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Abstract. We study the distribution of the domination number in a random rooted plane tree
where a random tree is generated from the conditioned Galton-Watson model with offspring
distribution ξ that satisfies Eξ = 1 and 0 < Varξ < ∞. We show that the domination number
in such a random tree is asymptotically normal as the order of the tree tends to infinity. We
also prove that the same result holds for the distribution of the total domination number. Our
method is based on the analysis of the Cockayne-Goodman-Hedetniemi (CGH) algorithm and
a recent extension of Janson’s result on local additive functionals.
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1. Introduction and result statement

Let G = (V,E) be a simple graph. A set X ⊆ V is a dominating set of G if every vertex
in V \ X is adjacent to a vertex in X. The domination number of G is the cardinality of
the smallest dominating set of G. If in the definition above V \ X is replaced by V , then we
say that X is a total dominating set, and the total domination number is the cardinality of
the smallest total dominating set of G. Domination is one of the fastest growing areas within
graph theory, with several applications in computer science and engineering. For literature on
both parameters, we refer the reader to [4, 5]. In our context, we focus on the domination of
conditioned Galton-Watson trees. The domination number has been studied for other models
of random trees, see for example, the recent paper by Fuchs et al. [3] for the random recursive
tree and the random binary search tree.

Given a discrete random variable ξ with support on {0, 1, 2, . . .}, the Galton-Watson tree T
with offspring distribution ξ is the random tree generated in the following way: we start with
a root and generate a number of children according to ξ. For each of the children of the root,
generate a number of children of their own according to ξ independently of the other vertices.
Then, we repeat this process until it stops. The standard assumptions on ξ are Eξ = 1 and
0 < Varξ < ∞. Under these assumptions, the process described above stops at a finite time
almost surely, and the resulting tree is the random tree T . We are interested in the domination
number and the total domination number of the random tree Tn which is defined to be the
Galton-Watson tree conditioned to have exactly n vertices. To the best of our knowledge we
are not aware of any results in this direction in the literature. Let us now state our main result.

Theorem 1.1. Let D(T ) denote the domination number of a tree T , and let T be the Galton-
Watson tree of offspring distribution ξ with mean Eξ = 1 and finite non-zero variance. Let Tn
denote the conditioned Galton-Watson tree of order n. Then there exist constants δ > 0 and
γ2 ≥ 0 such that ED(Tn) = δn+ o(

√
n), and

D(Tn)− δn√
n

d→ N (0, γ2), as n→∞.

Similarly, if D̂(T ) denotes the total domination number of a tree T , then there exist constants

δ̂ > 0 and γ̂2 ≥ 0 such that ED̂(Tn) = δ̂n+ o(
√
n), and

D̂(Tn)− δ̂n√
n

d→ N (0, γ̂2), as n→∞.
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2. Ideas of proof

Many graph theoretic parameters of trees satisfy the so-called additive property. A tree
functional F : T→ R (where T denotes the class of finite rooted plane trees) is called additive
if there exists a functional f : T → R, known as the toll function, such that for every T ∈ T,
F (T ) =

∑
i F (Ti) + f(T ), where T1, T2, . . . are the branches of T . Janson showed in [6] that if

the toll function is bounded and local, then the F (Tn) is asymptotically normal. Here, a toll

function f is local if there exists a fixed integer M > 0 such f(T (M)) = f(T ) for any tree T ,

where T (M) denotes the tree consisting of all vertices of T at a distance at most M from the
root.

Using the CHG algorithm, see [1, 5], each of the parameters that we are interested in can
be approximated by an additive functional F (T ) where the corresponding toll function f is
bounded but not local. However, CHG algorithm allows us to partition the class of trees T
into a finite number of subclasses T1,T2, . . . ,Tm and we show that the toll function f is only
a linear combination of the indicator functions of these subclasses. Using the properties of this
partition, we are able to show that the toll function f is almost-local, according to [7], so the
main result in that paper can be applied to prove Theorem 1.1.

3. Numerical results and concluding remarks

Many practical examples of Galton-Watson trees are equivalent to simply generated tree
models, see [2]. In those instances, tree enumeration problems and some parameter studies
can be done via generating functions and the methods of analytic combinatorics. Using this
approach, the constants δ and δ̂ can be expressed in terms of the solutions of some systems of
equations which, in turn, can be solved numerically. Below is the table of numerical values for
δ and δ̂ for three of these random tree models.

ξ δ δ̂
Binary trees Binomial B(2, 1/2) 0.35411 0.37563
Plane trees Geometric G(1/2) 0.34729 0.38316

Labelled plane trees Poisson Pois(1) 0.36008 0.43695

Table 1. Numerical values of δ and δ̂.

It might also be possible to prove the central limit theorems in Theorem 1.1 using the system
of equations method in [2], but for the condition Galton-Watson trees that are equivalent to
simply generated tree models, the offspring distribution ξ needs to satisfy stronger moment con-
ditions. Therefore, we did not consider this alternative approach. It appears that Theorem 1.1
can be rewritten more generally in terms of additive functionals with toll functions that are
linear combinations of indicator functions. In this way, more graph theoretic parameters can be
covered, such as the independence number, the size of kernel, etc. The full paper version of this
extended abstract is currently under preparation and will be made available on ArXiv soon.
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