Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach

P. Schreck

Université de Strasbourg - ICube, UMR CNRS 7357
ADG 2020-21

Introduction

Short story
Few years ago, D. Michelucci and I wanted to have a fast automatic prover in order to avoid degenerate cases in a geometric constraints solving process.

- we focused on projective incidence geometry.
- we wanted to avoid coordinates and we studied some combinatorial methods, in particular matroid theory.
- in Strasbourg, we succeeded in proving Desargues's theorem with ranks and to have a certified proof in Coq.
- D. Braun, developed an automatic solver based on these ideas and succeeded in formally proving Dandelin-Gallucci's theorem.
- all our investigations concerned 2D and 3D, but it was possible to extend them toward higher dimensions.

Set of axioms

Axioms independent from dimension

1. $\forall A B$: Point $\exists d$: Line, $A \in d \wedge B \in d$
2. $\forall A B$: Point $\forall d d^{\prime}:$ Line, $A \in d \wedge B \in d \wedge A \in$ $d^{\prime} \wedge B \in d^{\prime} \Rightarrow A=B \vee d=d^{\prime}$
3. $\forall d$: Line $\exists A B C$: Point, $A \neq B \wedge A \neq B \wedge B \neq$ $C \wedge A \in d \wedge B \in d \wedge C \in d$
4. $\forall A B C D M$: Point $\forall d_{1} d_{2} d_{3} d_{4}$: Line,
$A \in d_{1} \wedge B \in d_{1} \wedge M \in d_{1} \wedge$
$C \in d_{2} \wedge D \in d_{2} \wedge M \in d_{2} \wedge$
$A \in d_{3} \wedge C \in d_{3} \wedge B \in d_{4} \wedge D \in d_{4}$
\Rightarrow
$\exists P:$ Point, $P \in d_{3} \wedge P \in d_{4}$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach
P. Schreck

Set of axioms (2)

Axioms for the plane

1. $\forall d d^{\prime}:$ Line $\exists A$: Point, $A \in d \wedge A \in d^{\prime}$
2. $\exists d d^{\prime}:$ Line, $d \neq d^{\prime}$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial
approach
P. Schreck

Introduction

Incidence geometry
Matroid theory and incidence geometry

Set of axioms (2)

Axioms for the plane

1. $\forall d d^{\prime}:$ Line $\exists A$: Point, $A \in d \wedge A \in d^{\prime}$
2. $\exists d d^{\prime}$: Line, $d \neq d^{\prime}$
(Usual) Axioms for the 3D-space
3. $\exists d d^{\prime}:$ Line, $\neg\left(\exists A\right.$: Point, $\left.A \in d \wedge A \in d^{\prime}\right)$
4. $\forall d d^{\prime} d^{\prime \prime}$: Line
$\exists A B C$: Point $\exists \delta$: Line,
$A \in d \wedge A \in \delta \wedge$
$B \in d^{\prime} \wedge B \in \delta \wedge$
$C \in d^{\prime \prime} \wedge C \in \delta$

Mechanization of
incidence
projective
geometry in higher
dimensions, a
combinatorial
approach
P. Schreck

Set of axioms (3)

Axioms for the plane

1. $\forall d d^{\prime}:$ Line $\exists A$: Point, $A \in d \wedge A \in d^{\prime}$
2. $\exists d d^{\prime}:$ Line, $d \neq d^{\prime}$
(Alternate) Axioms for the 3D-space
3. $\exists d d^{\prime}:$ Line, $\neg\left(\exists A\right.$: Point, $\left.A \in d \wedge A \in d^{\prime}\right)$
4. $\forall d d^{\prime} d^{\prime \prime}:$ Line, $\forall O:$ Point $d \neq d^{\prime} \wedge O \in d \wedge O \in d^{\prime} \Rightarrow$ $\exists P M N$: Point, $\exists \delta$
$P \in d^{\prime \prime} \wedge$
$O \notin \delta \wedge P \in \delta$
$M \in \delta \wedge M \in d \wedge$
$N \in \delta \wedge N \in d^{\prime}$

Mechanization of
incidence
projective geometry in higher dimensions, a combinatorial approach
P. Schreck

In n dimensions

Idea

In dimension n, a hyperplane is a subspace (a flat) with dimension $n-1$.
Then, the upper-dimension axiom states that for any hyperplane H and any line δ, there is a point P belonging to H and δ.
\Rightarrow inductive definition of n-dimensional flat and incidence point-flat.

