NEW RESULTS ON RESTRICTION PROBLEM

The restriction problem. Let W_{λ} denote the irreducible polynomial representation of $G L_{n}(\mathbf{C})$ indexed by a partition λ with at most n parts, and let V_{μ} denote the irreducible representation of S_{n} indexed by a partition μ of n. Restricting W_{λ} to the subgroup of permutation matrices, which is isomorphic to S_{n}, we have:

$$
\operatorname{res}_{S_{n}}^{G L_{n}} W_{\lambda}\left(\mathbf{C}^{n}\right)=\bigoplus_{\mu} V_{\lambda}^{\oplus r_{\lambda \mu}}
$$

The multiplicities $r_{\lambda \mu}$ are called the restriction coefficients. Finding a combinatorial interpretation of $r_{\lambda \mu}$ is a long standing open problem, see OPAC 020.

Littlewood's formula. The best-known way of computing restriction coefficients is by expanding a plethysm of symmetric functions in the basis of Schur functions, the character of W_{λ}. In [5] Littlewood proved that

$$
r_{\lambda \mu}=\left\langle s_{\mu}\left[1+h_{1}+h_{2}+\ldots\right], s_{\lambda}\right\rangle,
$$

where h_{i} are the complete homogeneous symmetric functions and the plethysm $s_{\mu}\left[1+h_{1}+h_{2}+\ldots\right]$ may be briefly described as the substitution of the multiset of monomials occuring in $1+h_{1}+h_{2}+\ldots$. into the variables of the Schur function s_{μ}.

In [7] we provide a representation-theoretic proof of this Littlewood's formula by obtaining the Frobenius reciprocity theorem in the setting of polynomial representation of $G L_{n}(\mathbf{C})$ and its subgroup S_{n}.

Recent attempts. Assaf and Speyer [1] and independently, Orellana and Zabrocki [9] introduced Specht symmetric functions to study the restriction problem. Orellana, Zabrocki, Saliola and Schilling study the subalgebra of uniform block partitions within the partition algebra in [8], as an intermediate step to considering the restriction problem. Heaton, Sriwongsa and Willenbring prove the positivity of a family of restriction coefficients in [4]. Despite these advances in the problem, a combinatorial formula for restriction coefficients is still unknown.

Our attempts. In [6] we used character polynomials to study the restriction problem. Character polynomials have been used to study characters of families of representations of symmetric groups (see Garsia and Goupil [3]), also used in the context of FI-modules by Church, Ellenberg, and Farb [2]. Note that $r_{\lambda,(n)}$, the multiplicity of the trivial representation of S_{n} in $W_{\lambda}(\mathbf{C})$, is the dimension of the space of S_{n} invariant vectors in $W_{\lambda}(\mathbf{C})$. Our character polynomial approach answers the following question in a few special cases.
Question: Given partition λ, determine the conditions when $r_{\lambda,(n)}>0$?
Theorem 0.1. Let λ be a partition with atmost n parts. We have the following:
(1) If λ has two rows then $r_{\lambda,(n)}>0$ unless $\lambda=(1,1)$.
(2) If λ has two columns then $r_{\lambda,(n)}>0$ if and only if $\lambda_{1}{ }^{\prime}-\lambda_{2}{ }^{\prime} \leq 1$.
(3) If $\lambda=\left(a+1,1^{b}\right)$ then $r_{\lambda,(n)}>0$ if and only if $a \geq\binom{ b+1}{2}$.

New results. In ongoing work with Sridhar Narayanan, Amritanshu Prasad and Shraddha Srivastava, we obtain a positive combinatorial rule for the restriction coefficients $r_{\lambda \mu}$ in specific cases. We used moment generating function for some $G L_{n}$ modules, which are proved in [6]. For the proof of the last two theorems, we develop a sign-reversing involution; hence the nature of the proofs is combinatorial. Our results follow.

