Partition identities for k-regular partitions with distinct parts

01.01 George Andrews

(Penn State University, University Park)
Time: Monday 04.07., 09:00 - 09:50

Abstract

We start with a little-known Euler type theorem (due to Alladi) which is the following: The number of partitions of n into distinct parts not divisible by k (i.e. k-regular partitions with distinct parts) equals the number of partitions of n into odd parts none repeated more than $k-1$ times. $k=1$ and 2 are tautologies. $k=3$ plays a prominent role in Schur's 1926 partition theorem. Both Alladi and Schur have further partition identities related to $k=2$ which we will discuss. Obviously, $k=\infty$ is Euler's theorem. We then proceed to $k=4$ where an empirical investigation leads to a result for overpartitions. We conclude with a proof of the $k=4$ case and look at results and possibilities for $k>4$.

