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SOME EXERCISES ON CONTINUED FRACTIONS

Problem 1. Recall that the Stieltjes–Rogers polynomial Sn(α1, . . . , αn) is the gen-
erating polynomial for Dyck paths of length 2n in which each rise gets weight 1 and
each fall from height i gets weight αi.

(a) Compute, by hand, the Stieltjes–Rogers polynomials Sn(α) for 0 ≤ n ≤ 4.
To be sure that you haven’t forgotten any paths, check that Sn(α) specialized to
α = 1 is the Catalan number Cn.

(b) Define the n×n Hankel matrixHn(S) = (Si+j(α))0≤i,j≤n−1 and its determinant
∆n(S) = detHn(S). Compute ∆n(S) for 0 ≤ n ≤ 3. Do you see a pattern? Can you
conjecture the general formula?

Later we will give two proofs of this general formula: a combinatorial proof based
on the Lindström–Gessel–Viennot lemma, and an algebraic proof (due to Stieltjes [8])
based on the LDLT factorization of the Hankel matrix.

Problem 2. Recall the Euler–Gauss method for proving continued fractions: Let
(gk(t))k≥−1 be a sequence of formal power series (with coefficients in some commuta-
tive ring R) with constant term 1, and suppose that this sequence satisfies a linear
three-term recurrence of the form

gk(t)− gk−1(t) = αk+1t gk+1(t) for k ≥ 0 (1)

for some coefficients α = (αi)i≥1 in R. If we define fk(t) = gk(t)/gk−1(t) for k ≥ 0,
then (1) can be rewritten as

fk(t) =
1

1 − αk+1t fk+1(t)
, (2)

which implies by iteration the continued fraction

fk(t) =
1

1−
αk+1t

1−
αk+2t

1−
αk+3t

1− · · ·

(3)
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and hence in particular

f0(t) =
1

1−
α1t

1−
α2t

1−
α3t

1− · · ·

. (4)

(a) Let us use this method, following Euler [4, section 21]1, to prove the continued
fraction

∞
∑

n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1− · · ·

(5)

with coefficients α2k−1 = α2k = k for k ≥ 1. You will need to guess all the series
gk(t) and then verify the recurrence (1). [Hint: You will take g−1 = 1 and hence
g0(t) =

∑∞

n=0 n! t
n; and you will need slightly different formulae for g2j−1(t) and

g2j(t).] I can see two ways of guessing the gk(t):

• Produce numerically the first few terms of the first few series gk(t) and then try
to guess the general pattern. I have attached the relevant pages of Euler’s paper
(translated from Latin into English!), so that you can try to reverse-engineer it
and guess the series gk(t).

• An even better method (when it works): Use the recurrence (1) to successively
compute g1(t), g2(t), . . . explicitly to all orders , extracting at each stage the
factor αk+1t that makes gk+1(t) have constant term 1. After a few steps of this
computation, you may be able to guess the general formulae for αk and gk(t).

Once you have the formulae for gk(t), it is straightforward to verify the recurrence
(1). At the end of this problem sheet (so as not to spoil the fun) I have given the
needed formulae for gk(t).

(b) In section 26 of the same paper [4], Euler says that the same method can be

1The paper [4], which is E247 in Eneström’s [3] catalogue, was probably written circa 1746; it was
presented to the St. Petersburg Academy in 1753, and published in 1760.
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applied to prove the more general continued fraction

∞
∑

n=0

a(a+ 1) · · · (a+ n− 1) tn =
1

1−
at

1−
1t

1−
(a + 1)t

1−
2t

1−
(a+ 2)t

1−
3t

1− · · ·

, (6)

which reduces to (5) when a = 1; but he does not provide the details, and he instead
proves (6) by an alternative method. Three decades later, however, Euler [5] returned
to his original method and presented the details of the derivation of (6).2 Now

α2j−1 = a + j − 1, α2j = j . (7)

Can you guess how your formulae for g2j−1(t) and g2j(t) should be generalized? (You
will continue to take g−1 = 1.) Do this, and verify the recurrence (1). The answer is
again at the end.