In 3D

```
ln 4D
```


Mechanization of

Matroid theory (Whitney, 1935)

Mechanization of
incidence
projective
geometry in higher
dimensions, a
combinatorial
approach
P. Schreck

- Goal : axiomatically capture the notion of linear dependency (without coordinates) ...
- Lot of equivalent definitions:
- independent or dependent sets
- bases
- closure
- rank functions
- the notion of rank function fits well to our context (and make defining dimensions easier)

Axioms for defining a rank function

Consider a set E and its powerset to which X and Y belong:
(Bounds)
$\left(A_{1}\right) \quad \forall X, 0 \leq \operatorname{rk}(X) \leq|X|$
(Monotonicity)
$\left(A_{2}\right) \quad \forall X Y, X \subseteq Y \Rightarrow \operatorname{rk}(X) \leq \operatorname{rk}(Y)$
(Submodularity)
$\left(A_{3}\right) \quad \forall X Y, \operatorname{rk}(X \cup Y)+\operatorname{rk}(X \cap Y) \leq \operatorname{rk}(X)+\operatorname{rk}(Y)$

Geometric axioms

Mechanization of incidence projective
geometry in higher dimensions, a combinatorial approach
P. Schreck
$\left(A_{4}\right) \forall P, \operatorname{rk}(\{P\})=1$
$\left(A_{5}\right) \forall P Q, P \neq Q \Rightarrow \operatorname{rk}(\{P, Q\})=2$
$\left(A_{6}\right) \forall A B C D, r k(\{A, B, C, D\}) \leq 3 \Rightarrow$ $\exists J:, \operatorname{rk}(\{A, B, J\})=\operatorname{rk}(\{C, D, J\})=2$
$\left(A_{7}\right) \forall A B, \exists C$, $\operatorname{rk}(\{A, B, C\})=\operatorname{rk}(\{B, C\})=\operatorname{rk}(\{A, C\})=2$

Axioms for fixing a dimension (in 3D)

$\left(A_{8}\right) \exists A B C D, \operatorname{rk}(\{A, B, C, D\}) \geq 4$
$\left(A_{9}\right) \forall A B C D, \operatorname{rk}(\{A, B, C, D\}) \leq 4$
$\left(A_{10}\right) \forall A B \subset A^{\prime} B^{\prime}, \exists M$, $\operatorname{rk}(\{A, B, C\})=3 \wedge$
$\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}\right\}\right)=2 \Rightarrow$
$\operatorname{rk}(\{A, B, C, M\})=3 \wedge$
$\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, M\right\}\right)=2$


```
Mechanization of
    incidence
    projective
geometry in higher
    dimensions, a
    combinatorial
    approach
    P. Schreck
```


Result

Mechanization of incidence projective
geometry in higher dimensions, a
combinatorial
approach
P. Schreck

Introduction

In dimensions 2 and 3, the geometric axioms "are equivalent" to the corresponding ones expressed in matroid terms.

Matroid theory and incidence geometry

Utilization through a simple example

```
\(\forall A B C, \forall A^{\prime} B^{\prime} C^{\prime}, \exists M N, \forall P\)
\(\operatorname{rk}(\{A, B, C\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge\)
\(\operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \Rightarrow\)
\(\operatorname{rk}(\{A, B, C, M\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge\)
\(\operatorname{rk}(\{A, B, C, N\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge\)
\(\operatorname{rk}(\{M, N\})=2 \wedge\)
(
rk \((\{M, N, P\})=2 \Leftrightarrow\)
\(\operatorname{rk}(\{A, B, C, P\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3\)
)
```


Utilization through a simple example (2)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial
approach
P. Schreck

Introduction

Incidence geometry
Matroid theory and incidence geometry

Utilization through a simple example (2)

Mechanization of incidence projective geometry in higher dimensions, a combinatorial
approach
P. Schreck

Introduction

Incidence reometry
Matroid theory and incidence geometry

Utilization through a simple example (2)

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by A_{10}.)

Utilization through a simple example (2)

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by A_{10}.)

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle $A B C$, then at least two of these three points are different.

