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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive

if all its minors are nonnegative.

Applications:

• Mechanics of oscillatory systems

• Zeros of polynomials and entire functions

• Numerical linear algebra

• Approximation theory

• Stochastic processes

• Statistics

• Lie theory and cluster algebras

• Representation theory of the infinite symmetric group

• Theory of immanants

• Planar discrete potential theory and the planar Ising model

• Stieltjes moment problem

• Enumerative combinatorics

...

2



Hankel-total positivity

Given a sequence a = (an)n≥0, we define its Hankel matrix

H∞(a) = (ai+j)i,j≥0 =











a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
... ... ... . . .











• We say that the sequence a is Hankel-totally positive if its

Hankel matrix H∞(a) is totally positive.

• This implies that the sequence is log-convex, but is much stronger.

Fundamental Characterization (Stieltjes 1894, Gantmakher–Krein 1937):

For a sequence a = (an)n≥0 of real numbers, the following are equivalent:

(a) a is Hankel-totally positive.

(b) There exists a positive measure µ on [0,∞) such that

an =
∫

xn dµ(x) for all n ≥ 0.

[That is, (an)n≥0 is a Stieltjes moment sequence.]

(c) There exist numbers α0, α1, . . . ≥ 0 such that

∞
∑

n=0

ant
n =

α0

1−
α1t

1−
α2t

1− · · ·

in the sense of formal power series.

[Stieltjes-type continued fractionwith nonnegative

coefficients]
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From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1. Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n
∑

k=0

(

n
k

)

xk

2. Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n
∑

k=0

[

n
k

]

xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n
∑

k=0

〈

n
k

〉

xk (Eulerian polynomial)

3. Counting partitions of [n]: an = Bn (Bell number)

Counting partitions of [n] by number of blocks:

Pn(x) =
n
∑

k=0

{

n
k

}

xk (Bell polynomial)

4. Counting non-crossing partitions of [n]: an = Cn (Catalan number)

Counting non-crossing partitions of [n] by number of blocks:

Pn(x) =
n
∑

k=0

N(n, k) xk (Narayana polynomial)

These polynomials can also be multivariate!

(count with many simultaneous statistics)

An industry in combinatorics: q-Narayana polynomials, p, q-Bell

polynomials, . . .
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Coefficientwise total positivity

• Consider sequences and matrices whose entries are polynomials

with real coefficients in one or more indeterminates x.

• A matrix is coefficientwise totally positive if every minor is a

polynomial with nonnegative coefficients.

• A sequence is coefficientwise Hankel-totally positive if its Han-

kel matrix is coefficientwise totally positive.

• More generally, can consider sequences and matrices with entries

in a partially ordered commutative ring.

But now there is no analogue of the Fundamental Characterization!

Coefficientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise Hankel-TP implies that (Pn(x))n≥0 is a Stieltjes

moment sequence for all x ≥ 0, but it is stronger .
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Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials (Pn(x))n≥0

have been proven in recent years to be coefficientwise log-convex:

• Bell polynomials Bn(x) =
n
∑

k=0

{

n
k

}

xk

(Liu–Wang 2007, Chen–Wang–Yang 2011)

• Narayana polynomials Nn(x) =
n
∑

k=0

N(n, k) xk

(Chen–Wang–Yang 2010)

• Narayana polynomials of type B: Wn(x) =
n
∑

k=0

(

n
k

)2
xk

(Chen–Tang–Wang–Yang 2010)

• Eulerian polynomials An(x) =
n
∑

k=0

〈

n
k

〉

xk

(Liu–Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

• In many cases I can prove that the answer is yes, by using the

Flajolet–Viennot method of continued fractions.

• In several other cases I have strong empirical evidence that

the answer is yes, but no proof.