(c) We can, in fact, carry this process one step farther, by introducing an additional
parameter b. Let

α2j−1 = a+ j − 1, α2j = b+ j − 1 . (8)

Can you guess how your formulae for g2j−1(t) and g2j(t) should be further generalized?
Now you will no longer have g−1 = 1 (unless b = 1), but no matter; we can still
conclude that g0(t)/g−1(t) is given by the continued fraction with coefficients (8).
What you will prove in this way is the continued fraction for ratios of contiguous
hypergeometric series F2 0:

F2 0

(

a, b

—

∣

∣

∣

∣

t

)

F2 0

(

a, b− 1

—

∣

∣

∣

∣

t

)
=

1

1−
at

1−
bt

1−
(a+ 1)t

1−
(b+ 1)t

1−
(a + 2)t

1−
(b+ 2)t

1− · · ·

, (9)

where as usual

F2 0

(

a, b

—

∣

∣

∣

∣

t

)

=

∞
∑

n=0

an bn

n!
tn (10)

2The paper [5], which is E616 in Eneström’s [3] catalogue, was apparently presented to the
St. Petersburg Academy in 1776, and published posthumously in 1788.
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and I have used the Knuth notation xn = x(x+1) · · · (x+n− 1). The recurrence (1)
is simply the contiguous relation

F2 0

(

a, b

—

∣

∣

∣

∣

t

)

− F2 0

(

a, b− 1

—

∣

∣

∣

∣

t

)

= at F2 0

(

a+ 1, b

—

∣

∣

∣

∣

t

)

, (11)

applied with interchanges a ↔ b at alternate levels. It seems to me, in fact, that the
reasoning is somewhat more transparent in this greater generality!

Remarks. 1. If we expand the ratio (9) as a power series,

F2 0

(

a, b

—

∣

∣

∣

∣

t

)

F2 0

(

a, b− 1

—

∣

∣

∣

∣

t

)
=

∞
∑

n=0

Pn(a, b) t
n , (12)

it follows easily from the continued fraction that Pn(a, b) is a polynomial of total
degree n in a and b, with nonnegative integer coefficients. It is therefore natural to
ask: What do these nonnegative integers count?

Euler’s continued fraction (5) tells us that Pn(1, 1) = n!; and there are n! permuta-
tions of an n-element set. It is therefore reasonable to guess that Pn(a, b) enumerates
permutations of an n-element set according to some natural bivariate statistic. This
is indeed the case; and Dumont and Kreweras [2] have identified the statistic. Given
a permutation σ of {1, 2, . . . , n}, let us say that an index i ∈ {1, 2, . . . , n} is a

• record (or left-to-right maximum) if σ(j) < σ(i) for all j < i [note in particular
that the index 1 is always a record];

• antirecord (or right-to-left minimum) if σ(j) > σ(i) for all j > i [note in partic-
ular that the index n is always an antirecord];

• exclusive record if it is a record and not also an antirecord;

• exclusive antirecord if it is an antirecord and not also a record.

Dumont and Kreweras [2] then showed that

Pn(a, b) =
∑

σ∈Sn

arec(σ)bearec(σ) (13)

where rec(σ) [resp. earec(σ)] is the number of records (resp. exclusive antirecords)
in σ.

2. By an argument similar to the one we have used for F2 0, Gauss [6] found in
1812 a continued fraction for the ratio of two contiguous hypergeometric functions
F2 1. Moreover, the formula for F2 0, as well as analogous formulae for ratios of 1F1,

1F0 or 0F1, can be deduced from Gauss’ formula by specialization or taking limits.
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See [10, Chapter XVIII] for details. In fact, one of the special cases of the 0F1 formula
is Lambert’s [7] continued fraction for the tangent function

tan t

t
=

1

1−
1
1·3

t2

1−
1
3·5

t2

1−
1
5·7

t2

1−
1
7·9

t2

1− · · ·

, (14)

which he used to prove the irrationality of π.

Problem 3. The goal of this exercise is to prove the very important contraction

formulae that allow an S-fraction to be rewritten as a J-fraction (and sometimes but
not always conversely). These formulae are classical [10, p. 21], but it was only in the
1980s that Viennot [9, section V.5] gave them a beautiful combinatorial interpretation,
based on grouping pairs of steps in a Dyck path. I will therefore ask you to find two
proofs of each identity: one algebraic and one combinatorial.

(a) The formula for even contraction states that, as an identity in Z[α][[t]],

1

1−
α1t

1−
α2t

1−
α3t

1− · · ·

=
1

1− α1t−
α1α2t

2

1− (α2 + α3)t−
α3α4t

2

1− (α4 + α5)t−
α5α6t

2

1− · · ·

.

(15)
Prove this:

• Algebraically by using repeatedly the identity

a

1−
b

1− c

= a +
ab

1− b− c
. (16)

• Combinatorially by grouping steps (in a Dyck path of length 2n) in pairs, and
then suitably mapping these pairs onto steps of a Motzkin path of length n.

(b) The formula for odd contraction states that, as an identity in Z[α][[t]],

1

1−
α1t

1−
α2t

1−
α3t

1− · · ·

= 1 +
α1t

1− (α1 + α2)t−
α2α3t

2

1− (α3 + α4)t−
α4α5t

2

1− · · ·

. (17)
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Once again prove this both algebraically and combinatorially. [Hint: This time your
Motzkin path should have length n− 1.]

