Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Université de Strasbourg - ICube, UMR CNRS 7357

ADG 2020-21

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and ncidence geometry

・ロト・西ト・山田・山田・山口・

Introduction

Short story

Few years ago, D. Michelucci and I wanted to have a fast automatic prover in order to avoid degenerate cases in a geometric constraints solving process.

- we focused on projective incidence geometry.
- we wanted to avoid coordinates and we studied some combinatorial methods, in particular matroid theory.
- in Strasbourg, we succeeded in proving Desargues's theorem with ranks and to have a certified proof in Coq.
- D. Braun, developed an automatic solver based on these ideas and succeeded in formally proving Dandelin-Gallucci's theorem.
- all our investigations concerned 2D and 3D, but it was possible to extend them toward higher dimensions.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Set of axioms

Axioms independent from dimension

- 1. $\forall A B$: Point $\exists d$: Line, $A \in d \land B \in d$
- 2. $\forall A B$: Point $\forall d d'$: Line, $A \in d \land B \in d \land A \in d' \land B \in d' \Rightarrow A = B \lor d = d'$
- 3. $\forall d$: Line $\exists A B C$: Point, $A \neq B \land A \neq B \land B \neq C \land A \in d \land B \in d \land C \in d$
- 4. $\forall A \ B \ C \ D \ M$: Point $\forall \ d_1 \ d_2 \ d_3 \ d_4$: Line,

$$A \in d_1 \land B \in d_1 \land M \in d_1 \land$$

$$C \in d_2 \land D \in d_2 \land M \in d_2 \land$$

$$A \in d_3 \land C \in d_3 \land B \in d_4 \land D \in d_4$$

$$\Rightarrow$$

 $\exists P : \mathsf{Point}, P \in d_3 \land P \in d_4$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Set of axioms (2)

Axioms for the plane

- 1. $\forall d d'$: Line $\exists A$: Point, $A \in d \land A \in d'$
- 2. $\exists d d'$: Line, $d \neq d'$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and incidence geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Set of axioms (2)

Axioms for the plane

- 1. $\forall d d'$: Line $\exists A$: Point, $A \in d \land A \in d'$
- 2. $\exists d d'$: Line, $d \neq d'$

(Usual) Axioms for the 3D-space

- 1. $\exists d d'$: Line, $\neg(\exists A : \mathsf{Point}, A \in d \land A \in d')$
- 2. $\forall d d' d''$: Line $\exists A B C$: Point $\exists \delta$: Line, $A \in d \land A \in \delta \land$ $B \in d' \land B \in \delta \land$ $C \in d'' \land C \in \delta$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Set of axioms (3)

Axioms for the plane

- 1. $\forall d d'$: Line $\exists A$: Point, $A \in d \land A \in d'$
- 2. $\exists d d'$: Line, $d \neq d'$

(Alternate) Axioms for the 3D-space

1. $\exists d d'$: Line, $\neg(\exists A : \mathsf{Point}, A \in d \land A \in d')$

2.
$$\forall d d' d'' : \text{Line}, \forall O : \text{Point}$$

 $d \neq d' \land O \in d \land O \in d' \Rightarrow$
 $\exists PMN : \text{Point}, \exists \delta$
 $P \in d'' \land$
 $O \notin \delta \land P \in \delta$
 $M \in \delta \land M \in d \land$
 $N \in \delta \land N \in d'$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

In *n* dimensions

Idea

In dimension n, a hyperplane is a subspace (a flat) with dimension n - 1.

Then, the upper-dimension axiom states that for any hyperplane H and any line δ , there is a point P belonging to H and δ .

 \Rightarrow inductive definition of *n*-dimensional flat and incidence point-flat.

In 3D

In 4D

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory (Whitney, 1935)

Goal : axiomatically capture the notion of linear dependency (without coordinates) ...

