Continued fractions and Hankel-total positivity

Alan Sokal
University College London / New York University

5th Algorithmic and Enumerative Combinatorics Summer School
Hagenberg, Austria, 29 July - 2 August 2019

A big project in collaboration with
Mathias Pétréolle, Bao-Xuan Zhu, Jiang Zeng, Andrew Elvey Price, Alex Dyachenko, ...

Key references:

1. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32, 125-161 (1980).
2. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux (UQAM, 1983).
3. Pétréolle-Sokal-Zhu, Lattice paths and branched continued fractions, arXiv:1807.03271

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

Applications:

- Mechanics of oscillatory systems
- Zeros of polynomials and entire functions
- Numerical linear algebra
- Approximation theory
- Stochastic processes
- Statistics
- Lie theory and cluster algebras
- Representation theory of the infinite symmetric group
- Theory of immanants
- Planar discrete potential theory and the planar Ising model
- Stieltjes moment problem
- Enumerative combinatorics

Hankel-total positivity

Given a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$, we define its Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- We say that the sequence \boldsymbol{a} is Hankel-totally positive if its Hankel matrix $H_{\infty}(\boldsymbol{a})$ is totally positive.
- This implies that the sequence is log-convex, but is much stronger.

Fundamental Characterization (Stieltjes 1894, Gantmakher-Krein 1937):
For a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ of real numbers, the following are equivalent:
(a) \boldsymbol{a} is Hankel-totally positive.
(b) There exists a positive measure μ on $[0, \infty)$ such that $a_{n}=\int x^{n} d \mu(x)$ for all $n \geq 0$.
[That is, $\left(a_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.]
(c) There exist numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

in the sense of formal power series.
[Stieltjes-type continued fraction with nonnegative coefficients]

From numbers to polynomials
 [or, From counting to counting-with-weights]

Some simple examples:

1. Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
2. Counting permutations of $[n]: \quad a_{n}=n$!

Counting permutations of $[n$] by number of cycles:

$$
P_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \quad \text { (Stirling cycle polynomial) }
$$

Counting permutations of $[n]$ by number of descents:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k} \quad \text { (Eulerian polynomial) }
$$

3. Counting partitions of $[n]: a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

4. Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number) Counting non-crossing partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad \text { (Narayana polynomial) }
$$

These polynomials can also be multivariate! (count with many simultaneous statistics)

An industry in combinatorics: q-Narayana polynomials, p, q-Bell polynomials, ...

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.
- More generally, can consider sequences and matrices with entries in a partially ordered commutative ring.

But now there is no analogue of the Fundamental Characterization!

Coefficientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise Hankel-TP implies that $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $\mathbf{x} \geq 0$, but it is stronger.

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{c}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$ (Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)
- Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$
(Liu-Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In several other cases I have strong empirical evidence that the answer is yes, but no proof.
- The continued-fraction approach gives a sufficient but not necessary condition for coefficientwise Hankel-total positivity.

Combinatorics of continued fractions (Flajolet 1980)

We consider two types of continued fractions:

- Stieltjes type (S-fractions):

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\frac{\alpha_{3} t}{1-\cdots}}}}
$$

- Jacobi type (J-fractions):

$$
f(t)=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{1-\gamma_{3} t-\cdots}}}}
$$

If time permits, I will discuss also a third type:

- Thron type (T-fractions):

$$
f(t)=\frac{1}{1-\delta_{1} t-\frac{\alpha_{1} t}{1-\delta_{2} t-\frac{\alpha_{2} t}{1-\delta_{3} t-\frac{\alpha_{3} t}{1-\delta_{4} t-\cdots}}}}
$$

Combinatorics of Stieltjes-type continued fractions

A Dyck path of length $2 n$ is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $(2 n, 0)$ using steps $(1,1)$ ["rise"] and $(1,-1)$ ["fall"]:

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\alpha}][[t]]$, we have

$$
\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}=\sum_{n=0}^{\infty} S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) t^{n}
$$

where $S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the generating polynomial for Dyck paths of length $2 n$ in which each fall starting at height i gets weight α_{i}.
$S_{n}(\boldsymbol{\alpha})$ is called the Stieltjes-Rogers polynomial of order n.

