into distinct parts also equals the number of
partitions of n into odd parts none repeated more than thrice.
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Theorem
Let α(m, n) denote the number of partitions of n into m odd parts
none appearing more than thrice. Let β(m, n) denote the number
of overpartitions of n subject to the previous conditions (a)-(c),
where now m is a weighted count of the parts:
odd overlined parts are counted with weight 3
even parts are counted with weight 2, and
odd non-overlined parts are counted with weight 1.
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The proof here is intrinsic.
Let eN(t, q) = eN(t) be the generating function for the partitions
enumerated by β(m, n) with the restriction that the largest part
is ≤ N (overline the e if N is also included).
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Then

e4n+3(t) = tq4n+3e4n−1 + (1 + tq + t2q2 + t3q3)e4n−1(tq2).

Now let n→∞.

e∞(t) = (1 + tq + t2q2 + t3q3)e∞(tq2)

=
∞∏
n=0

(1 + tq2n+1 + t2q4n+2 + t3q6n+3)

=
∑

m,n≥0

α(m, n)tmqn.
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There are obvious open questions.
1 Is there an extrinsic proof of the k = 5 theorem?
2 Is there an extrinsic proof for k = 3 or k = 4 in the case of

odd parts ocurring ≤ k − 1 times?
3 What is going on for k ≥ 5?
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THANK YOU!
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