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Preamble

In lecture 3 we take a different approach to compuing our
equations of the form

a1(z)p1(z) + · · ·+ am(z)pm(z) = O(zσ)

In this case we separate satisfying the order condition with also
trying the satisfy the degree bounds. We also show how these
same methods can be used to solve the case where the ai(z)
are vectors of power series. We then present the sigma-basis
algorithm, a contructive procedure for determining an order
basis (also sometimes a sigma basis or a minimal approximant
basis). We give both a simple algorithm quadratic in the order
and a recursive algorithm which computes with quasi-linear
complexity.
This work was done jointly with Bernhard Beckermann.
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Recall from last day

Extended Euclidean Algorithm vs Padé Approximation

Implies superfast algorithm for Padé

Implies fraction-free algorithm for Padé

Implies superfast Hankel inversion

Padé problem ≡ solving structured linear system

e.g. describes recursive computation

Still not so precise for Hermite-Padé, matrix problems, etc
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Goal of Today’s Lecture

Describe all well-known approx problems uniformly.

- Include both scalar and matrix versions

Describe all solutions to such problems.

Provide algorithm to efficiently compute such solutions .

- Uniformize to model Hermite-Padé approximants

- Model algorithm on Hermite-Padé computation
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Problem and Techniques
Recall our problem:

Given G(z) ∈ Ks×m[[z]], some degree constraints and order σ find
solutions to G(z) · P(z) = O(zσ) satisfying degree constraints.

We make use of two insights

Insight I:

Treat order part and degree parts separately.

Insight II:

Make things look like Hermite-Padé problem

Solve Hermite-Padé problem.

Show similar techniques work in more general case.
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Power Hermite-Padé
Approximants
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Vector Hermite Padé Approximants

Deal with vector problem by converting to scalar problem.

G(z) · P(z) = z~vR(z)

converted to scalar problem via

A(z) = [1, z, . . . , zs−1]G(zs)

Order problem now given by

A(z) · P(zs) = zσS(z).
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Example

Consider 2× 2 model : G(z) =
[

f0(z) g0(z)
f1(z) g1(z)

]

Form A(z) = [f0(z2) + zf1(z2), g0(z2) + zg1(z2)]

Then A(z)P(z2) = zσS(z) with P = [p1, p2]
T gives:

A(z)P(z2) = f0(z2)p1(z2) + zf1(z2)p1(z2) + g0(z2)p2(z2) + zg1(z2)p2(z2)

= zσS(z)

Same as

f0(z)p1(z) + g0(z)p2(z) = zτr0(z)

f1(z)p1(z) + g1(z)p2(z) = zτr1(z)

Thus A(z)P(z2) = zσS(z) same as G(z)P(z) = zτR(z)
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Another Example

G(z) =

 f0(z) g0(z) h0(z)
f1(z) g1(z) h1(z)
f2(z) g2(z) h2(z)


G(z)P(z) = zτR(z) gives

A(z) = [f0(z3) + zf1(z3) + z2f2(z3),

g0(z3) + zg1(z3) + z2g2(z3),

h0(z3) + zh1(z3) + z2h2(z3)]

A(z)P(z3) = zσS(z) with P = [p1, p2, p3]
T then gives

f0(z)p1(z) + g0(z)p2(z) + h0(z)p3(z) = zτr0(z)

f1(z)p1(z) + g1(z)p2(z) + h1(z)p3(z) = zτr1(z)

f2(z)p1(z) + g2(z)p2(z) + h2(z)p3(z) = zτr2(z)
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Power Hermite-Padé

Let σ ≥ 0, s > 0, n1, . . . , nm be integers, nl ≥ −1

Definition (Power Hermite Padé approximant)
P = (p1, . . . , pm) of PHPA of type (n, σ, s) consists of scalar
polynomials pl having degrees bounded by the nl with

A(z) · P(zs) = a1(z)p1(zs) + . . .+ am(z)pm(zs) = cσzσ + · · ·

Generalizes

Hermite-Padé, Simultaneous-Padé, etc

vector and matrix versions of the above
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Order and Defect
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Order and Defect

Given : A = (a1, . . . , am) ∈ Km[[z]] with am(0) 6= 0.

Definition (Order)
The order of a P = (P1, . . . ,Pm) ∈ Km[z]

ord P := sup{σ ∈ N0 : A(z) · P(zs) = zσ · R(z) with R ∈ K[[z]]}.