• The continued-fraction approach gives a sufficient but not

necessary condition for coefficientwise Hankel-total positivity.
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Combinatorics of continued fractions (Flajolet 1980)

We consider two types of continued fractions:

• Stieltjes type (S-fractions):

f(t) =
1

1−
α1t

1−
α2t

1−
α3t

1− · · ·

• Jacobi type (J-fractions):

f(t) =
1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− γ2t−
β3t

2

1− γ3t− · · ·

If time permits, I will discuss also a third type:

• Thron type (T-fractions):

f(t) =
1

1− δ1t−
α1t

1− δ2t−
α2t

1− δ3t−
α3t

1− δ4t− · · ·

7



Combinatorics of Stieltjes-type continued fractions

A Dyck path of length 2n is a path in the right quadrant N × N

from (0, 0) to (2n, 0) using steps (1, 1) [“rise”] and (1,−1) [“fall”]:

Theorem (Flajolet 1980): As an identity in Z[α][[t]], we have

1

1−
α1t

1−
α2t

1− · · ·

=
∞
∑

n=0

Sn(α1, . . . , αn) t
n

where Sn(α1, . . . , αn) is the generating polynomial for Dyck paths of

length 2n in which each fall starting at height i gets weight αi.

Sn(α) is called the Stieltjes–Rogers polynomial of order n.
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Combinatorics of Jacobi-type continued fractions

A Motzkin path of length n is a path in the right quadrant N× N

from (0, 0) to (n, 0) using steps (1, 1) [“rise”], (1,−1) [“fall”] and

(1, 0) [“level”]:

All the Motzkin paths of length n = 4.

Theorem (Flajolet 1980): As an identity in Z[β,γ][[t]], we have

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− γ2t− · · ·

=
∞
∑

n=0

Jn(β,γ) t
n

where Jn(β,γ) is the generating polynomial for Motzkin paths of

length n in which each level step at height i gets weight γi and each

fall starting at height i gets weight βi.

Jn(β,γ) is called the Jacobi–Rogers polynomial of order n.

9



Hankel matrix of Stieltjes–Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence

S = (Sn(α))n≥0 of Stieltjes–Rogers polynomials:

H∞(S) =
(

Si+j(α)
)

i,j≥0

And consider any minor of H∞(S):

∆IJ(S) = detHIJ(S)

where I = {i1, i2, . . . , ik} with 0 ≤ i1 < i2 < . . . < ik
and J = {j1, j2, . . . , jk} with 0 ≤ j1 < j2 < . . . < jk

Theorem (Viennot 1983): The minor ∆IJ(S) is the generating

polynomial for families of disjoint Dyck paths P1, . . . , Pk where path

Pr starts at (−2ir, 0) and ends at (2jr, 0), in which each fall starting

at height i gets weight αi.

The proof uses the Karlin–McGregor–Lindström–Gessel–Viennot lemma

on families of nonintersecting paths.

Corollary (A.S. 2014): The sequence S = (Sn(α))n≥0 is a

Hankel-totally positive sequence in the polynomial ring Z[α]

equipped with the coefficientwise partial order.

Now specialize α to nonnegative elements in any partially ordered

commutative ring:

Corollary: Letα = (αn)n≥1 be a sequence of nonnegative elements

in a partially ordered commutative ring R. Then (Sn(α))n≥0 is a

Hankel-totally positive sequence in R.
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Hankel matrix of Stieltjes–Rogers polynomials (bis)

Can also get explicit formulae for the Hankel determinants

∆
(m)
n (S) = detH

(m)
n (S) for small m:

Theorem:

∆(0)
n (S) = (α1α2)

n−1(α3α4)
n−2 · · · (α2n−3α2n−2)

∆(1)
n (S) = αn

1(α2α3)
n−1(α4α5)

n−2 · · · (α2n−2α2n−1)

These formulae are classical in the theory of continued fractions,

but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa–Tagawa–Zeng 2009 for extensions to m = 2, 3.
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Hankel matrix of Jacobi–Rogers polynomials

Form the Hankel matrix

H∞(J) =
(

Ji+j(β,γ)
)

i,j≥0

But the story is more complicated than for S-type fractions, because:

• The matrix H∞(J) is not totally positive in Z[β,γ].

• It is not even totally positive in R for all β,γ ≥ 0.

• Rather, the total positivity of H∞(J) holds only when β and γ

satisfy suitable inequalities.

Form the infinite tridiagonal matrix (“production matrix”)

P (β,γ) =















γ0 1 0 0 · · ·
β1 γ1 1 0 · · ·
0 β2 γ2 1 · · ·
0 0 β3 γ3 · · ·
... ... ... ... . . .















