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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.

Applications:
e Mechanics of oscillatory systems
e Zeros of polynomials and entire functions
e Numerical linear algebra
e Approximation theory
e Stochastic processes
e Statistics
e Lie theory and cluster algebras
e Representation theory of the infinite symmetric group
e Theory of immanants
e Planar discrete potential theory and the planar Ising model
e Stieltjes moment problem

¢ Enumerative combinatorics



Hankel-total positivity

Given a sequence @ = (a,),>0, we define its Hankel matrix
ap ai; as - -
a; ay as ---
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e We say that the sequence a is Hankel-totally positive if its
Hankel matrix Hoo(a) is totally positive.

e This implies that the sequence is log-convex, but is much stronger.

Fundamental Characterization (Stieltjes 1894, Gantmakher—Krein 1937):
For a sequence a = (ay,),>0 of real numbers, the following are equivalent:
(a) a is Hankel-totally positive.

(b) There exists a positive measure g on [0, co) such that
a, = [ 2" dp(x) for all n > 0.

[That is, (a,)n>0 is a Stieltjes moment sequence.]

(¢) There exist numbers ag, vy, ... > 0 such that
o
" ot
n=>0 1 — 1
Oégt
1—--.

in the sense of formal power series.

[Stieltjes-type continued fraction with nonnegative
coefficients]



From numbers to polynomials
lor, From counting to counting-with-weights]

Some simple examples:

1. Counting subsets of [n]: a, = 2"

Counting subsets of [n] by cardinality: P,(z) =Y. (})z"

2. Counting permutations of [n]: a, = n!

Counting permutations of [n] by number of cycles:

P,(z) =Y [}]#* (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

P,(z) =3 ()z* (Eulerian polynomial)

3. Counting partitions of [n]: By, (Bell number)

Counting partitions of [n] by number of blocks:

= > {}}2" (Bell polynomial)
k=0

4. Counting non-crossing partitions of [n|: a,, = C), (Catalan number)

Counting non-crossing partitions of [n] by number of blocks:

P,(z) = kz—:() N(n,k)x* (Narayana polynomial)

These polynomials can also be multivariate!
(count with many simultaneous statistics)

An industry in combinatorics: ¢-Narayana polynomials, p, g-Bell
polynomials, ...



Coefficientwise total positivity
e Consider sequences and matrices whose entries are polynomials
with real coefficients in one or more indeterminates x.

e A matrix is coefficientwise totally positive if every minor is a
polynomial with nonnegative coefficients.

e A sequence is coefficientwise Hankel-totally positive if its Han-
kel matrix is coefficientwise totally positive.

e More generally, can consider sequences and matrices with entries
in a partially ordered commutative ring.

But now there is no analogue of the Fundamental Characterization!
Coeflicientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise Hankel-TP implies that (P,(x)),>0 is a Stieltjes
moment sequence for all x > 0, but it is stronger.



Coeflicientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials (P, ()),>0
have been proven in recent years to be coefficientwise log-convex:

e Bell polynomials B, (z) = > {} }z"
k=0
(Liu-Wang 2007, Chen—-Wang—Yang 2011)

e Narayana polynomials N,(z) = Y N(n, k) 2"
k=0
(Chen—Wang—Yang 2010)

e Narayana polynomials of type B: W,(z) = >_ (2)2 "
k=0
(Chen—Tang-Wang—Yang 2010)

e Eulerian polynomials A,(z) = > (}) 2"
(Liu-Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

e In many cases I can prove that the answer is yes, by using the
Flajolet—Viennot method of continued fractions.

e In several other cases I have strong empirical evidence that
the answer is yes, but no proof.

e The continued-fraction approach gives a sufficient but not
necessary condition for coefficientwise Hankel-total positivity.



Combinatorics of continued fractions (Flajolet 1980)

We consider two types of continued fractions:

e Sticltjes type (S-fractions):

1
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e Jacobi type (J-fractions):
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[f time permits, I will discuss also a third type:
e Thron type (T-fractions):
1
ft) =
Ozlt
1 — o0t — .
o
1 — 6yt — - t
a3
1 — o3t —
gt —



Combinatorics of Stieltjes-type continued fractions

A Dyck path of length 2n is a path in the right quadrant N x N
from (0,0) to (2n,0) using steps (1, 1) [“rise”] and (1, —1) [“fall”]:

Theorem (Flajolet 1980): As an identity in Z[a][[t]], we have
1

Oélt

o0
n=0

1 —

OZQt
1— ...
where S, (a1, . .., ) is the generating polynomial for Dyck paths of

length 2n in which each fall starting at height 7 gets weight «;.

