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Continued fractions and Hankel-total positivity
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SOME EXERCISES ON CONTINUED FRACTIONS

Problem 1. Recall that the Stieltjes—Rogers polynomial S,(cyq,. .., ) is the gen-
erating polynomial for Dyck paths of length 2n in which each rise gets weight 1 and
each fall from height i gets weight «;.

(a) Compute, by hand, the Stieltjes-Rogers polynomials S, (a) for 0 < n < 4.
To be sure that you haven’t forgotten any paths, check that S, (a) specialized to
a = 1 is the Catalan number C),.

(b) Define the nxn Hankel matrix H,,(S) = (Si+;(ax))o<i j<n—1 and its determinant
A, (S) =det H,(S). Compute A, (S) for 0 <n < 3. Do you see a pattern? Can you
conjecture the general formula?

Later we will give two proofs of this general formula: a combinatorial proof based
on the Lindstrom—Gessel-Viennot lemma, and an algebraic proof (due to Stieltjes [8])
based on the LDLT factorization of the Hankel matrix.

Problem 2. Recall the Euler-Gauss method for proving continued fractions: Let
(gx(t))k>—1 be a sequence of formal power series (with coefficients in some commuta-
tive ring R) with constant term 1, and suppose that this sequence satisfies a linear
three-term recurrence of the form

gk(t) = gr—1(t) = apitgr(t)  fork >0 (1)

for some coefficients o = (;);>1 in R. If we define fi(t) = gr(t)/gr-1(t) for k > 0,
then (1) can be rewritten as
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and hence in particular
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(a) Let us use this method, following Euler [4, section 21]!, to prove the continued

fraction
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with coefficients agp_1 = a9 = k for £ > 1. You will need to guess all the series
gr(t) and then verify the recurrence (1). [Hint: You will take g_; = 1 and hence

go(t) = > .2 n!t"; and you will need slightly different formulae for go;_1(¢) and
g2;(t).] I can see two ways of guessing the gx(t):

e Produce numerically the first few terms of the first few series gx(t) and then try
to guess the general pattern. I have attached the relevant pages of Euler’s paper
(translated from Latin into English!), so that you can try to reverse-engineer it
and guess the series gy(t).

e An even better method (when it works): Use the recurrence (1) to successively
compute ¢;(t), g2(t), ... explicitly to all orders, extracting at each stage the
factor ay.y1t that makes gy1(t) have constant term 1. After a few steps of this
computation, you may be able to guess the general formulae for oy and g (t).

Once you have the formulae for g(t), it is straightforward to verify the recurrence
(1). At the end of this problem sheet (so as not to spoil the fun) I have given the
needed formulae for gi(t).

(b) In section 26 of the same paper [4], Euler says that the same method can be

!The paper [4], which is E247 in Enestrom’s [3] catalogue, was probably written circa 1746; it was
presented to the St. Petersburg Academy in 1753, and published in 1760.



applied to prove the more general continued fraction
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which reduces to (5) when a = 1; but he does not provide the details, and he instead
proves (6) by an alternative method. Three decades later, however, Euler [5] returned
to his original method and presented the details of the derivation of (6).? Now

()62]',1:(1/4-.]'—1, OéQj I] (7)

Can you guess how your formulae for g;_1(t) and go;(t) should be generalized? (You
will continue to take g_; = 1.) Do this, and verify the recurrence (1). The answer is
again at the end.

(c¢) We can, in fact, carry this process one step farther, by introducing an additional
parameter b. Let
agj_1:a+j—1, agj:b+j—1. (8)

Can you guess how your formulae for go;_1(¢) and g,;(¢) should be further generalized?
Now you will no longer have g 1 = 1 (unless b = 1), but no matter; we can still
conclude that go(t)/g_1(t) is given by the continued fraction with coefficients (8).
What you will prove in this way is the continued fraction for ratios of contiguous
hypergeometric series ,Fj:
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where as usual
a,b ~a"bn
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2The paper [5], which is E616 in Enestrom’s [3] catalogue, was apparently presented to the
St. Petersburg Academy in 1776, and published posthumously in 1788.



and I have used the Knuth notation 2" = z(x +1)--- (z +n —1). The recurrence (1)
is simply the contiguous relation

a,b a,b—1 a+1,b
A1) () ()

applied with interchanges a <> b at alternate levels. It seems to me, in fact, that the
reasoning is somewhat more transparent in this greater generality!

