
Sharp bounds on the least eigenvalue of a graph

determined from edge clique partitions

Domingos M. Cardoso1,2, Inês Serôdio Costa1,2 *, and Rui Duarte1,2
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Extended Abstract

1 Introduction
In this talk, motivated by edge clique partitions [4], sharp lower and upper
bounds on the least eigenvalue of a graph are presented as well as a necessary
and sufficient (just sufficient) condition for the lower (upper) bound be attained.
As an application, we consider the Queens’ graph Q(n), which is obtained from
the n× n chessboard where its squares are the vertices of the graph and two of
them are adjacent if and only if they are in the same row, column or diagonal
of the chessboard. We conclude that the least eigenvalue of Q(n) is equal to −4
for every n ≥ 4 and its multiplicity is (n − 3)2. Additionally, some results on
the edge clique partition graph parameters are presented.

2 Edge clique partitions
Edge clique partitions (ECP for short) were introduced in [4], where the content
of a graph G, denoted by C(G), was defined as the minimum number of edge
disjoint cliques whose union includes all the edges of G. Such minimum ECP
is called in [4] content decomposition of G. As proved in [4], in general, the
determination of C(G) is NP-Complete.

Definition 2.1. (Clique degree and maximum clique degree) Consider a graph
G and an ECP, P = {Ei | i ∈ I}. Then Vi = V (G[Ei]) is a clique of G for every
i ∈ I. For any v ∈ V (G), the clique degree of v relative to P , denoted mv(P ),
is the number of cliques Vi containing the vertex v, and the maximum clique
degree of G relative to P, denoted mG(P ), is the maximum of clique degrees of
the vertices of G relative to P .

Remark 2.2. It is clear that if P is an ECP of G, then mG(P ) is not greater
than |P |. In particular, if P is a content decomposition of G, then mG(P ) ≤
C(G).

The next theorem allows the construction of families of connected graphs
G(H) = {Gk | k ≥ mH(P )}, obtained from an arbitrary connected graph H
with an ECP, P , where each graph Gk ∈ G(H) has H as a subgraph and admits
an ECP, Pk, such that mGk

(Pk) = k.
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Theorem 2.3. Let H be a connected graph with an ECP, P . Then for every
k ≥ mH(P ) there exists a connected graph Gk which has H as a subgraph and
admits an ECP, Pk, such that mGk

(Pk) = k.

The above defined family of graphs

G(H) = {Gk | k ≥ mH(P )} (1)

depends from the initial graph GmH(P ) = H and from the permutations πk. If
the chosen graph H admits an ECP, P , which is a content decomposition, it is
immediate that for every k ≥ mH(P ), independently of the chosen permutations
πk, Pk is a content decomposition of Gk. So this property is invariant to the
permutations πk.

3 Main results
Using the above defined graph parameters, the next theorem states a lower
bound on the least eigenvalue of a graph and a necessary and sufficient condition
for to be attained in a particular ECP.

Theorem 3.1. Let P = {Ei | i ∈ I} be an ECP of a graph G, m = mG(P ) and
mv = mv(P ) for every v ∈ V (G). Then

1. If µ is an eigenvalue of G, then µ ≥ −m.

2. −m is an eigenvalue of G if and only if there exists a vector X 6= 0 such
that

(a)
∑

j∈V (G[Ei])

xj = 0, for every i ∈ I and

(b) ∀v ∈ V (G) xv = 0 whenever mv 6= m.

In the positive case, X is an eigenvector associated with −m.

The best lower bound (obtained from Theorem 3.1) for the least eigenvalue
of a graph G is the one associated to an ECP, P , such that mG(P ) ≤ mG(P ′)
for every ECP P ′ of G.

Corollary 3.2. Let µ be the least eigenvalue of a graph G. Then −µ ≤ C(G).

The following corollaries are also direct consequences of Theorem 3.1.

Corollary 3.3. Let G be a graph of order n. Then X ∈ Rn \ {0} is an eigen-
vector associated with the eigenvalue −m if and only if the conditions 2a and
2b of Theorem 3.1 hold.

Corollary 3.4. Let P be an ECP of a graph G. If −mG(P ) is an eigenvalue of
G, then it is the least eigenvalue of G and for every ECP of G, P ′, mG(P ′) ≥
mG(P ).

Now, as a corollary of Theorem 3.1, we state a sharp upper bound on the
least eigenvalue of a graph.

Corollary 3.5. Let G be a graph with least eigenvalue µ. Assume that H is an
induced subgraph of G for which there exists an ECP, P ′, fulfilling the conditions
2a and 2b of Theorem 3.1. Then
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1. µ ≤ −mH(P ′).