Sp(a) is called the Stieltjes—Rogers polynomial of order n.



Combinatorics of Jacobi-type continued fractions

A Motzkin path of length n is a path in the right quadrant N x N
from (0,0) to (n,0) using steps (1,1) [“rise”], (1, —1) [“fall”] and
(1,0) [“level”]:

b7
>

All the Motzkin paths of length n = 4.

Theorem (Flajolet 1980): As an identity in Z[3,~|[[t]], we have
1

n=0

1—7075—

where J,(3,7) is the generating polynomial for Motzkin paths of
length n in which each level step at height ¢ gets weight ~; and each
fall starting at height ¢ gets weight f;.

Jo(B,7) is called the Jacobi-Rogers polynomial of order n.



Hankel matrix of Stieltjes—Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence
S = (Sp(a))p>p of Stieltjes—Rogers polynomials:

HOO(S) = (Si—kj(a))mzo

And consider any minor of Hy(S):
A[J(S) = det H[J(S)

where I = {iy,d9,... 0} with 0 <iy < iy < ... <1y
andJ:{jl,jg,...,jk}WithOSjl<j2<...<jk

Theorem (Viennot 1983): The minor A;;(S) is the generating
polynomial for families of disjoint Dyck paths P, ..., P, where path
P, starts at (—2i,,0) and ends at (2j,,0), in which each fall starting
at height 7 gets weight ay.

The proof uses the Karlin—-McGregor—Lindstrom—Gessel-Viennot lemma
on families of nonintersecting paths.

Corollary (A.S. 2014): The sequence S = (S, (a)),>0 is a
Hankel-totally positive sequence in the polynomial ring Z|a]
equipped with the coeflicientwise partial order.

Now specialize ac to nonnegative elements in any partially ordered
commutative ring:

Corollary: Let a = (a,),>1 be a sequence of nonnegative elements
in a partially ordered commutative ring R. Then (S,(a)),>0 is a
Hankel-totally positive sequence in R.
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Hankel matrix of Stieltjes—Rogers polynomials (bis)

Can also get explicit formulae for the Hankel determinants

Af{”)(S) = det Hém)(S) for small m:

Theorem:
A7<”LO)(5> - (041042)n_1(043044)n_2 (OéQn—3Oé2n—2)
AP(S) = af(agas)" (auas)" ™ -+ (agn-202,1)

These formulae are classical in the theory of continued fractions,
but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa—Tagawa—Zeng 2009 for extensions to m = 2, 3.
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Hankel matrix of Jacobi—Rogers polynomials

Form the Hankel matrix
Hoo(J) = (Jiri(B:7)), 2
But the story is more complicated than for S-type fractions, because:
e The matrix H,(J) is not totally positive in Z[3, ~].
e [t is not even totally positive in R for all 3, > 0.

e Rather, the total positivity of Hy(J) holds only when 3 and ~
satisfy suitable inequalities.

Form the infinite tridiagonal matrix (“production matrix”)

(%1

b1 v 1
PB,v) = | 0 B2 7 1
0 0 B3 3 ---

\ :

Theorem: If P(3,) is totally positive, then so is Hy(J).
(special case of general result on production matrices;
works in a partially ordered commutative ring)

So we will need to test the production matrix for total positivity.

Luckily, there is a simple criterion:

A tridiagonal matrix is totally positive if and only if all its
off-diagonal elements and all its contiguous principal minors
are nonnegative.

Classical for real-valued matrices; proof extends easily to matrices
with values in a partially ordered commutative ring.
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Example 1: Narayana polynomials

1
e Narayana numbers N(n, k) = — <Z> (/f ’ 1)

n

e Count numerous objects of combinatorial interest:

— Dyck paths of length 2n with k peaks
— Non-crossing partitions of [n] with & blocks

— Non-nesting partitions of [n| with k& blocks

o Narayana polynomials N,(z) = Y N(n, k) 2"
k=0

e Ordinary generating function N'(¢t,z) = >_ N, (z)¢"
n=0

e Elementary “renewal” argument on Dyck paths implies

1
N p—
1 —tx —t(N —1)
which can be rewritten as
1
N =
- xt
1 —tN

e Leads immediately to S-type continued fraction

o . 1
> Nu(a)t" = =
n=0

Conclusion: The sequence (IV,,(x)),>0 of Narayana polynomials is
coefficientwise Hankel-totally positive.
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Example 2: Bell polynomials
e Stirling number {”} = # of partitions of [n] with & blocks

e Bell polynomials B Z {0}t

(0. ¢]
e Ordinary generating function B(t,z) = > B,(x)t"
=

e Flajolet (1980) expressed B(t, x) as a J-type continued fraction

e Can be transformed to an S-type continued fraction

o . 1
Z Bu(z)t" = —
n=0

Conclusion: The sequence (By,(x)),>0 of Bell polynomials is
coefficientwise Hankel-totally positive.