(c) For use in the next problem, let us prove a slight generalization of these two
contraction formulae. Consider the generic S-fraction

f(t) =
1

1−
α1t

1−
α2t

1− · · ·

, (18)

and let w be an additional indeterminate. Then, as identities in Z[α, w][[t]], we have

1

1− wt
f
( t

1− wt

)

=
1

1− (α1 + w)t−
α1α2t

2

1− (α2 + α3 + w)t−
α3α4t

2

1− · · ·

(19)

and

f
( t

1− wt

)

= 1 +
α1t

1− (α1 + α2 + w)t−
α2α3t

2

1− (α3 + α4 + w)t−
α4α5t

2

1− · · ·

. (20)

Problem 4. The Bell number Bn is, by definition, the number of partitions of an n-
element set into nonempty blocks; by convention we set B0 = 1. The Stirling subset
number (also called Stirling number of the second kind)

{

n

k

}

is, by definition, the
number of partitions of an n-element set into k nonempty blocks; for n = 0 we make
the convention

{

0
k

}

= δk0. Now define the Bell polynomials

Bn(x) =
n

∑

k=0

{

n

k

}

xk (21)

and their homogenized version

Bn(x, y) = ynBn(x/y) =
n

∑

k=0

{

n

k

}

xkyn−k , (22)

so that Bn = Bn(1) = Bn(1, 1). Then define the ordinary generating functions

B(t) =

∞
∑

n=0

Bnt
n (23a)

Bx(t) =

∞
∑

n=0

Bn(x) t
n (23b)

Bx,y(t) =

∞
∑

n=0

Bn(x, y) t
n (23c)
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(a) Prove, by a combinatorial argument, that the Stirling subset numbers satisfy
the recurrence

{

n

k

}

= k

{

n− 1

k

}

+

{

n− 1

k − 1

}

for n ≥ 1 (24)

with initial conditions
{

0
k

}

= δk0 and
{

n

−1

}

= 0.

(b) Prove the “vertical” generating function for the Stirling subset numbers:
∞
∑

n=k

{

n

k

}

tn =
tk

(1− t)(1− 2t) · · · (1− kt)
. (25)

[Hint: Use the recurrence (24) and induction on k.] Deduce from this the factorial
series

Bx,y(t) =
∞
∑

k=0

xktk

(1− yt)(1− 2yt) · · · (1− kyt)
. (26)

(c) Prove the functional equation

Bx,y(t) = 1 +
xt

1− yt
Bx,y

( t

1− yt

)

. (27)

(d) Prove the continued fraction

Bx,y(t) =
1

1−
xt

1−
yt

1−
xt

1−
2yt

1−
xt

1−
3yt

1− · · ·

(28)

with coefficients α2k−1 = x and α2k = ky.
[Hint: Consider a generic S-fraction (18). Rewrite f(t) using odd contraction

(17), and rewrite 1 +
xt

1− yt
f
( t

1− yt

)

using the transformed even contraction (19).

Compare the two formulae to show that the S-fraction (18) satisfies the functional
equation (27) if and only if α2k−1 = x and α2k = ky.]

This elegant method of proving the continued fraction for the Bell polynomials
is due to the late Dominique Dumont [1]. Also, Zeng [11, Lemma 3] has given two
different q-generalizations of all four parts of this exercise.

(e) You can also prove the continued fraction (28) by the Euler–Gauss recurrence
method. Once again you can take g−1 = 1; then use the recurrence (1) to successively
compute g1(t), g2(t), . . . to all orders , extracting at each stage the factor αk+1t that
makes gk+1(t) have constant term 1. After a few steps of this computation, you may
be able to guess the general formulae for g2j−1(t) and g2j(t). (The answer is again at
the end.) Once you have done this, it is easy to verify the recurrence (1) by using the
recurrence (24) for the Stirling subset numbers.
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[7] J.H. Lambert, Mémoire sur quelques propriétés remarquables des quantités
transcendentes circulaires et logarithmiques, Mémoires de l’Académie Royale
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ANSWERS TO SELECTED PROBLEMS

Problem 1(a):

g2j−1(t) =
∞
∑

n=0

(

n+ j

n

)(

n+ j − 1

n

)

n! tn (29a)

g2j(t) =

∞
∑

n=0

(

n+ j

n

)2

n! tn (29b)

for j ≥ 0 (as Euler himself may well have known).

Problem 1(b):

g2j−1(t) =

∞
∑

n=0

(a+ j)n
(

n + j − 1

n

)

tn (30a)

g2j(t) =

∞
∑

n=0

(a+ j)n
(

n + j

n

)

tn (30b)

where I have used the Knuth notation xn = x(x+ 1) · · · (x+ n− 1).