Utilization through a simple example (2)

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle $A B C$, then at least two of these three points are different.
There are two cases: $A=M$ or $A \neq M$:
Case $\operatorname{rk}(\{A, M\})=2$.
Then $\operatorname{rk}(\{A, C, M, N, Q\})=3$ because
$\operatorname{rk}(\{A, B, C, M, N, Q\})+\operatorname{rk}(\{A, M\}) \leq \operatorname{rk}(\{A, B, M\})+\operatorname{rk}(\{A, C, M, N, Q\})$
with: $\operatorname{rk}(\{A, C, M, N, Q\})+\operatorname{rk}(\{N\}) \leq \operatorname{rk}(\{M, N, Q\})+\operatorname{rk}(\{A, C, N\})$
we have $\operatorname{rk}(\{M, N, Q\}) \geq 2$.

Utilization through a simple example (2)

Lemma

With the previous notations, there is at least one point M in the intersection of the two planes. (Proof by A_{10}.)

Lemma

In an incidence projective plane, if three points M, N and Q are on the three edges of a triangle $A B C$, then at least two of these three points are different.

Lemma

In a 3D incidence projective space, the intersection of two different planes is a line.

Utilization through a simple example (3)

```
\(\forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P\)
\(\operatorname{rk}(\{A, B, C\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3\)
\(\operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge\)
\(\operatorname{rk}(\{A, B, C, M\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge\)
\(\operatorname{rk}(\{A, B, C, N\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge\)
\(\operatorname{rk}(\{M, N\})=2 \wedge\)
(
rk \((\{M, N, P\})=2 \Leftrightarrow\)
\(\operatorname{rk}(\{A, B, C, P\})=3 \wedge \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3\)
)
```


Utilization through a simple example (3)

$$
\begin{aligned}
& \forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P \\
& \operatorname{rk}(\{A, B, C\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge \\
& \operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge \\
& \operatorname{rk}(\{A, B, C, M\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{A, B, C, N\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{M, N\})=2 \wedge \\
& \operatorname{rk}(\{A, B, C, P\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow \\
& \operatorname{rk}(\{M, N, P\})=2
\end{aligned}
$$

Utilization through a simple example (3)

$$
\begin{aligned}
& \forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P \\
& \operatorname{rk}(\{A, B, C\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge \\
& \operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge \\
& \operatorname{rk}(\{A, B, C, M\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{A, B, C, N\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{M, N\})=2 \wedge \\
& \operatorname{rk}(\{A, B, C, P\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow \\
& \operatorname{rk}(\{M, N, P\})=2
\end{aligned}
$$

Utilization through a simple example (3)

$$
\begin{array}{lc}
\forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P & \\
\operatorname{rk}(\{A, B, C\})=3 \wedge & \text { Sketch of a proof } \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge & \operatorname{rk}(\{A, B, C, M, P\})=3 \\
\operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge & (i) \operatorname{rk}(\{A, B, C, M, P\}) \geq 3 \\
\operatorname{rk}(\{A, B, C, M\})=3 \wedge & \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge & \\
\operatorname{rk}(\{A, B, C, N\})=3 \wedge & \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge & \\
\operatorname{rk}(\{M, N\})=2 \wedge & \\
\operatorname{rk}(\{A, B, C, P\})=3 \wedge & \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow &
\end{array}
$$

Mechanization of incidence
projective
 dimensions, a combinatorial approach
P. Schreck

Utilization through a simple example (3)

$$
\begin{aligned}
& \forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P \\
& \operatorname{rk}(\{A, B, C\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge \\
& \operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge \\
& \operatorname{rk}(\{A, B, C, M\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{A, B, C, N\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge \\
& \operatorname{rk}(\{M, N\})=2 \wedge \\
& \operatorname{rk}(\{A, B, C, P\})=3 \wedge \\
& \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow \\
& \operatorname{rk}(\{M, N, P\})=2
\end{aligned}
$$

Sketch of a proof
$\operatorname{rk}(\{A, B, C, M, P\})=3$
(i) $\operatorname{rk}(\{A, B, C, M, P\}) \geq 3$
(ii) $\operatorname{rk}(\{A, B, C, M, P\})+\operatorname{rk}(\{A, B, C\})$ \leq
$\operatorname{rk}(\{A, B, C, M\})+\operatorname{rk}(\{A, B, C, P\})$

Mechanization of
incidence
projective
geometry in higher dimensions, a combinatorial approach
P. Schreck