- Lot of equivalent definitions:
 - independent or dependent sets
 - bases
 - closure
 - rank functions
 - ..
- the notion of rank function fits well to our context (and make defining dimensions easier)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Axioms for defining a rank function

Consider a set E and its powerset to which X and Y belong: (Bounds)

$$(A_1) \quad \forall \ X, \ 0 \leq \mathsf{rk}(X) \leq |X|$$

(Submodularity)

 $(A_3) \quad \forall X Y, \ \mathsf{rk}(X \cup Y) + \mathsf{rk}(X \cap Y) \leq \mathsf{rk}(X) + \mathsf{rk}(Y)$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and incidence geometry

・ロト・日本・日本・日本・日本・日本

Geometric axioms

$$(A_4) \forall P, \mathsf{rk}(\{P\}) = 1$$

 $(A_5) \ \forall P \ Q, P \neq Q \Rightarrow \mathsf{rk}(\{P,Q\}) = 2$

$$\begin{array}{l} (A_6) \ \forall \ A \ B \ C \ D, \ \mathsf{rk}(\{A, B, C, D\}) \leq 3 \ \Rightarrow \\ \exists \ J :, \ \mathsf{rk}(\{A, B, J\}) = \mathsf{rk}(\{C, D, J\}) = 2 \end{array}$$

$$\begin{array}{l} (A_7) \ \forall \ A \ B, \ \exists \ C, \\ \mathsf{rk}(\{A, B, C\}) = \mathsf{rk}(\{B, C\}) = \mathsf{rk}(\{A, C\}) = 2 \end{array}$$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and incidence geometry

・ロト・西ト・田・・田・・日・ シック

Axioms for fixing a dimension (in 3D)

$$(A_8) \exists A B C D, \mathsf{rk}(\{A, B, C, D\}) \geq 4$$

 $(A_9) \forall A B C D, \mathsf{rk}(\{A, B, C, D\}) \leq 4$

$$\begin{array}{l} (A_{10}) \ \forall \ A \ B \ C \ A' \ B', \exists \ M, \\ \mathsf{rk}(\{A, B, C\}) = 3 \ \land \\ \mathsf{rk}(\{A', B'\}) = 2 \Rightarrow \\ \mathsf{rk}(\{A, B, C, M\}) = 3 \ \land \\ \mathsf{rk}(\{A', B', M\}) = 2 \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Result

In dimensions 2 and 3, the geometric axioms "are equivalent" to the corresponding ones expressed in matroid terms.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

$$\forall A B C, \forall A' B' C', \exists M N, \forall P \mathsf{rk}(\{A, B, C\}) = 3 \land \mathsf{rk}(\{A', B', C'\}) = 3 \land \mathsf{rk}(A, B, C, A', B', C') = 4 \Rightarrow \mathsf{rk}(\{A, B, C, M\}) = 3 \land \mathsf{rk}(\{A', B', C', M\}) = 3 \land \mathsf{rk}(\{A, B, C, N\}) = 3 \land \mathsf{rk}(\{A', B', C', N\}) = 3 \land \mathsf{rk}(\{M, N\}) = 2 \land (\mathsf{rk}(\{M, N, P\}) = 2 \Leftrightarrow \mathsf{rk}(\{A, B, C, P\}) = 3 \land \mathsf{rk}(\{A', B', C', P\}) = 3$$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Incidence geometry

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and incidence geometry

・ロト・日本・日本・日本・日本・日本

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by $A_{10.}$)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by $A_{10.}$)

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle ABC, then at least two of these three points are different.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle ABC, then at least two of these three points are different.

There are two cases: A = M or $A \neq M$: *Case* $rk(\{A, M\}) = 2$. Then $rk(\{A, C, M, N, Q\}) = 3$ because $rk(\{A, B, C, M, N, Q\}) + rk(\{A, M\}) \leq rk(\{A, B, M\}) + rk(\{A, C, M, N, Q\})$ with: $rk(\{A, C, M, N, Q\}) + rk(\{N\}) \leq rk(\{M, N, Q\}) + rk(\{A, C, N\})$ we have $rk(\{M, N, Q\}) \geq 2$. Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by $A_{10.}$)

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle ABC, then at least two of these three points are different.