Problem 4(e):

g2j−1(t) =

∞
∑

n=0

n
∑

k=0

(

k + j − 1

k

){

n+ j

k + j

}

xkyn−k tn (31a)

g2j(t) =
∞
∑

n=0

n
∑

k=0

(

k + j

k

){

n + j

k + j

}

xkyn−k tn (31b)
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the abscissa v = 1 up into ten parts again, and the ordinates in the single

points of the division will behave in this way:

if v is y will be if v is y will be

v =
0

10
, y = 0; v =

5

10
, y =

1

(1 + log 10 − log 5)
;

v =
1

10
, y =

1

(1 + log 10 − log 1)
; v =

6

10
, y =

1

(1 + log 10 − log 6)
;

v =
2

10
, y =

1

(1 + log 10 − log 2)
; v =

7

10
, y =

1

(1 + log 10 − log 7)
;

v =
3

10
, y =

1

(1 + log 10 − log 3)
; v =

8

10
, y =

1

(1 + log 10 − log 8)
;

v =
4

10
, y =

1

(1 + log 10 − log 4)
; v =

9

10
, y =

1

(1 + log 10 − log 9)
;

v =
5

10
, y =

1

(1 + log 10 − log 5)
; v =

10

10
, y = 1.

And therefore by approximation of the area one will again obtain the value of

the letter A to a high enough degree of accuracy.

§21 But there is another method, derived from the nature of continued

fractions, to inquire into the sum of this series, which completes the task a lot

easier and faster; hence let, by the expressing the formula more generally, be

A = 1 − 1x + 2x2
− 6x3 + 24x4

− 120x5 + 720x6
− 5040x7 + etc. =

1

1 + B
;

it will be

B =
1x − 2x2 + 6x3

− 24x4 + 120x5
− 720x6 + 5040x7

− etc.

1 − 1x + 2x2
− 6x3 + 24x4

− 120x5 + 720x6
− 5040x7 + etc.

=
x

1 + C

and

1 + C =
1 − 1x + 2x2

− 6x3 + 24x4
− 120x5 + 720x6

− 5040x7 + etc.

1 − 2x + 6x2
− 24x3 + 120x4

− 720x5 + 5040x6
− etc.

.

Therefore

C =
x − 4x2 + 18x3

− 96x4 + 600x5
− 4320x6 + etc.

1 − 2x + 6x2
− 24x3 + 120x4

− 720x5 + etc.
=

x

1 + D
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hence

D =
2x − 12x2 + 72x3

− 480x4 + 3600x5
− etc.

1 − 4x + 18x2
− 96x3 + 600x4

− etc.
=

2x

1 + E

Further

E =
2x − 18x2 + 144x3

− 1200x4 + etc.

1 − 6x + 36x2
− 240x3 + etc.

=
2x

1 − F

and

F =
3x − 36x2 + 360x3

− etc.

1 − 9x + 72x2
− 600x3 + etc.

=
3x

1 + G
.

It will be

G =
3x − 48x2 + etc.

1 − 12x + 120x2
− etc.

=
3x

1 + H
.

So

H =
4x − etc

1 − 16x + etc
=

4x

1 + I
.

And therefore it will become clear, that it will analogously be

I =
4x

1 + K
, K =

5x

1 + L
, L =

5x

1 + M
etc. to infinity,

so that the structure of these formulas is easily perceived. Having substituted

these values one after another it will be

1 − 1x + 2x2
− 6x3 + 24x4

− 120x5 + 720x6
− 5040x7 + etc.
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A =
1

1 +
x

1 +
x

1 +
2x

1 +
2x

1 +
3x

1 +
3x

1 +
4x

1 +
4x

1 +
5x

1 +
5x

1 +
6x

1 +
6x

1 +
7x

etc.

§22 But how the value of continued fractions of this kind are to be investiga-

ted, I showed elsewhere. Because the integer parts of the single denominators

are unities of course, only the numerators are important for the calculation;

hence let x = 1 and the investigation of the sum A will be performed as

follows:

A =
0

1
,

1

1
,

1

2
,

2

3
,

4

7
,

8

13
,

20

34
,

44

73
,

124

209
,

300

501
etc.

Numerators : 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 etc.

The fractions, exhibited here, get continuously closer to the true value of A of

course and they are alternately too great and too small, so that it is

A >
0

1
, A >

1

2
, A >

4

7
, A >

20

34
, A >

124

209
etc.

A <
1

1
, A <

2

3
, A <

8

13
, A <

44

73
, A <

300

501
etc.
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