Utilization through a simple example (3)

$$
\begin{array}{lc}
\forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P & \\
\operatorname{rk}(\{A, B, C\})=3 \wedge & \text { Sketch of a proof } \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge & \operatorname{rk}(\{A, B, C, M, P\})=3 \\
\operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge & (i) \operatorname{rk}(\{A, B, C, M, P\}) \geq 3 \\
\operatorname{rk}(\{A, B, C, M\})=3 \wedge & (i i) \operatorname{rk}(\{A, B, C, M, P\})+3 \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge & \leq \\
\operatorname{rk}(\{A, B, C, N\})=3 \wedge & 3+3 \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge & \\
\operatorname{rk}(\{M, N\})=2 \wedge & \\
\operatorname{rk}(\{A, B, C, P\})=3 \wedge & \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow & \\
\operatorname{rk}(\{M, N, P\})=2 &
\end{array}
$$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach
P. Schreck

Utilization through a simple example (3)

$$
\begin{array}{ll}
\forall A B C A^{\prime} B^{\prime} C^{\prime} M N, P & \\
\operatorname{rk}(\{A, B, C\})=3 \wedge & \text { Sketch of a proof } \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}\right)=3 \wedge & \operatorname{rk}(\{A, B, C, M, P\})=3 \\
\operatorname{rk}\left(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\right)=4 \wedge & \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M, P\right\}\right)=3 \\
\operatorname{rk}(\{A, B, C, M\})=3 \wedge & \operatorname{rk}(\{A, B, C, M, N, P\})=3 \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M\right\}\right)=3 \wedge & \operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, M, N, P\right\}\right)=3 \\
\operatorname{rk}(\{A, B, C, N\})=3 \wedge & \operatorname{rk}\left(\left\{A, B, C, A^{\prime}, B^{\prime}, C^{\prime}, M, N, P\right\}\right)=4 \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, N\right\}\right)=3 \wedge & \operatorname{rk}(\{M, N, P\})=2 \\
\operatorname{rk}(\{M, N\})=2 \wedge & \\
\operatorname{rk}(\{A, B, C, P\})=3 \wedge & \\
\operatorname{rk}\left(\left\{A^{\prime}, B^{\prime}, C^{\prime}, P\right\}\right)=3 \Rightarrow & \\
\operatorname{rk}(\{M, N, P\})=2 &
\end{array}
$$

incidence
 approach
P. Schreck

The incomplete matroid problem

Problems

Let E be a given set and r be a rank function on E. The value of r is only known for some subsets of E,

- is r fully defined on $\mathcal{P}(E)$?
- given a set $A \subseteq E$, is it possible to compute $r(A)$?

It is possible to answer by using a simple but tedious method.

Rules of the game

Considering the powerset $\mathcal{P}(E)$ where the bounds of the rank function are initialized for each set, one applies as much as possible the following rules.
8 rules corresponding to axioms A_{2} and A_{3} :

Monotonicity

$\left(r_{1}\right)$ if $X \subseteq Y$ and $r k M i n(X)>r k M i n(Y)$ then $r k M i n(Y) \leftarrow r k M i n(X)$
$\left(r_{2}\right)$ if $Y \subseteq X$ and $r k M i n(Y)>r k M i n(X)$ then $r k M i n(X) \leftarrow r k M i n(Y)$
$\left(r_{3}\right)$ if $X \subseteq Y$ and $r k M a x(Y)<r k M a x(X)$ then $r k M a x(X) \leftarrow r k M a x(Y)$
$\left(r_{4}\right)$ if $Y \subseteq X$ and $r k M a x(X)<r k M a x(Y)$ then $r k M a x(Y) \leftarrow r k M a x(X)$

Submodularity

$\left(r_{5}\right)$ if $r k M a x(X)+r k M a x(Y)-r k M i n(X \cap Y)<r k M a x(X \cup Y)$ then $r k M a x(X \cup Y) \leftarrow(r k M a x(X)+r k M a x(Y)-r k M i n(X \cap Y))$ $\left(r_{6}\right)$ if $r k \operatorname{Max}(X)+r k M a x(Y)-r k M i n(X \cup Y)<r k M a x(X \cap Y)$ then $r k M a x(X \cap Y) \leftarrow(r k M a x(X)+r k M a x(Y)-r k M i n(X \cup Y))$ $\left(r_{7}\right)$ if $r k M i n(X \cap Y)+r k M i n(X \cup Y)-r k M a x(Y)>r k M i n(X)$ then $r k \operatorname{Min}(X) \leftarrow(r k M i n(X \cap Y)+r k M i n(X \cup Y)-r k M a x(Y))$
$\left(r_{8}\right)$ if $r k \operatorname{Min}(X \cap Y)+r k M i n(X \cup Y)-r k M a x(X)>r k M i n(Y)$
then $r k M i n(Y) \leftarrow(r k M i n(X \cap Y)+r k M i n(X \cup Y)-r k M a x(X))$