Combinatorics of Jacobi-type continued fractions

A Motzkin path of length n is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $(n, 0)$ using steps $(1,1)$ ["rise"], $(1,-1)$ ["fall"] and $(1,0)$ ["level"]:

All the Motzkin paths of length $n=4$.

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\beta}, \boldsymbol{\gamma}][[t]]$, we have

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{\beta_{0} t^{2}}}=\sum_{n=0}^{\infty} J_{n}(\boldsymbol{\beta}, \boldsymbol{\gamma}) t^{n}
$$

where $J_{n}(\boldsymbol{\beta}, \gamma)$ is the generating polynomial for Motzkin paths of length n in which each level step at height i gets weight γ_{i} and each fall starting at height i gets weight β_{i}.
$J_{n}(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is called the Jacobi-Rogers polynomial of order n.

Hankel matrix of Stieltjes-Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence $\boldsymbol{S}=\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials:

$$
H_{\infty}(\boldsymbol{S})=\left(S_{i+j}(\boldsymbol{\alpha})\right)_{i, j \geq 0}
$$

And consider any minor of $H_{\infty}(\boldsymbol{S})$:

$$
\Delta_{I J}(\boldsymbol{S})=\operatorname{det} H_{I J}(\boldsymbol{S})
$$

where $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ with $0 \leq i_{1}<i_{2}<\ldots<i_{k}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ with $0 \leq j_{1}<j_{2}<\ldots<j_{k}$

Theorem (Viennot 1983): The minor $\Delta_{I J}(\boldsymbol{S})$ is the generating polynomial for families of disjoint Dyck paths P_{1}, \ldots, P_{k} where path P_{r} starts at ($-2 i_{r}, 0$) and ends at ($2 j_{r}, 0$), in which each fall starting at height i gets weight α_{i}.

The proof uses the Karlin-McGregor-Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Corollary (A.S. 2014): The sequence $\boldsymbol{S}=\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is a Hankel-totally positive sequence in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$ equipped with the coefficientwise partial order.

Now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring:

Corollary: Let $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n \geq 1}$ be a sequence of nonnegative elements in a partially ordered commutative ring R. Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is a Hankel-totally positive sequence in R.

Hankel matrix of Stieltjes-Rogers polynomials (bis)

Can also get explicit formulae for the Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{S})=\operatorname{det} H_{n}^{(m)}(\boldsymbol{S})$ for small m :

Theorem:

$$
\begin{aligned}
\Delta_{n}^{(0)}(\boldsymbol{S}) & =\left(\alpha_{1} \alpha_{2}\right)^{n-1}\left(\alpha_{3} \alpha_{4}\right)^{n-2} \cdots\left(\alpha_{2 n-3} \alpha_{2 n-2}\right) \\
\Delta_{n}^{(1)}(\boldsymbol{S}) & =\alpha_{1}^{n}\left(\alpha_{2} \alpha_{3}\right)^{n-1}\left(\alpha_{4} \alpha_{5}\right)^{n-2} \cdots\left(\alpha_{2 n-2} \alpha_{2 n-1}\right)
\end{aligned}
$$

These formulae are classical in the theory of continued fractions, but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa-Tagawa-Zeng 2009 for extensions to $m=2,3$.

Hankel matrix of Jacobi-Rogers polynomials

Form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \boldsymbol{\gamma})\right)_{i, j \geq 0}
$$

But the story is more complicated than for S-type fractions, because:

- The matrix $H_{\infty}(\boldsymbol{J})$ is not totally positive in $\mathbb{Z}[\boldsymbol{\beta}, \boldsymbol{\gamma}]$.
- It is not even totally positive in \mathbb{R} for all $\boldsymbol{\beta}, \boldsymbol{\gamma} \geq 0$.
- Rather, the total positivity of $H_{\infty}(\boldsymbol{J})$ holds only when $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ satisfy suitable inequalities.