2. If G admits an ECP, P , such that mG(P ) = mH(P ′), then µ = −mH(P ′).

Remark 3.6. Item 2 of Corollary 3.5 states a sufficient condition for µ =
−mH(P ′) when µ is the least eigenvalue of a graph G, H is a subgraph of G
and P ′ is an ECP of H fulfilling the conditions 2a and 2b of Theorem 3.1.
However, this condition is not a necessary condition for µ = −mH(P ′).

We may conclude that the best upper bound (obtained from Corollary 3.5)
for the least eigenvalue of a graph G is the one associated to an induced subgraph
H having an ECP, P , fulfilling the conditions 2a and 2b of Theorem 3.1, such
that mH(P ) ≥ mH′(P ′) for every induced subgraph H ′ and every ECP P ′ of
H ′, fulfilling the same conditions.

4 The least eigenvalue of Q(n), for every n ≥ 4
As an application of the main results, we can determine the least eigenvalue of
the n-Queens’ graph, Q(n), which is a graph associated to the n×n chessboard
Tn, with n2 vertices, each one corresponding to a square of the chessboard. Two
vertices of Q(n) are adjacent if and only if the corresponding squares in Tn are
in the same row or in the same column or in the same diagonal.

The rows and columns of the chessboard are numbered from the top to the
bottom and from the left to the right, respectively. We use the (i, j) ∈ [n]2

coordinates as labels of the chessboard squares belonging to the ith row and jth

column as well as labels of the corresponding vertices in Q(n).

Theorem 4.1. Let n ∈ N such that n ≥ 4.

1. The least eigenvalue of Q(n) is −4.

2. X 6= 0 is a eigenvector associated to −4 if and only if

(a)
n∑

j=1

x(k,j) = 0 and
n∑

i=1

x(i,k) = 0, for every k ∈ [n],

(b)
∑

i+j=k+2

x(i,j) = 0, for every k ∈ [2n− 3],

(c)
∑

i−j=k+1−n
x(i,j) = 0, for every k ∈ [2n− 3],

(d) x(1,1) = x(1,n) = x(n,1) = x(n,n) = 0.

The proof of this theorem can be obtained as an application of Theorem 3.1
and Corollary 3.5. Indeed, the proof of the first item follows taking into ac-
count that an induced subgraph Q(4) of Q(n) admits an ECP, P ′, such that
mQ(4)(P

′) = 4 and a vector X with coordinates (i, j) ∈ [4]2 fulfilling the neces-
sary and sufficient conditions of Theorem 3.1 and thus −4 is the least eigenvalue
of Q(4). Since Q(n) admits an ECP, P , such that mQ(n)(P ) = mQ(4)(P

′), ap-
plying Corollary 3.5 the result follows. The proof of the second item follows
taking into account that the summations 2a–2c correspond to the summations
2a in Theorem 3.1. Here, the cliques obtained from the ECP, P , of Q(n) are
the cliques with vertices associated with each of the n columns, n rows, 2n− 3
left to right diagonals and 2n− 3 right to left diagonals.
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We may conclude that the multiplicity of −4 as an eigenvalue of Q(n) co-
incides with the corank of the coefficient matrix of the system of 6n − 2 linear
equations 2a–2d. Therefore, to say that the multiplicity of −4 is (n − 3)2 is
equivalent to say that the rank of the coefficient matrix of the system of 6n
linear equations 2a–2d is 6n− 9 (since n2 − 6n+ 9 = (n− 3)2).

For an easier representation of the vectors, they are displayed over the chess-
board. So the `th coordinate of a vector X is displayed at the entry of the chess-
board corresponding to the vertex `, i.e. at the entry (i, j) = (d `ne, `+n−nd

`
ne).

Then, the `th coordinate of X can be denoted by X` or X(i,j).

0 1 -1 0
-1 0 0 1
1 0 0 -1
0 -1 1 0

Table 1: X4.

Consider the family of vectors

Fn = {X(a,b)
n ∈ Rn2

| (a, b) ∈ [n− 3]2}

where X
(a,b)
n is the vector defined by

[
X(a,b)

n

]
(i,j)

=

{[
X4

]
(i−a+1,j−b+1)

, if (i, j) ∈ A×B;

0, otherwise,

with A = {a, a+ 1, a+ 2, a+ 3}, B = {b, b+ 1, b+ 2, b+ 3} and X4 is the vector
presented in Table 1.

Theorem 4.2. −4 is an eigenvalue of Q(n) with multiplicity (n− 3)2 and Fn

is a basis for EQ(n)(−4).
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