Implementation

A matroid Based Incidence geometry Prover (Bip)

- basic solver of the incomplete matroid problem in the geometric case ... but yielding proofs that can be automatically verified by Coq;
- originally two versions: 2D and 3D;
- aimed to help a mathematician in proving "small parts" of a theorem ... but used to prove significant theorems;
- huge complexity (at least exponential in the number of points)

Limitations

A closed world hypothesis
The previous method works on a given set of points E.
Theoretically, it is possible to add some auxiliary point on the fly, but we then face to a huge complexity.

Disjunctive situations

Sometimes, there are several possibilities, but to complete each of them the different cases have to be explicitly given by the user (see the example above).

Usability

In the first prototype, all was hard codded and a re-compilation was needed for each example.
Poor interaction with Coq.
\Rightarrow IO with files and ad hoc description language

Limitations

Complexity and huge Coq proofs

As said before, the time and space complexities are exponential, but also the proofs can be huge (several dozen of kilo-lines). Coq is unable to treat a monolithic of that size.
\Rightarrow systematic decomposition into basic lemmas.
\Rightarrow several conclusions taken into account.
Dimensions
The initial prototype only dealt with dimensions 2 and 3 . \Rightarrow small changes on data structures and small changes in Coq context to deal with higher dimensions.

Desargues's theorem in 3D and 4D

Recall : a crucial step in the proof of Desargues's theorem in 2 D , sometimes called 2.5 d configuration.

Desargues's theorem in 3D and 4D
Real 3D configuration (figure made with Geogebra 3D):

Desargues's theorem in 3D and 4D

Desargues's theorem in 4D given 2 pentachores P and P^{\prime} which are in perspective from a point O, the 10 points defined by the intersection of the corresponding edges define a 3D space and form a 2.5 d Desargues's configuration.

Desargues's theorem in 3D and 4D

Desargues's theorem in 4D

given 2 pentachores P and P^{\prime} which are in perspective from a point O, the 10 points defined by the intersection of the corresponding edges define a 3D space and form a 2.5 d Desargues's configuration.

Symmetry

Desargues's theorem in 3D and 4D

Mechanization of
incidence
projective
geometry in higher
dimensions, a
combinatorial
approach
P. Schreck

Introduction

Incidence geometry
Matroid theory and incidence geometry

Desargues's theorem in 3D and 4D

4D

- 21 points involved
- the proof of 11 values of ranks are required
- Computation time: about 1 week
- Coq file size : $47,4 \mathrm{Mb}$
- number of lines: 497157 (a lot of comments)
- number of lemmas: 2517

For the first line of the conclusion

- Computation time : about 1 week
- Coq file size : $6.2 \mathrm{Mb}(\times 11=68.2 \mathrm{Mb})$
- number of lines : $62,000(x 11=682,000$ lines $)$
- number of lemmas: $635(\times 11=6985)$

Desargues's theorem in 5D

Theorem

In a projective incidence space of dimension 5, for all couple 15 couples of corresponding edges intersect each in exactly one point, then

- these points belong to a 4-dimensional space H, and
- they form a figure composed by the vertices of a pentachore P and the intersection of the edges of P with a hyperplane of H.