Lemma

In a 3D incidence projective space, the intersection of two different planes is a line.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

$$\forall A B C A' B' C' M N, P \mathsf{rk}(\{A, B, C\}) = 3 \land \mathsf{rk}(\{A', B', C'\}) = 3 \land \mathsf{rk}(A, B, C, A', B', C') = 4 \land \mathsf{rk}(\{A, B, C, M\}) = 3 \land \mathsf{rk}(\{A', B', C', M\}) = 3 \land \mathsf{rk}(\{A, B, C, N\}) = 3 \land \mathsf{rk}(\{A', B', C', N\}) = 3 \land \mathsf{rk}(\{M, N\}) = 2 \land (\mathsf{rk}(\{M, N, P\}) = 2 \Leftrightarrow \mathsf{rk}(\{A, B, C, P\}) = 3 \land \mathsf{rk}(\{A', B', C', P\}) = 3$$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and incidence geometry

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

 $\forall A B C A' B' C' M N, P$ $rk(\{A, B, C\}) = 3 \land$ $\mathsf{rk}(\{A', B', C'\}) = 3 \land$ $\mathsf{rk}(A, B, C, A', B', C') = 4 \land$ $\mathsf{rk}(\{A, B, C, M\}) = 3 \land$ $\mathsf{rk}(\{A', B', C', M\}) = 3 \land$ $rk(\{A, B, C, N\}) = 3 \land$ $\mathsf{rk}(\{A', B', C', N\}) = 3 \land$ $rk(\{M, N\}) = 2 \land$ $rk(\{A, B, C, P\}) = 3 \land$ $rk({A', B', C', P}) = 3 \Rightarrow$ $rk(\{M, N, P\}) = 2$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Incidence geometry

```
\forall A B C A' B' C' M N, P
rk(\{A, B, C\}) = 3 \land
rk(\{A', B', C'\}) = 3 \land
\mathsf{rk}(A, B, C, A', B', C') = 4 \land
rk(\{A, B, C, M\}) = 3 \land
\mathsf{rk}(\{A', B', C', M\}) = 3 \land
rk(\{A, B, C, N\}) = 3 \land
\mathsf{rk}(\{A', B', C', N\}) = 3 \land
rk(\{M, N\}) = 2 \land
rk(\{A, B, C, P\}) = 3 \land
rk({A', B', C', P}) = 3 \Rightarrow
rk(\{M, N, P\}) = 2
```

```
Sketch of a proof
```

 $\mathsf{rk}(\{A, B, C, M, P\}) = 3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

```
\forall A B C A' B' C' M N, P
rk(\{A, B, C\}) = 3 \land
rk(\{A', B', C'\}) = 3 \land
\mathsf{rk}(A, B, C, A', B', C') = 4 \land
rk(\{A, B, C, M\}) = 3 \land
\mathsf{rk}(\{A', B', C', M\}) = 3 \land
rk(\{A, B, C, N\}) = 3 \land
\mathsf{rk}(\{A', B', C', N\}) = 3 \land
rk(\{M, N\}) = 2 \land
rk(\{A, B, C, P\}) = 3 \land
rk({A', B', C', P}) = 3 \Rightarrow
rk(\{M, N, P\}) = 2
```

Sketch of a proof

 $rk({A, B, C, M, P}) = 3$ (*i*) $rk({A, B, C, M, P}) \ge 3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

```
\forall A B C A' B' C' M N, P
rk(\{A, B, C\}) = 3 \land
rk(\{A', B', C'\}) = 3 \land
\mathsf{rk}(A, B, C, A', B', C') = 4 \land
rk(\{A, B, C, M\}) = 3 \land
\mathsf{rk}(\{A', B', C', M\}) = 3 \land
rk(\{A, B, C, N\}) = 3 \land
rk(\{A', B', C', N\}) = 3 \land
rk(\{M, N\}) = 2 \land
rk(\{A, B, C, P\}) = 3 \land
rk({A', B', C', P}) = 3 \Rightarrow
rk(\{M, N, P\}) = 2
```

Sketch of a proof $rk(\{A, B, C, M, P\}) = 3$ (*i*) $rk(\{A, B, C, M, P\}) \ge 3$ (*ii*) $rk(\{A, B, C, M, P\}) + rk(\{A, B, C\})$ \le $rk(\{A, B, C, M\}) + rk(\{A, B, C, P\})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

```
\forall A B C A' B' C' M N, P
rk(\{A, B, C\}) = 3 \land
rk(\{A', B', C'\}) = 3 \land
\mathsf{rk}(A, B, C, A', B', C') = 4 \land
rk(\{A, B, C, M\}) = 3 \land
\mathsf{rk}(\{A', B', C', M\}) = 3 \land
rk(\{A, B, C, N\}) = 3 \land
rk(\{A', B', C', N\}) = 3 \land
rk(\{M, N\}) = 2 \land
rk(\{A, B, C, P\}) = 3 \land
rk({A', B', C', P}) = 3 \Rightarrow
rk(\{M, N, P\}) = 2
```