Remarks. 1. If we expand the ratio (9) as a power series,
a,b
ofo| |t
a,b—1
0

it follows easily from the continued fraction that P,(a,b) is a polynomial of total
degree n in a and b, with nonnegative integer coefficients. It is therefore natural to
ask: What do these nonnegative integers count?

Euler’s continued fraction (5) tells us that P,(1,1) = n!; and there are n! permuta-
tions of an n-element set. It is therefore reasonable to guess that P, (a,b) enumerates
permutations of an n-element set according to some natural bivariate statistic. This
is indeed the case; and Dumont and Kreweras [2] have identified the statistic. Given
a permutation o of {1,2,...,n}, let us say that an index i € {1,2,...,n} is a

- f:Pn(a, bt (12)

e record (or left-to-right mazimum) if o(j) < o(i) for all j < i [note in particular
that the index 1 is always a record];

e antirecord (or right-to-left minimum) if o(j) > o(i) for all j > i [note in partic-
ular that the index n is always an antirecord];

e cxclusive record if it is a record and not also an antirecord;
e cxclusive antirecord if it is an antirecord and not also a record.

Dumont and Kreweras [2] then showed that

Pn(a, b) = Z areC(U)bearec(U) (13)
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where rec(o) [resp. earec(o)] is the number of records (resp. exclusive antirecords)
ino.

2. By an argument similar to the one we have used for ,Fj,, Gauss [6] found in
1812 a continued fraction for the ratio of two contiguous hypergeometric functions
oF. Moreover, the formula for ,F, as well as analogous formulae for ratios of 1F},
1Fo or oFy, can be deduced from Gauss’ formula by specialization or taking limits.



See [10, Chapter XVIII] for details. In fact, one of the special cases of the ¢ F; formula
is Lambert’s [7] continued fraction for the tangent function
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which he used to prove the irrationality of 7.

Problem 3. The goal of this exercise is to prove the very important contraction
formulae that allow an S-fraction to be rewritten as a J-fraction (and sometimes but
not always conversely). These formulae are classical [10, p. 21], but it was only in the
1980s that Viennot [9, section V.5] gave them a beautiful combinatorial interpretation,
based on grouping pairs of steps in a Dyck path. I will therefore ask you to find two
proofs of each identity: one algebraic and one combinatorial.

(a) The formula for even contraction states that, as an identity in Z[ea|[[t]],
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Prove this:
e Algebraically by using repeatedly the identity
a ab
= — . 16
P gy (16)
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e Combinatorially by grouping steps (in a Dyck path of length 2n) in pairs, and
then suitably mapping these pairs onto steps of a Motzkin path of length n.

(b) The formula for odd contraction states that, as an identity in Z[ca|[[t]],
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Once again prove this both algebraically and combinatorially. [Hint: This time your
Motzkin path should have length n — 1.]

(c) For use in the next problem, let us prove a slight generalization of these two
contraction formulae. Consider the generic S-fraction
1
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and let w be an additional indeterminate. Then, as identities in Z[a, w][[t]], we have
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Problem 4. The Bell number B, is, by definition, the number of partitions of an n-
element set into nonempty blocks; by convention we set By = 1. The Stirling subset
number (also called Stirling number of the second kind) {Z} is, by definition, the
number of partitions of an n-element set into k£ nonempty blocks; for n = 0 we make
the convention {2} = 0po. Now define the Bell polynomials

B,(z) = i{:} o (21)

and their homogenized version
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so that B, = B, (1) = B,(1,1). Then define the ordinary generating functions
B(t) = ) But" (23a)
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(a) Prove, by a combinatorial argument, that the Stirling subset numbers satisfy

the recurrence . .
n n— n —
= >
{k:} k{ I }+{k—1} forn>1 (24)

with initial conditions {2} = 010 and {fl} =0.

(b) Prove the “vertical” generating function for the Stirling subset numbers:

- n n tk
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[Hint: Use the recurrence (24) and induction on k.] Deduce from this the factorial
series
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(c) Prove the functional equation
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(d) Prove the continued fraction
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with coefficients ao,_1 = x and ag, = ky.