Form the infinite tridiagonal matrix ("production matrix")

$$
P(\boldsymbol{\beta}, \boldsymbol{\gamma})=\left(\begin{array}{ccccc}
\gamma_{0} & 1 & 0 & 0 & \cdots \\
\beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\
0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\
0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem: If $P(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is totally positive, then so is $H_{\infty}(\boldsymbol{J})$. (special case of general result on production matrices; works in a partially ordered commutative ring)

So we will need to test the production matrix for total positivity.
Luckily, there is a simple criterion:
A tridiagonal matrix is totally positive if and only if all its off-diagonal elements and all its contiguous principal minors are nonnegative.

Classical for real-valued matrices; proof extends easily to matrices with values in a partially ordered commutative ring.

Example 1: Narayana polynomials

- Narayana numbers $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$
- Count numerous objects of combinatorial interest:
- Dyck paths of length $2 n$ with k peaks
- Non-crossing partitions of $[n]$ with k blocks
- Non-nesting partitions of $[n]$ with k blocks
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
- Ordinary generating function $\mathcal{N}(t, x)=\sum_{n=0}^{\infty} N_{n}(x) t^{n}$
- Elementary "renewal" argument on Dyck paths implies

$$
\mathcal{N}=\frac{1}{1-t x-t(\mathcal{N}-1)}
$$

which can be rewritten as

$$
\mathcal{N}=\frac{1}{1-\frac{x t}{1-t \mathcal{N}}}
$$

- Leads immediately to S-type continued fraction

$$
\sum_{n=0}^{\infty} N_{n}(x) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{t}{1-\frac{x t}{1-\frac{t}{1-\cdots}}}}}
$$

Conclusion: The sequence $\left(N_{n}(x)\right)_{n \geq 0}$ of Narayana polynomials is coefficientwise Hankel-totally positive.

Example 2: Bell polynomials

- Stirling number $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ of partitions of $[n]$ with k blocks
- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
- Ordinary generating function $\mathcal{B}(t, x)=\sum_{n=0}^{\infty} B_{n}(x) t^{n}$
- Flajolet (1980) expressed $\mathcal{B}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$
\sum_{n=0}^{\infty} B_{n}(x) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{1 t}{1-\frac{x t}{1-\frac{2 t}{1-\cdots}}}}}
$$

Conclusion: The sequence $\left(B_{n}(x)\right)_{n \geq 0}$ of Bell polynomials is coefficientwise Hankel-totally positive.

- Can extend to polynomial $B_{n}(x, p, q)$ that enumerates set partitions w.r.t. blocks (x), crossings (p) and nestings (q) :

$$
\sum_{n=0}^{\infty} B_{n}(x, p, q) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{[1]_{p, q} t}{1-\frac{x t}{1-\frac{[2]_{p, q} t}{1-\cdots}}}}}
$$

where $[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}=\sum_{j=0}^{n-1} p^{j} q^{n-1-j}$

- Implies coefficientwise Hankel-TP jointly in x, p, q

Example 3: Narayana polynomials of type B

The polynomials

$$
W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}
$$

- Grand Dyck paths with weight x for each peak
- Coordinator polynomial of the classical root lattice A_{n}
- Rank generating function of the lattice of noncrossing partitions of type B on $[n]$
- There is no S-type continued fraction in the ring of polynomials: we have
$\alpha_{1}, \alpha_{2}, \ldots=1+x, \frac{2 x}{1+x}, \frac{1+x^{2}}{1+x}, \frac{x+x^{2}}{1+x^{2}}, \frac{1+x^{3}}{1+x^{2}}, \frac{x+x^{3}}{1+x^{3}}, \ldots$
- However, there is a nice J-type continued fraction:

$$
\sum_{n=0}^{\infty} W_{n}(x) t^{n}=\frac{1}{1-(1+x) t-\frac{2 x t^{2}}{1-(1+x) t-\frac{x t^{2}}{1-(1+x) t-\frac{x t^{2}}{1-\cdots}}}}
$$

with coefficients $\gamma_{n}=1+x, \beta_{1}=2 x, \beta_{n}=x$ for $n \geq 2$.

- The tridiagonal production matrix is totally positive.
- Theorem (A.S. unpublished 2014, Wang-Zhu 2016):

The sequence $\left(W_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer $m \geq 1$.
An m-Dyck path of length $(m+1) n$ is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $((m+1) n, 0)$ using steps $(1,1)$ ["rise"] and $(1,-m)$ [" m-fall"]:

A 2-Dyck path of length 18.

Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.

We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

Theorem (Pétréolle-A.S.-Zhu 2018): The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof is essentially identical to the one for $m=1$!
Remark: $S_{n}^{(m)}(\boldsymbol{\alpha})$ are the Taylor coefficients of (extremely ugly) branched continued fractions.

A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer $m \geq 1$.
An m-Dyck path of length $(m+1) n$ is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $((m+1) n, 0)$ using steps $(1,1)$ ["rise"] and $(1,-m)$ [" m-fall"]:

A 2-Dyck path of length 18.
Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.

We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.
Theorem (Pétréolle-A.S.-Zhu 2018): The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof is essentially identical to the one for $m=1$!
Remark: $S_{n}^{(m)}(\boldsymbol{\alpha})$ are the Taylor coefficients of (extremely ugly) branched continued fractions:

$$
f(t)=\frac{1}{1-\frac{\alpha_{m} t}{\left(1-\frac{\alpha_{m+2} t}{\left(1-\frac{\alpha_{m+1} t}{(\cdots) \cdots(\cdots)}\right) \cdots\left(1-\frac{\alpha_{2 m+1} t}{(\cdots) \cdots(\cdots)}\right)}\right) \cdots\left(1-\frac{\alpha_{2 m+1} t}{\left(1-\frac{\alpha_{2 m} t}{(\cdots) \cdots(\cdots)}\right) \cdots\left(1-\frac{\alpha_{3 m} t}{(\cdots) \cdots(\cdots)}\right)}\right)}}
$$

A new tool: Branched continued fractions

Generalize Dyck paths: Fix an integer $m \geq 1$.
An m-Dyck path of length $(m+1) n$ is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $((m+1) n, 0)$ using steps $(1,1)$ ["rise"] and $(1,-m)$ [" m-fall"]:

A 2-Dyck path of length 18.

Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.

We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

Theorem (Pétréolle-A.S.-Zhu 2018): The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof is essentially identical to the one for $m=1$!
Remark: $S_{n}^{(m)}(\boldsymbol{\alpha})$ are the Taylor coefficients of (extremely ugly) branched continued fractions.

Non-obvious fact: The $S_{n}^{(m)}(\boldsymbol{\alpha})$ get more general as m grows.

Branched continued fractions: An example

- $n!=\int_{0}^{\infty} x^{n} e^{-x} d x$ is a Stieltjes moment sequence.
- Euler showed in 1746 that

$$
\sum_{n=0}^{\infty} n!t^{n}=\frac{1}{1-\frac{1 t}{1-\frac{1 t}{1-\frac{2 t}{1-\frac{2 t}{1-\cdots}}}}}
$$

- The entrywise product of Stieltjes moment sequences is also one.
- So $(n!)^{2}$ is a Stieltjes moment sequence.
- Straightforward computation gives for $(n!)^{2}$

$$
\alpha_{1}, \alpha_{2}, \ldots=1,3, \frac{20}{3}, \frac{164}{15}, \frac{3537}{205}, \frac{127845}{5371}, \frac{4065232}{124057}, \frac{244181904}{5868559}, \frac{38418582575}{721944303}, \ldots
$$

- The $\boldsymbol{\alpha}$ are indeed positive, but what the hell are they???
- $(n!)^{2}$ has a nice m-branched continued fraction with $m=2$:

$$
\boldsymbol{\alpha}=1,1,2,4,4,6,9,9,12, \ldots
$$

- Similar results hold for $(n!)^{m},(2 n-1)!^{m},(m n)$! and much more general things.
- But these are special cases of something vastly more general ...