Sketch of a proof $rk(\{A, B, C, M, P\}) = 3$ (*i*) $rk(\{A, B, C, M, P\}) \ge 3$ (*ii*) $rk(\{A, B, C, M, P\}) + 3$ \le 3 + 3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

```
\forall A B C A' B' C' M N, P
rk(\{A, B, C\}) = 3 \land
rk(\{A', B', C'\}) = 3 \land
\mathsf{rk}(A, B, C, A', B', C') = 4 \land
rk(\{A, B, C, M\}) = 3 \land
\mathsf{rk}(\{A', B', C', M\}) = 3 \land
rk(\{A, B, C, N\}) = 3 \land
rk(\{A', B', C', N\}) = 3 \land
rk(\{M, N\}) = 2 \land
rk(\{A, B, C, P\}) = 3 \land
rk({A', B', C', P}) = 3 \Rightarrow
rk(\{M, N, P\}) = 2
```

Sketch of a proof $rk(\{A, B, C, M, P\}) = 3$ $rk(\{A', B', C', M, P\}) = 3$ $rk(\{A, B, C, M, N, P\}) = 3$ $rk(\{A', B', C', M, N, P\}) = 3$ $rk(\{A, B, C, A', B', C', M, N, P\}) = 4$ $rk(\{M, N, P\}) = 2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

The incomplete matroid problem

Problems

Let E be a given set and r be a rank function on E. The value of r is only known for some subsets of E,

- is r fully defined on $\mathcal{P}(E)$?
- given a set $A \subseteq E$, is it possible to compute r(A)?

It is possible to answer by using a simple but tedious method.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Rules of the game

Considering the powerset $\mathcal{P}(E)$ where the bounds of the rank function are initialized for each set, one applies as much as possible the following rules.

8 rules corresponding to axioms A_2 and A_3 :

Monotonicity

(r₁) if $X \subseteq Y$ and rkMin(X) > rkMin(Y) then $rkMin(Y) \leftarrow rkMin(X)$ (r₂) if $Y \subseteq X$ and rkMin(Y) > rkMin(X) then $rkMin(X) \leftarrow rkMin(Y)$ (r₃) if $X \subseteq Y$ and rkMax(Y) < rkMax(X) then $rkMax(X) \leftarrow rkMax(Y)$ (r₄) if $Y \subseteq X$ and rkMax(X) < rkMax(Y) then $rkMax(Y) \leftarrow rkMax(X)$

Submodularity

 $(r_5) \text{ if } rkMax(X) + rkMax(Y) - rkMin(X \cap Y) < rkMax(X \cup Y) \\ then rkMax(X \cup Y) \leftarrow (rkMax(X) + rkMax(Y) - rkMin(X \cap Y)) \\ (r_6) \text{ if } rkMax(X) + rkMax(Y) - rkMin(X \cup Y) < rkMax(X \cap Y) \\ then rkMax(X \cap Y) \leftarrow (rkMax(X) + rkMax(Y) - rkMin(X \cup Y)) \\ (r_7) \text{ if } rkMin(X \cap Y) + rkMin(X \cup Y) - rkMax(Y) > rkMin(X) \\ then rkMin(X) \leftarrow (rkMin(X \cap Y) + rkMin(X \cup Y) - rkMax(Y)) \\ (r_8) \text{ if } rkMin(X \cap Y) + rkMin(X \cup Y) - rkMax(X) > rkMin(Y) \\ then rkMin(Y) \leftarrow (rkMin(X \cap Y) + rkMin(X \cup Y) - rkMax(X)) \\ rkMin(Y) \leftarrow (rkMin(X \cap Y) + rkMin(X \cup Y) - rkMax(X)) \\$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Implementation

A matroid Based Incidence geometry Prover (Bip)

- basic solver of the incomplete matroid problem in the geometric case ... but yielding proofs that can be automatically verified by Coq;
- originally two versions: 2D and 3D;
- aimed to help a mathematician in proving "small parts" of a theorem ... but used to prove significant theorems;
- huge complexity (at least exponential in the number of points)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Limitations

A closed world hypothesis

The previous method works on a given set of points E. Theoretically, it is possible to add some auxiliary point on the fly, but we then face to a huge complexity.