Theorem: If P (β,γ) is totally positive, then so is H∞(J).

(special case of general result on production matrices;

works in a partially ordered commutative ring)

So we will need to test the production matrix for total positivity.

Luckily, there is a simple criterion:

A tridiagonal matrix is totally positive if and only if all its

off-diagonal elements and all its contiguous principal minors

are nonnegative.

Classical for real-valued matrices; proof extends easily to matrices

with values in a partially ordered commutative ring.
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Example 1: Narayana polynomials

• Narayana numbers N(n, k) =
1

n

(

n

k

)(

n

k − 1

)

• Count numerous objects of combinatorial interest:

– Dyck paths of length 2n with k peaks

– Non-crossing partitions of [n] with k blocks

– Non-nesting partitions of [n] with k blocks

• Narayana polynomials Nn(x) =
n
∑

k=0

N(n, k) xk

• Ordinary generating function N (t, x) =
∞
∑

n=0
Nn(x) t

n

• Elementary “renewal” argument on Dyck paths implies

N =
1

1− tx− t(N − 1)

which can be rewritten as

N =
1

1−
xt

1− tN

• Leads immediately to S-type continued fraction

∞
∑

n=0

Nn(x) t
n =

1

1−
xt

1−
t

1−
xt

1−
t

1− · · ·

Conclusion: The sequence (Nn(x))n≥0 of Narayana polynomials is

coefficientwise Hankel-totally positive.
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Example 2: Bell polynomials

• Stirling number
{

n
k

}

= # of partitions of [n] with k blocks

• Bell polynomials Bn(x) =
n
∑

k=0

{

n
k

}

xk

• Ordinary generating function B(t, x) =
∞
∑

n=0
Bn(x) t

n

• Flajolet (1980) expressed B(t, x) as a J-type continued fraction

• Can be transformed to an S-type continued fraction
∞
∑

n=0

Bn(x) t
n =

1

1−
xt

1−
1t

1−
xt

1−
2t

1− · · ·

Conclusion: The sequence (Bn(x))n≥0 of Bell polynomials is

coefficientwise Hankel-totally positive.

• Can extend to polynomial Bn(x, p, q) that enumerates

set partitions w.r.t. blocks (x), crossings (p) and nestings (q):
∞
∑

n=0

Bn(x, p, q) t
n =

1

1−
xt

1−
[1]p,qt

1−
xt

1−
[2]p,qt

1− · · ·

where [n]p,q =
pn − qn

p− q
=

n−1
∑

j=0

pjqn−1−j

• Implies coefficientwise Hankel-TP jointly in x, p, q
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Example 3: Narayana polynomials of type B

The polynomials

Wn(x) =
n
∑

k=0

(

n

k

)2

xk

• Grand Dyck paths with weight x for each peak

• Coordinator polynomial of the classical root lattice An

• Rank generating function of the lattice of noncrossing partitions

of type B on [n]

• There is no S-type continued fraction in the ring of polynomials :

we have

α1, α2, . . . = 1 + x,
2x

1 + x
,
1 + x2

1 + x
,
x + x2

1 + x2
,
1 + x3

1 + x2
,
x + x3

1 + x3
, . . .

• However, there is a nice J-type continued fraction:

∞
∑

n=0
Wn(x) t

n =
1

1− (1+x)t−
2xt2

1− (1+x)t−
xt2

1− (1+x)t−
xt2

1− · · ·

with coefficients γn = 1 + x, β1 = 2x, βn = x for n ≥ 2.

• The tridiagonal production matrix is totally positive.

• Theorem (A.S. unpublished 2014, Wang–Zhu 2016):

The sequence (Wn(x))n≥0 is coefficientwise Hankel-TP.
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A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m ≥ 1.

An m-Dyck path of length (m+1)n is a path in the right quadrant

N × N from (0, 0) to ((m + 1)n, 0) using steps (1, 1) [“rise”] and

(1,−m) [“m-fall”]:

A 2-Dyck path of length 18.

Let S
(m)
n (α) be the generating polynomial form-Dyck paths of length

(m + 1)n in which each m-fall starting at height i gets weight αi.