[Hint: Consider a generic S-fraction (18). Rewrite f(¢) using odd contraction

t t
(17), and rewrite 1 + ; ° ; f ( 1 t) using the transformed even contraction (19).
-y -y

Compare the two formulae to show that the S-fraction (18) satisfies the functional
equation (27) if and only if agr_1 = = and agy, = ky.]

This elegant method of proving the continued fraction for the Bell polynomials
is due to the late Dominique Dumont [1]. Also, Zeng [11, Lemma 3] has given two
different g-generalizations of all four parts of this exercise.

(e) You can also prove the continued fraction (28) by the Euler-Gauss recurrence
method. Once again you can take g_; = 1; then use the recurrence (1) to successively
compute g1(t), g2(t), ... to all orders, extracting at each stage the factor oyt that
makes gi11(t) have constant term 1. After a few steps of this computation, you may
be able to guess the general formulae for go;_1(¢) and go;(t). (The answer is again at
the end.) Once you have done this, it is easy to verify the recurrence (1) by using the
recurrence (24) for the Stirling subset numbers.
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ANSWERS TO SELECTED PROBLEMS

Problem 1(a):

= /n+j n+q—1 n
iy = ST
n=0

o] n+] 2
goi(t) = ZO ( . ) n! "
for j > 0 (as Euler himself may well have known).

Problem 1(b):

goj—1(t) = i(aJrj)ﬁ <n+j - 1) t

glt) = i(amﬁ (")

where I have used the Knuth notation 2™ = z(z + 1) -+ (z +n — 1).

Problem 4(e):
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the abscissa v = 1 up into ten parts again, and the ordinates in the single

points of the division will behave in this way:
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y will be

1
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And therefore by approximation of the area one will again obtain the value of

the letter A to a high enough degree of accuracy.

§21 But there is another method, derived from the nature of continued
fractions, to inquire into the sum of this series, which completes the task a lot
easier and faster; hence let, by the expressing the formula more generally, be

A =1—1x +2x? — 6x° + 24x* — 120x° + 720x°® — 5040x” + etc. = 1J1FB ;
it will be

B 1x — 2x% + 6x3 — 24x* 4+ 120x° — 720x° + 5040x” — etc. _x

1 —1x +2x2 — 6x3 + 24x* — 120x5 + 720x6 — 5040x7 +-etc. 1+C
and
14C— 1 — 1x +2x2 — 6x3 4 24x* — 120x° + 720x® — 5040x” + etc.
1 —2x + 6x2 — 24x3 4 120x4 — 720x5 + 5040x6 — etc.
Therefore
c_ X~ 4x? +18x% — 96x* 4 600x° — 4320x° 4 etc.
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1 —2x + 6x2 — 24x3 + 120x* — 720x5 + etc.

~1+D



hence
20 —12x2 4 72x° — 480x* +3600x° —etc.  2x

D= —
1 —4x + 18x2 — 96x3 4+ 600x* — etc. 1+E
Further
p o 2x—18x% 4 144x° —1200x* +ete. _ 2x
1 —6x+36x2—240x34+etc. @ 1-—F
and
Fe 3x —36x> +360x> —etc.  3x
1 —9x+72x2 —600x3 +etc. 1+G’
It will be
_ 3x—48x?+etc.  3x
1 —12x+120x2 —etc. 1+ H'
So

4x —etc  4x
1—16x+etc 1+
And therefore it will become clear, that it will analogously be

H =

4x 5x

5x
I_1+K’ 14 L L_1+M

etc. to infinity,

so that the structure of these formulas is easily perceived. Having substituted
these values one after another it will be

1 —1x +2x2 — 6x3 + 24x* — 120x° + 720x° — 5040x7 + etc.
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§22 But how the value of continued fractions of this kind are to be investiga-
ted, I showed elsewhere. Because the integer parts of the single denominators
are unities of course, only the numerators are important for the calculation;
hence let x = 1 and the investigation of the sum A will be performed as

follows:
O 1 1 2 4 8 20 44 124 300
A - T g7 ~N’ ~7 -7 Py ~Aa’ —r 7 Ann N1 etC'
1 1 20 3 7 13" 34" 73" 209 501
Numerators: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 etc.

The fractions, exhibited here, get continuously closer to the true value of A of
course and they are alternately too great and too small, so that it is

0 1 4 20 124

A>I, A>§, A>§, A>374, A>@ etc.
1 2 8 44 300
A<T, A<§, A<E, A<73, A<ﬁ etc.
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