Disjunctive situations

Sometimes, there are several possibilities, but to complete each of them the different cases have to be explicitly given by the user (see the example above).

Usability

In the first prototype, all was hard codded and a re-compilation was needed for each example. Poor interaction with Coq.

 \Rightarrow IO with files and *ad hoc* description language

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Limitations

Complexity and huge Coq proofs

As said before, the time and space complexities are exponential, but also the proofs can be huge (several dozen of kilo-lines). Coq is unable to treat a monolithic of that size.

- \Rightarrow systematic decomposition into basic lemmas.
- \Rightarrow several conclusions taken into account.

Dimensions

The initial prototype only dealt with dimensions 2 and 3. \Rightarrow small changes on data structures and small changes in Coq context to deal with higher dimensions. Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Recall : a crucial step in the proof of Desargues's theorem in 2D, sometimes called 2.5d configuration.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Desargues's theorem in 4D

given 2 pentachores P and P' which are in perspective from a point O, the 10 points defined by the intersection of the corresponding edges define a 3D space and form a 2.5d Desargues's configuration.

イロト 不得 トイヨト イヨト 二日 -

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Desargues's theorem in 4D

given 2 pentachores P and P' which are in perspective from a point O, the 10 points defined by the intersection of the corresponding edges define a 3D space and form a 2.5d Desargues's configuration.

Symmetry

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

ncidence geometry

context dimension 4 endofcontext points Oo A B C D E Ap Bp Cp Dp Ep ab ac ad ae bc bd be cd ce de hypotheses ABCDE: 5 A Ap : 2 B Bp : 2 C Cp : 2 D Dp : 2 E Ep : 2 Ap Bp Cp Dp Ep : 5 Oo A Ap : 2 Oo B Bp : 2 # B Oo C Cp : 2 # C Oo D Dp : 2 # D Oo E Ep : 2 # E ab A B : 2 ab Ap Bp : 2 ac A C : 2 ac Ap Cp : 2 ad A D : 2 ad Ap Dp : 2 ae A E · 2 ae Ap Ep : 2 bc B C : 2 bc Bp Cp : 2 bd B D · 2 bd Bp Dp : 2

be B E : 2 be Bp Ep : 2 cd C D · 2 cd Cp Dp : 2 ce C E : 2 ce Cp Ep : 2 de DE: 2 de Dp Ep : 2 Do B C D E · 5 A Oo C D E : 5 A B 00 D E : 5 A B C Oo E : 5 A B C D Oo : 5 Oo Bp Cp Dp Ep : 5 Ap Oo Cp Dp Ep : 5 Ap Bp Oo Dp Ep : 5 Ар Вр Ср Оо Ер : 5 Ap Bp Cp Dp Oo : 5 conclusion ab ac ad ae bc bd be cd ce de : 4 cd ce de : 2 hd he de · 2 bc be ce : 2 bc bd cd : 2 ad ae de · 2 ac ae ce · 2 ac ad cd : 2 ab ae be : 2 ab ad bd · 2 ad ac bc : 2 end

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

4D

- 21 points involved
- the proof of 11 values of ranks are required
- Computation time : about 1 week
- Coq file size : 47,4 Mb
- number of lines : 497157 (a lot of comments)
- number of lemmas : 2517

For the first line of the conclusion

- Computation time : about 1 week
- Coq file size : 6.2 Mb (x 11 = 68.2 Mb)
- number of lines : 62,000 (x 11 = 682,000 lines)
- number of lemmas : 635 (x 11 = 6985)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Desargues's theorem in 5D

Theorem

In a projective incidence space of dimension 5, for all couple of 5-simplexes which are in perspective from a point O if the 15 couples of corresponding edges intersect each in exactly one point, then

- \blacktriangleright these points belong to a 4-dimensional space H, and
- they form a figure composed by the vertices of a pentachore P and the intersection of the edges of P with a hyperplane of H.