e Can extend to polynomial B,(z,p,q) that enumerates
set partitions w.r.t. blocks (z), crossings (p) and nestings (q):

ZB TP, 1xt

1 —
Y
| xt
E:
n__.n n—1
where [n], , = pp — Z — prq”—l—J

J=0

e Implies coefficientwise Hankel-TP jointly in z, p, q
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Example 3: Narayana polynomials of type B

The polynomials

k=0
e Grand Dyck paths with weight x for each peak

e Coordinator polynomial of the classical root lattice A,

e Rank generating function of the lattice of noncrossing partitions
of type B on [n]

e There is no S-type continued fraction tn the ring of polynomials:
we have
20 1+4+2? z4+2° 1+2° 2 +2°
"1+x 1+ax’ 1+22 1+22 1+23

al,a,... = 14+x

e However, there ¢s a nice J-type continued fraction:

1

W, (x)th" =
nz::o ( ) 202

1—(14+2)t —
(1+x) —

1 — (1+x)t —

xt?

] — .-

1 — (142)t —

with coefficients v, =1+ z, 81 = 2z, 5, = x for n > 2.

e The tridiagonal production matrix is totally positive.

e Theorem (A.S. unpublished 2014, Wang—Zhu 2016):
The sequence (W, (x)),>0 is coefficientwise Hankel-TP.
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A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m > 1.

An m-Dyck path of length (m + 1)n is a path in the right quadrant
N x N from (0,0) to ((m + 1)n,0) using steps (1,1) [“rise”] and
(1,—m) [“m-fall”]:

T

A 2-Dyck path of length 18.

Let S{™ () be the generating polynomial for m-Dyck paths of length
(m + 1)n in which each m-fall starting at height 7 gets weight a.

We call Sﬁbm)(a) the m-Stieltjes—Rogers polynomial of order n.

Theorem (Pétréolle-A.S~Zhu 2018): The sequence (Sflm)(a))nzo
of m-Stieltjes—Rogers polynomials is coefficientwise Hankel-TP
in the polynomial ring Z|cx|.

Proof is essentially identical to the one for m = 1!

Remark: ST(Lm>(a) are the Taylor coefficients of (extremely ugly)
branched continued fractions.
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A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m > 1.

An m-Dyck path of length (m 4+ 1)n is a path in the right quadrant
N x N from (0,0) to ((m + 1)n,0) using steps (1,1) [“rise”] and
(1,—m) [“m-fall”]:

AT

A 2-Dyck path of length 18.

Let S,gm) (@) be the generating polynomial for m-Dyck paths of length
(m + 1)n in which each m-fall starting at height 7 gets weight «.

We call S (ax) the m-Stieltjes—Rogers polynomial of order n.
Theorem (Pétréolle-A.S~Zhu 2018): The sequence (Sém)(a))nzo
of m-Stieltjes—Rogers polynomials is coefficientwise Hankel-TP

in the polynomial ring Z|cx|.

Proof is essentially identical to the one for m = 1!

Remark: ST(Lm)(oz) are the Taylor coefficients of (extremely ugly)
branched continued fractions:




A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer m > 1.

An m-Dyck path of length (m + 1)n is a path in the right quadrant
N x N from (0,0) to ((m + 1)n,0) using steps (1,1) [“rise”] and
(1,—m) [“m-fall”]:

T

A 2-Dyck path of length 18.

Let S{™ () be the generating polynomial for m-Dyck paths of length
(m + 1)n in which each m-fall starting at height 7 gets weight a.

We call Sﬁbm)(a) the m-Stieltjes—Rogers polynomial of order n.

Theorem (Pétréolle-A.S~Zhu 2018): The sequence (Sflm)(a))nzo
of m-Stieltjes—Rogers polynomials is coefficientwise Hankel-TP
in the polynomial ring Z|cx|.

Proof is essentially identical to the one for m = 1!

Remark: ST(Lm>(a) are the Taylor coefficients of (extremely ugly)
branched continued fractions.

Non-obvious fact: The Sﬁbm)(a) get more general as m grows.