Definition (Defect)
The defect of P = (P1, . . . ,Pm) ∈ Km[z] (w.r.t. n = (n1, . . . , nm)):

dct P := min
l
{nl + 1 − deg Pl}

defect is a measure of closeness to set of degree bounds
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Defect, Order (cont.)

dct P > 0 same as deg P` ≤ n` for all `.

Hermite-Padé problem is same as : find P in

Lσ = {P ∈ Km[z] : dct P > 0,ord P ≥ σ}

where σ = n1 + · · ·+ nm + m − 1.

In general look at

Lσ = {P ∈ Km[z] : dct P > 0,ord P ≥ σ}

for arbitary σ.
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Sigma Basis Algorithm
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Recall : Order Bases

Let σ ∈ N0.

Definition (Order Bases)
The system P1, . . . ,Pm ∈ Km[z] is called an order-basis if:

(a) ord P` ≥ σ for all `,

(b) For each F ∈ Lσ there exists one and only one tuple of
polynomials (α1, . . . , αm), deg αl < dct Pl such that

F = α1 · P1 + . . .+ αm · Pm.

Also called Sigma Bases or Minimal Approximant Bases
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Sigma Bases (cont.)

An order basis P1, . . . ,Pm is linearly independent with respect to
polynomial coefficients - i.e. a basis of the order module.

Moreover, in terms of vector spaces, we have

Lσ = span{zj · Pl : 1 ≤ l ≤ m, 0 ≤ j < dct Pl}

dimLσ = max{dct P1, 0}+ . . .+ max{dct Pm, 0}.
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The Sigma Basis Algorithm

Constructive process:

Start with σ = 0. P = Im. AP = zσR.

At each step do:

If each R`(0) = 0 then increment σ

If there R`(0) 6= 0 then find pivot and eliminate rest of initial
values

Pivot should be first column having maximal defect.

Multiply pivot column by z.

AEC Summer School : Lecture 3 18/23



The Algorithm

INPUT: m ≥ 2, s ∈ N, A = (a1, . . . am)
T , multi-index n = (n1, . . . , nm)

INITIALIZATION: Let σ = 0, dl,0 = nl, Pl,0 = (0, .., 0, 1, 0, .., 0)

RECURSIVE STEP: For σ = 0, 1, 2, . . .:
Let l = 1, . . . ,m: cl,σ = z−σ · Pl,σ(zs) · A(z) |z=0 and Λσ = {l : cl,σ 6= 0}

CASE Λσ = {}, then for l = 1, . . . ,m: Pl,σ+1 = Pl,σ , dl,σ+1 = dl,σ

CASE Λσ 6= {}, then let π = πσ ∈ Λσ be defined by
dπ,σ = max{dl,σ : l ∈ Λσ}
and compute for l = 1, . . . ,m:
l ∈ Λσ, l 6= π: Pl,σ+1 = Pl,σ − cl,σ

cπ,σ
· Pπ,σ , dl,σ+1 = dl,σ

l 6∈ Λσ: Pl,σ+1 = Pl,σ , dl,σ+1 = dl,σ

l = π: Pπ,σ+1 = z · Pπ,σ , dπ,σ+1 = dπ,σ − 1

OUTPUT: σ-bases P1,σ, . . . ,Pm,σ with dct Pl,σ = dl,σ + 1, 1 ≤ l ≤ m.
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Complexity
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Complexity of Sigma Bases Algorithm

(Complexity : I) For computing vector HPA’s of order
σ = 0, 1, . . . , ‖n‖ :

4(m − s) · ‖n‖2 +O(m2 · ‖n‖)

roughly half additions and half multiplications plus O(m · ‖n‖)
divisions.

(Complexity : II) For the case n = (n, . . . , n), we obtain the
sharper bound

(1 −
s
m
) · (2m − card L) · ‖n‖2 +O(m2 · ‖n‖)

where L = {l : al(z) = zj with a j ∈ N0}.
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Faster Sigma Bases Algorithm

Recursive Computation : Suppose 0 ≤ ρ ≤ σ and

(P(1),d(1))←− FPHPS(A, ρ,n)

Let A(1)(z) := z−ρ · P(1)(zs) · A(z). Compute

(P(2),d(2))←− FPHPS(A(1), σ− ρ,d(1)).

Then (P(3),d(3))←− FPHPS(A, σ,n) where

P(3) = P(2) · P(1) and d(3) = d(2).
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Complexity of Superfast Method

(Complexity) The superfast algorithm for computing vector
HPA’s of order σ has a complexity of at most

3
2
· (m + s) · m · σ · log2 σ+O(σ · logσ)

roughly half multipications as additions.
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