We call S
(m)
n (α) the m-Stieltjes–Rogers polynomial of order n.

Theorem (Pétréolle–A.S.–Zhu 2018): The sequence (S
(m)
n (α))n≥0

of m-Stieltjes–Rogers polynomials is coefficientwise Hankel-TP

in the polynomial ring Z[α].

Proof is essentially identical to the one for m = 1!

Remark: S
(m)
n (α) are the Taylor coefficients of (extremely ugly)

branched continued fractions.

16



A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m ≥ 1.

An m-Dyck path of length (m+1)n is a path in the right quadrant

N × N from (0, 0) to ((m + 1)n, 0) using steps (1, 1) [“rise”] and

(1,−m) [“m-fall”]:

A 2-Dyck path of length 18.

Let S
(m)
n (α) be the generating polynomial form-Dyck paths of length

(m + 1)n in which each m-fall starting at height i gets weight αi.

We call S
(m)
n (α) the m-Stieltjes–Rogers polynomial of order n.

Theorem (Pétréolle–A.S.–Zhu 2018): The sequence (S
(m)
n (α))n≥0

of m-Stieltjes–Rogers polynomials is coefficientwise Hankel-TP

in the polynomial ring Z[α].

Proof is essentially identical to the one for m = 1!

Remark: S
(m)
n (α) are the Taylor coefficients of (extremely ugly)

branched continued fractions:

f(t) = 1

1−
αmt

(

1−
αm+1t

(

1−
αm+2t

(· · · ) · · · (· · · )

)

· · ·
(

1−
α2m+1t

(· · · ) · · · (· · · )

)

)

· · ·

(

1−
α2mt

(

1−
α2m+1t

(· · · ) · · · (· · · )

)

· · ·
(

1−
α3mt

(· · · ) · · · (· · · )

)

)
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A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m ≥ 1.

An m-Dyck path of length (m+1)n is a path in the right quadrant

N × N from (0, 0) to ((m + 1)n, 0) using steps (1, 1) [“rise”] and

(1,−m) [“m-fall”]:

A 2-Dyck path of length 18.

Let S
(m)
n (α) be the generating polynomial form-Dyck paths of length

(m + 1)n in which each m-fall starting at height i gets weight αi.

We call S
(m)
n (α) the m-Stieltjes–Rogers polynomial of order n.

Theorem (Pétréolle–A.S.–Zhu 2018): The sequence (S
(m)
n (α))n≥0

of m-Stieltjes–Rogers polynomials is coefficientwise Hankel-TP

in the polynomial ring Z[α].

Proof is essentially identical to the one for m = 1!

Remark: S
(m)
n (α) are the Taylor coefficients of (extremely ugly)

branched continued fractions.

Non-obvious fact: The S
(m)
n (α) get more general as m grows.
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Branched continued fractions: An example

• n! =
∞
∫

0

xn e−x dx is a Stieltjes moment sequence.

• Euler showed in 1746 that
∞
∑

n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1− · · ·

• The entrywise product of Stieltjes moment sequences is also one.

• So (n!)2 is a Stieltjes moment sequence.

• Straightforward computation gives for (n!)2

α1, α2, . . . = 1, 3, 20
3
, 164

15
, 3537

205
, 127845

5371
, 4065232

124057
, 244181904

5868559
, 38418582575

721944303
, . . .

• The α are indeed positive, but what the hell are they???

• (n!)2 has a nice m-branched continued fraction with m = 2:

α = 1, 1, 2, 4, 4, 6, 9, 9, 12, . . .

• Similar results hold for (n!)m, (2n−1)!!m, (mn)! and much more

general things.