18



Branched continued fractions: An example

(0.}
o n!l = [z"e " dux is a Stieltjes moment sequence.
0

e Huler showed in 1746 that

©e
Snlen = 1
— 1t

e The entrywise product of Stieltjes moment sequences is also one.
e So (n!)? is a Stieltjes moment sequence.

e Straightforward computation gives for (n!)?

g, Qo,... = 1’ 3 20 164 3537 127845 4065232 244181904 38418582575

e The a are indeed positive, but what the hell are they???

e (n!)? has a nice m-branched continued fraction with m = 2:

a = 1,1,2,4,4,6,9,9,12, ...

e Similar results hold for (n!)™, (2n—1)!!"" (mn)! and much more
general things.

e But these are special cases of something vastly more general . ..

19
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Branched continued fractions for ratios of
contiguous hypergeometric functions

e Huler also showed in 1746 that

= 1
Y ala+1)-(atn—1)t" =
o = at
1t
1 —
(a+1)t
2t
-
e And this is the b = 1 special case of
F(a,b t)
2ol B {
a,b—1 B at
I L b bt
1 —
(a+ 1)t
(b4 1)t
...

(,F} limiting case of Gauss continued fraction for ,F})

e We generalize this to ratios of contiguous,,, ;F;: the result is an
m-branched continued fraction ...
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Branched continued fractions for ratios of
contiguous hypergeometric functions (bis)

Theorem (Pétréolle-A.S.~Zhu 2018):  For each m > 1,

Aty - - -5 Gm+1
m+1FO( t) 00
= > S(a)t”

F al,...,am7am+1_1 t TLIO
m+1- 0

where the a are very simple polynomials in aq, ..., Gm1:

x = Ay Uy, A2 Ampm1, A3 * am—H(al + 1)7 aq--- a7r1,+1<a1 + 1)(@2 + 1)7 s

Corollary: The polynomials Rgm)(al, ey O Q1) = S,gm)(a)
arising as the Taylor coefficients of this ratio are coefficientwise Hankel-TP
jointly in ay, ..., Gmi1.

Can obtain many examples by specialization of aq, ..., Gm1.

Even more generally: For every r, s > 0 we find an m-branched
continued fraction with m = max(r—1, s) for ratios of contiguous , F.

e Generalizes Gauss continued fraction for , /.
e Can further generalize to ¢-hypergeometric functions ,¢..

e But corollaries for Hankel-TP are more subtle than for s = 0.
(Already this was the case for ,F; compared to o Fj,.)
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Coefficientwise Hankel-TP seems to be very common
... but not so easy to prove

There are many cases where:

e | find empirically that a sequence (P,(x)),>0 is coefficientwise
Hankel-TP ...

e But [ am unable to prove it because there is neither an S-type
nor a J-type continued fraction in the ring of polynomials
(and maybe no branched continued fraction, either?).

e Rook polynomials

e Domb polynomials

e Apéry polynomials

e Boros—Moll polynomials

e Ramanujan polynomials

e Inversion enumerators for trees

e Reduced binomial discriminant polynomials
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Example 1: Rook polynomials

e Non-attacking rooks on n X n chessboard with weight x per rook:

Ru(x) = Z (Z)Qk! %

k=0
e Can prove: Stieltjes moment sequence for each x > 0.
(Can find explicit moment representation)

o Empirical: Hankel matrix is coefficientwise TP up to 11 x 11.

e Conjecture: Hankel matrix is coefficientwise TP.
(Special case of more general conjecture for Laguerre polynomials)

e We have conjectural (but unproven) branched continued fraction.

Example 2: Apéry polynomials

" /n\ (n+k\
e Apéry numbers A, = Z(k‘) < I )

k=0

e Theorem (conjectured by me, 2014; proven G. Edgar, unpub. 2016):
(An)n>0 is a Stieltjes moment sequence.

n 2 2
e Define Apéry polynomials A, (x) = Z (Z) (n —]: k) z
k=0

e Conjecture 1: (A,(x)),>0 is a Stieltjes moment sequence
for all z > 1 (but not for 0 < z < 1).

e Conjecture 2: (A,,(1+y)),>0 is coefficientwise Hankel-TP in y.
(Tested up to 12 x 12)

e Don’t know (even conjecturally) any continued fraction.
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(Tentative) Conclusion

e Many interesting sequences (P,(x)),>0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

e In some cases this can be proven by the Flajolet—Viennot method
of continued fractions.

— When S-fractions exist, they give the simplest proofs.
— Sometimes S-fractions don’t exist, but J-fractions can work.

— Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.

— Branched S-fractions are a powerful (but not universal) tool.
e Alas, in many cases none of these methods work!
e New methods of proof will be needed:

— Differential operators?

— Direct study of Hankel minors?

e Coeflicientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948-2011)
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