Comments

- 28 points are involved,
- the expected computation time will be about 128 weeks
 2 years and a half (with my old PC)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

ncidence geometry

Simple example in 5D

Hyperplanes in 5D

(Axiom) In 5D, the intersection of a hyperplane (dim 4) and a line is at least a point:
∀ A B C D E M N, exists P,
rk({A, B, C, D, E}) = 5 ∧ rk({M, N}) = 2 ⇒
rk({A, B, C, D, E, P}) = 5 ∧ rk({M, N, P}) = 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Simple example in 5D

Hyperplanes in 5D

(Axiom) In 5D, the intersection of a hyperplane (dim 4) and a line is at least a point:
∀ A B C D E M N, exists P,
rk({A, B, C, D, E}) = 5 ∧ rk({M, N}) = 2 ⇒
rk({A, B, C, D, E, P}) = 5 ∧ rk({M, N, P}) = 2

- (Theorem) In 5D, the intersection of two distinct hyperplanes is a 3-dimensional space. Sketch of the proof:
 - there are four independent points in the intersection (5 cases)
 - these four points span the intersection (double inclusion)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Existence (none of A ... E is in the intersection)

there are 4 points in <ABCDE> inter <A'B'C'D'E'> case ABCDE notin <A'B'C'D'E'> context dimension 5 lavers 1 endofcontext layer 0 points A B C D E A' B' C' D' E' p1 p2 p3 p4 hypotheses ABCDE: 5 A' B' C' D' E' : 5 A B C D E A' B' C' D' E' : 6 p1 A B : 2 p1 A : 2 p1 B : 2 p2 A C : 2 p2 C : 2 p2 A : 1 p3 A D : 2 p3 D : 2 p3 A : 2 p4 A E : 2 p4 A : 2 p4 E : 2 p1 A' B' C' D' E' : 5 p2 A' B' C' D' E' : 5 p3 A' B' C' D' E' : 5 p4 A' B' C' D' E' : 5 conclusion None endoflaver conclusion p1 p2 p3 p4 : 4 end ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@ Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Simple example in 5D

in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional # all subsets of 5 points (as independent as possible) have a rank equal to 4 context dimension 5 lavers 1 endofcontext layer 0 points A B C D E A' B' C' D' E' I J K L M hypotheses ABCDE: 5 A' B' C' D' E' : 5 A B C D E A' B' C' D' E' : 6 TABCDE: 5 IABCDE · 5 KABCDE: 5 LABCDE: 5 MABCDE · 5 I A' B' C' D' E' : 5 J A' B' C' D' E' : 5 K A' B' C' D' E' : 5 L A' B' C' D' E' : 5 M A' B' C' D' E' : 5 T J K L : 4 conclusion None endoflayer conclusion T. T. K. T. M · 4 end

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Simple example in 5D

in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional # here : the 3-space is included in the intersection. context dimension 5 lavers 1 endofcontext layer 0 points A B C D E A' B' C' D' E' I J K L M hypotheses ABCDE: 5 A' B' C' D' E' : 5 A B C D E A' B' C' D' E' : 6 TABCDE: 5 IABCDE · 5 KABCDE: 5 LABCDE: 5 I A' B' C' D' E' : 5 J A' B' C' D' E' : 5 K A' B' C' D' E' : 5 L A' B' C' D' E' : 5 T.I.K.I. · 4 T.J.K.I.M: 4 conclusion None endoflayer conclusion MABCDE: 5 M A' B' C' D' E' 5 end

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Conclusion

A positive conclusion

The matroid approach easily allows to consider incidence geometry in higher dimensions.

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and ncidence geometry

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

A positive conclusion

The matroid approach easily allows to consider incidence geometry in higher dimensions.

However

- it suffers of a huge complexity
- it is not fully automatized:
 - existential quantification not taken into account
 - incapacity to deal with several cases

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

ncidence geometry

Matroid theory and ncidence geometry

・ロト・日本・山田・山田・山口・

Conclusion

A positive conclusion

The matroid approach easily allows to consider incidence geometry in higher dimensions.

However

- it suffers of a huge complexity
- it is not fully automatized:
 - existential quantification not taken into account

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

incapacity to deal with several cases

To be continued

- interactivity
- consider smarter algorithms

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Introduction

ncidence geometry