Theorem 0.2. Let $\lambda=(k, l)^{\prime}$, the conjugate of the partition (k, l). Then, for each $n \geq 2$, the sign representation of S_{n} occurs in $W_{(k, l)^{\prime}}(\mathbf{C})$ if and only if $(k, l) \in\{(n-1,0),(n, 0),(n-1,1),(n, 1)\}$. In all cases it occurs with multiplicity one.
Theorem 0.3. For all $a, b \geq 0$, the multiplicity of the sign representation of S_{n} in $W_{\left(a+1,1^{b}\right)}$ is the number of pairs (λ, μ) such that
(1) $\lambda=\left(\lambda_{1}, \ldots, \lambda_{b}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{b} \geq 0$,
(2) $\mu=\left(\mu_{1}, \ldots, \mu_{n-b}\right)$, with $\mu_{1}>\cdots>\mu_{n-b} \geq 0$,
(3) $\lambda_{1}+\cdots+\lambda_{b}+\mu_{1}+\cdots+\mu_{n-b}=a+1$,
(4) $\mu_{1}>\lambda_{1}$.

Equivalently, the multiplicity is

$$
\sum_{\rho \in P(a, n)}\binom{r_{\rho}}{n-b-1}
$$

where $P(a, n)$ denotes the set of partitions of $a+n$ with n non-negative parts, and for a partition $\rho \in P(a, n), r_{\rho}$ is the number of removable cells of ρ that are not in its first row.
Theorem 0.4. For all $a, b \geq 0$, the multiplicity of the trivial representation of S_{n} in $W_{\left(a+1,1^{b}\right)}$ is the number of pairs (λ, μ) of partitions such that
(1) $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-b}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{n-b} \geq 0$,
(2) $\mu=\left(\mu_{1}, \ldots, \mu_{b}\right)$, with $\mu_{1}>\cdots>\mu_{b} \geq 0$,
(3) $\lambda_{1}+\cdots+\lambda_{n-b}+\mu_{1}+\cdots+\mu_{b}=a+1$,
(4) $\mu_{1}<\lambda_{1}-1$.

Equivalently, the multiplicity is

$$
\sum_{\rho \in P(a, n)}\binom{r_{\rho}}{b-1}+\sum_{\rho \in \tilde{P}(a, n)}\binom{r_{\rho}-1}{b-1}
$$

where $P(a, n)$ denotes the set of partitions of $a+n$ with n non-negative parts, $\tilde{P}(a, n)$ denotes the subset of $P(a, n)$ of partitions whose second-largest part is one less than the largest part, and for a partition $\rho \in P(a, n), r_{\rho}$ is the number of removable cells of ρ that are not in its first row.

References

[1] Sami Assaf and David Speyer. Specht modules decompose as alternating sums of restrictions of schur modules. Proc. Amer. Math. Soc., 2019.
[2] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations of symmetric groups. Duke Math. J., 164(9):1833-1910, 2015.
[3] A. M. Garsia and A. Goupil. Character polynomials, their q-analogs and the Kronecker product. Electron. J. Combin., 16(2, Special volume in honor of Anders Björner):Research Paper 19, 40, 2009.
[4] Alexander Heaton, Songpon Sriwongsa, and Jeb F. Willenbring. Branching from the General Linear Group to the Symmetric Group and the Principal Embedding. Algebraic Combinatorics, 4(2):189-200, 2021.
[5] D. E. Littlewood. Products and plethysms of characters with orthogonal, symplectic and symmetric groups. Canadian J. Math., 10:17-32, 1958.
[6] Sridhar P. Narayanan, Digjoy Paul, Amritanshu Prasad, and Shraddha Srivastava. Character polynomials and the restriction problem. Algebr. Comb., 4(4):703-722, 2021.
[7] Sridhar P. Narayanan, Digjoy Paul, Amritanshu Prasad, and Shraddha Srivastava. Polynomial induction and the restriction problem. Indian J. Pure Appl. Math., 52(3):643-651, 2021.
[8] Rosa Orellana, Franco Saliola, Anne Schilling, and Mike Zabrocki. Plethysm and the algebra of uniform block permutations, 2021.
[9] Rosa Orellana and Mike Zabrocki. Symmetric group characters as symmetric functions. Advances in Mathematics, 390:107943, 2021.