Branched continued fractions for ratios of contiguous hypergeometric functions

- Euler also showed in 1746 that

$$
\sum_{n=0}^{\infty} a(a+1) \cdots(a+n-1) t^{n}=\frac{1}{1-\frac{a t}{1-\frac{1 t}{1-\frac{(a+1) t}{1-\frac{2 t}{1-\cdots}}}}}
$$

- And this is the $b=1$ special case of

$$
\frac{{ }_{2} F_{0}\left(\left.\begin{array}{c}
a, b \\
-
\end{array} \right\rvert\, t\right)}{{ }_{2} F_{0}\left(\left.\begin{array}{c}
a, b-1 \\
-
\end{array} \right\rvert\, t\right)}=\frac{1}{1-\frac{a t}{1-\frac{b t}{1-\frac{(a+1) t}{1-\frac{(b+1) t}{1-\cdots}}}}}
$$

$\left({ }_{2} F_{0}\right.$ limiting case of Gauss continued fraction for $\left.{ }_{2} F_{1}\right)$

- We generalize this to ratios of contiguous ${ }_{m+1} F_{0}$: the result is an m-branched continued fraction...

Branched continued fractions for ratios of contiguous hypergeometric functions (bis)

Theorem (Pétréolle-A.S.-Zhu 2018): For each $m \geq 1$,

$$
\frac{{ }_{m+1} F_{0}\binom{a_{1}, \ldots, a_{m+1} \mid t}{-}}{{ }_{m+1} F_{0}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{m}, a_{m+1}-1 \\
-
\end{array} \right\rvert\, t\right)}=\sum_{n=0}^{\infty} S_{n}^{(m)}(\boldsymbol{\alpha}) t^{n}
$$

where the $\boldsymbol{\alpha}$ are very simple polynomials in a_{1}, \ldots, a_{m+1} :
$\boldsymbol{\alpha}=a_{1} \cdots a_{m}, a_{2} \cdots a_{m+1}, a_{3} \cdots a_{m+1}\left(a_{1}+1\right), a_{4} \cdots a_{m+1}\left(a_{1}+1\right)\left(a_{2}+1\right), \ldots$

Corollary: The polynomials $P_{n}^{(m)}\left(a_{1}, \ldots, a_{m} ; a_{m+1}\right)=S_{n}^{(m)}(\boldsymbol{\alpha})$ arising as the Taylor coefficients of this ratio are coefficientwise Hankel-TP jointly in a_{1}, \ldots, a_{m+1}.

Can obtain many examples by specialization of a_{1}, \ldots, a_{m+1}.

Even more generally: For every $r, s \geq 0$ we find an m-branched continued fraction with $m=\max (r-1, s)$ for ratios of contiguous ${ }_{r} F_{s}$.

- Generalizes Gauss continued fraction for ${ }_{2} F_{1}$.
- Can further generalize to q-hypergeometric functions ${ }_{r} \phi_{s}$.
- But corollaries for Hankel-TP are more subtle than for $s=0$. (Already this was the case for ${ }_{2} F_{1}$ compared to ${ }_{2} F_{0}$.)

Coefficientwise Hankel-TP seems to be very common . . . but not so easy to prove

There are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP ...
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no branched continued fraction, either?).
- Rook polynomials
- Domb polynomials
- Apéry polynomials
- Boros-Moll polynomials
- Ramanujan polynomials
- Inversion enumerators for trees
- Reduced binomial discriminant polynomials

Example 1: Rook polynomials

- Non-attacking rooks on $n \times n$ chessboard with weight x per rook:

$$
R_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} k!x^{k}
$$

- Can prove: Stieltjes moment sequence for each $x \geq 0$.
(Can find explicit moment representation)
- Empirical: Hankel matrix is coefficientwise TP up to 11×11.
- Conjecture: Hankel matrix is coefficientwise TP.
(Special case of more general conjecture for Laguerre polynomials)
- We have conjectural (but unproven) branched continued fraction.

Example 2: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
- Theorem (conjectured by me, 2014; proven G. Edgar, unpub. 2016): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$
- Conjecture 1: $\left(A_{n}(x)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $x \geq 1$ (but not for $0<x<1$).
- Conjecture 2: $\left(A_{n}(1+y)\right)_{n \geq 0}$ is coefficientwise Hankel-TP in y. (Tested up to 12×12)
- Don't know (even conjecturally) any continued fraction.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Branched S-fractions are a powerful (but not universal) tool.
- Alas, in many cases none of these methods work!
- New methods of proof will be needed:
- Differential operators?
- Direct study of Hankel minors?
- . . . ???
- Coefficientwise Hankel-TP is a big phenomenon that we understand, at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948-2011)