• But these are special cases of something vastly more general . . .
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Branched continued fractions for ratios of
contiguous hypergeometric functions

• Euler also showed in 1746 that
∞
∑

n=0

a(a + 1) · · · (a + n− 1) tn =
1

1−
at

1−
1t

1−
(a + 1)t

1−
2t

1− · · ·

• And this is the b = 1 special case of

F2 0

(

a, b

—

∣

∣

∣

∣

t

)

F2 0

(

a, b− 1

—

∣

∣

∣

∣

t

)
=

1

1−
at

1−
bt

1−
(a + 1)t

1−
(b + 1)t

1− · · ·

( F2 0 limiting case of Gauss continued fraction for F2 1)

• We generalize this to ratios of contiguous Fm+1 0: the result is an

m-branched continued fraction . . .
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Branched continued fractions for ratios of
contiguous hypergeometric functions (bis)

Theorem (Pétréolle–A.S.–Zhu 2018): For each m ≥ 1,

Fm+1 0

(

a1, . . . , am+1

—

∣

∣

∣

∣

t

)

Fm+1 0

(

a1, . . . , am, am+1 − 1

—

∣

∣

∣

∣

t

)
=

∞
∑

n=0

S(m)
n (α) tn

where the α are very simple polynomials in a1, . . . , am+1:

α = a1 · · · am, a2 · · · am+1, a3 · · · am+1(a1 + 1), a4 · · · am+1(a1 + 1)(a2 + 1), . . .

Corollary: The polynomials P
(m)
n (a1, . . . , am; am+1) = S

(m)
n (α)

arising as the Taylor coefficients of this ratio are coefficientwise Hankel-TP

jointly in a1, . . . , am+1.

Can obtain many examples by specialization of a1, . . . , am+1.

Even more generally: For every r, s ≥ 0 we find an m-branched

continued fraction withm = max(r−1, s) for ratios of contiguous Fr s.

• Generalizes Gauss continued fraction for F2 1.

• Can further generalize to q-hypergeometric functions φr s.

• But corollaries for Hankel-TP are more subtle than for s = 0.

(Already this was the case for F2 1 compared to F2 0.)
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Coefficientwise Hankel-TP seems to be very common
. . . but not so easy to prove

There are many cases where:

• I find empirically that a sequence (Pn(x))n≥0 is coefficientwise

Hankel-TP . . .

• But I am unable to prove it because there is neither an S-type

nor a J-type continued fraction in the ring of polynomials

(and maybe no branched continued fraction, either?).

• Rook polynomials

• Domb polynomials

• Apéry polynomials

• Boros–Moll polynomials

• Ramanujan polynomials

• Inversion enumerators for trees

• Reduced binomial discriminant polynomials

...
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Example 1: Rook polynomials

• Non-attacking rooks on n×n chessboard with weight x per rook:

Rn(x) =

n
∑

k=0

(

n

k

)2

k! xk

• Can prove : Stieltjes moment sequence for each x ≥ 0.

(Can find explicit moment representation)

• Empirical : Hankel matrix is coefficientwise TP up to 11× 11.

• Conjecture: Hankel matrix is coefficientwise TP.

(Special case of more general conjecture for Laguerre polynomials)

• We have conjectural (but unproven) branched continued fraction.

Example 2: Apéry polynomials

• Apéry numbers An =

n
∑

k=0

(

n

k

)2(
n + k

k

)2

• Theorem (conjectured by me, 2014; proven G. Edgar, unpub. 2016):

(An)n≥0 is a Stieltjes moment sequence.

• Define Apéry polynomials An(x) =
n
∑

k=0

(

n

k

)2(
n + k

k

)2

xk

• Conjecture 1: (An(x))n≥0 is a Stieltjes moment sequence

for all x ≥ 1 (but not for 0 < x < 1).

• Conjecture 2: (An(1+y))n≥0 is coefficientwise Hankel-TP in y.

(Tested up to 12× 12)

• Don’t know (even conjecturally) any continued fraction.
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(Tentative) Conclusion

• Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials

are (or appear to be) coefficientwise Hankel-totally positive.

• In some cases this can be proven by the Flajolet–Viennot method

of continued fractions.

– When S-fractions exist, they give the simplest proofs.

– Sometimes S-fractions don’t exist, but J-fractions can work.

– Sometimes neither S-fractions nor J-fractions exist,

but branched S-fractions do.

– Branched S-fractions are a powerful (but not universal) tool.

• Alas, in many cases none of these methods work!

• New methods of proof will be needed:

– Differential operators?

– Direct study of Hankel minors?

– . . . ???

• Coefficientwise Hankel-TP is a big phenomenon that we understand,

at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)
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