Comments

- 28 points are involved,
- the expected computation time will be about 128 weeks ~ 2 years and a half (with my old PC)

Simple example in 5D

Hyperplanes in 5D

- (Axiom) In 5D, the intersection of a hyperplane (dim 4) and a line is at least a point:
$\forall A B C D E M N$, exists P,
$\operatorname{rk}(\{A, B, C, D, E\})=5 \wedge \operatorname{rk}(\{M, N\})=2 \Rightarrow$
$\operatorname{rk}(\{A, B, C, D, E, P\})=5 \wedge \operatorname{rk}(\{M, N, P\})=2$

Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach
P. Schreck

Simple example in 5D

- (Axiom) In 5D, the intersection of a hyperplane (dim 4) and a line is at least a point:
$\forall A B C D E M N$, exists P, $\operatorname{rk}(\{A, B, C, D, E\})=5 \wedge \operatorname{rk}(\{M, N\})=2 \Rightarrow$ $\operatorname{rk}(\{A, B, C, D, E, P\})=5 \wedge \operatorname{rk}(\{M, N, P\})=2$
- (Theorem) In 5D, the intersection of two distinct hyperplanes is a 3-dimensional space. Sketch of the proof:
- there are four independent points in the intersection (5 cases)
- these four points span the intersection (double inclusion)

Existence (none of $A \ldots E$ is in the intersection)

Mechanization of
incidence
projective
\# there are 4 points in <ABCDE> inter <A'B'C'D'E'> case ABCDE notin <A'B'C'D'E'> context
dimension 5
layers 1
endof context
layer 0
points
hypotheses
A B C D E : 5
$A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}: 5$
A B C D E A' $B^{\prime} C^{\prime} D^{\prime} E^{\prime}: 6$
p1 A B : 2
p1 A : 2
p1 B : 2
p2 A C : 2
p2 C : 2
p2 A : 1
p3 A D : 2
p3 D : 2
p3 A : 2
p4 A E : 2
p4 A : 2
p4 E : 2
p1 A' $B^{\prime} C^{\prime} D^{\prime} E^{\prime}: 5$
p2 A' B' C' D' E' : 5
p3 A' B' C' D' E' : 5
p4 A' B' C' D' E' : 5
conclusion
None
endoflayer
conclusion
p1 p2 p3 p4 : 4
end

Simple example in 5D

```
# in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional
# all subsets of 5 points (as independent as possible) have a rank equal to 4
context
    dimension 5
    layers 1
endofcontext
layer 0
    points
    A B C D E A' B' C' D' E' I J K L M
    hypotheses
        A B C D E : 5
        A' B' C' D' E' : 5
        A B C D E A' B' C' D' E' : 6
        I A B C D E : 5
    J A B C D E : 5
    K A B C D E : 5
    L A B C D E : 5
    MABCDE:5
    I A' B' C' D' E' : 5
    J A' B' C' D' E' : 5
    K A' B' C' D' E' : 5
    L A' B' C' D' E' : 5
    M A' B' C' D' E' : 5
    I J K L : 4
    conclusion
    None
endoflayer
    conclusion
        I J K L M : 4
end
```


Simple example in 5D

```
# in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional
# here : the 3-space is included in the intersection.
context
    dimension 5
    layers 1
endofcontext
layer 0
    points
    A B C D E A' B' C' D' E' I J K L M
    hypotheses
        A B C D E : 5
        A' B' C' D' E' : 5
        A B C D E A' B' C' D' E' : 6
        I A B C D E : 5
    J A B C D E : 5
    K A B C D E : 5
    L A B C D E : 5
    I A' B' C' D' E' : 5
    J A' B' C' D' E' : 5
    K A' B' C' D' E' : 5
    L A' B' C' D' E' : 5
    I J K L : 4
    I J K L M : 4
    conclusion
    None
endoflayer
    conclusion
        M A B C D E : 5
        M A' B' C' D' E' : 5
end
```

Mechanization of incidence
projective
geometry in higher dimensions, a
combinatorial
approach
P. Schreck

Introduction

Incidence gcometry
Matroid theory and incidence geometry

Conclusion

```
Mechanization of
    incidence
    projective
geometry in higher
    dimensions, a
    combinatorial
        approach
    P. Schreck
```

A positive conclusion
The matroid approach easily allows to consider incidence geometry in higher dimensions.

Conclusion

Mechanization of
incidence
projective
geometry in higher
dimensions, a
combinatorial
approach
P. Schreck

A positive conclusion
The matroid approach easily allows to consider incidence geometry in higher dimensions.

However

- it suffers of a huge complexity
- it is not fully automatized:
- existential quantification not taken into account
- incapacity to deal with several cases

Conclusion

A positive conclusion
The matroid approach easily allows to consider incidence geometry in higher dimensions.

However

- it suffers of a huge complexity
- it is not fully automatized:
- existential quantification not taken into account
- incapacity to deal with several cases

To be continued

- interactivity
- consider smarter algorithms

