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Introduction

Short story

Few years ago, D. Michelucci and I wanted to have a fast
automatic prover in order to avoid degenerate cases in a
geometric constraints solving process.

I we focused on projective incidence geometry.

I we wanted to avoid coordinates and we studied some
combinatorial methods, in particular matroid theory.

I in Strasbourg, we succeeded in proving Desargues’s
theorem with ranks and to have a certified proof in Coq.

I D. Braun, developed an automatic solver based on
these ideas and succeeded in formally proving
Dandelin-Gallucci’s theorem.

I all our investigations concerned 2D and 3D, but it was
possible to extend them toward higher dimensions.
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Set of axioms

Axioms independent from dimension

1. ∀ A B : Point ∃ d : Line,A ∈ d ∧ B ∈ d

2. ∀ A B : Point ∀ d d ′ : Line,A ∈ d ∧ B ∈ d ∧ A ∈
d ′ ∧ B ∈ d ′ ⇒ A = B ∨ d = d ′

3. ∀ d : Line ∃ A B C : Point,A 6= B ∧ A 6= B ∧ B 6=
C ∧ A ∈ d ∧ B ∈ d ∧ C ∈ d

4. ∀A B C D M : Point ∀ d1 d2 d3 d4 :
Line,
A ∈ d1 ∧ B ∈ d1 ∧ M ∈ d1 ∧
C ∈ d2 ∧ D ∈ d2 ∧ M ∈ d2 ∧
A ∈ d3 ∧ C ∈ d3 ∧ B ∈ d4 ∧ D ∈ d4

⇒
∃ P : Point,P ∈ d3 ∧ P ∈ d4
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Set of axioms (2)

Axioms for the plane

1. ∀ d d ′ : Line ∃ A : Point,A ∈ d ∧ A ∈ d ′

2. ∃ d d ′ : Line, d 6= d ′
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Set of axioms (2)

Axioms for the plane

1. ∀ d d ′ : Line ∃ A : Point,A ∈ d ∧ A ∈ d ′

2. ∃ d d ′ : Line, d 6= d ′

(Usual) Axioms for the 3D-space

1. ∃ d d ′ : Line,¬(∃A : Point,A ∈ d ∧ A ∈ d ′)

2. ∀ d d ′ d ′′ : Line
∃ A B C : Point ∃ δ : Line,
A ∈ d ∧ A ∈ δ∧
B ∈ d ′ ∧ B ∈ δ∧
C ∈ d ′′ ∧ C ∈ δ
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Set of axioms (3)

Axioms for the plane

1. ∀ d d ′ : Line ∃ A : Point,A ∈ d ∧ A ∈ d ′

2. ∃ d d ′ : Line, d 6= d ′

(Alternate) Axioms for the 3D-space

1. ∃ d d ′ : Line,¬(∃A : Point,A ∈ d ∧ A ∈ d ′)

2. ∀ d d ′ d ′′ : Line,∀ O : Point
d 6= d ′ ∧ O ∈ d ∧ O ∈ d ′ ⇒
∃PMN : Point, ∃δ
P ∈ d ′′∧
O /∈ δ ∧ P ∈ δ
M ∈ δ ∧M ∈ d∧
N ∈ δ ∧ N ∈ d ′
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In n dimensions

Idea
In dimension n, a hyperplane is a subspace (a flat) with
dimension n − 1.
Then, the upper-dimension axiom states that for any
hyperplane H and any line δ, there is a point P belonging to
H and δ.
⇒ inductive definition of n-dimensional flat and incidence
point-flat.

In 3D In 4D
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Matroid theory (Whitney, 1935)

I Goal : axiomatically capture the notion of linear
dependency (without coordinates) ...

I Lot of equivalent definitions:
I independent or dependent sets
I bases
I closure
I rank functions
I ...

I the notion of rank function fits well to our context (and
make defining dimensions easier)
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Axioms for defining a rank function

Consider a set E and its powerset to which X and Y belong:

(Bounds)

(A1) ∀ X , 0 ≤ rk(X ) ≤
∣∣X ∣∣

(Monotonicity)

(A2) ∀ X Y , X ⊆ Y ⇒ rk(X ) ≤ rk(Y )

(Submodularity)

(A3) ∀ X Y , rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X ) + rk(Y )
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Geometric axioms

(A4) ∀P, rk({P}) = 1

(A5) ∀P Q,P 6= Q ⇒ rk({P,Q}) = 2

(A6) ∀ A B C D, rk({A,B,C ,D}) ≤ 3 ⇒
∃ J :, rk({A,B, J}) = rk({C ,D, J}) = 2

(A7) ∀ A B, ∃ C ,
rk({A,B,C}) = rk({B,C}) = rk({A,C}) = 2
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Axioms for fixing a dimension (in 3D)

(A8) ∃A B C D, rk({A,B,C ,D}) ≥ 4

(A9) ∀A B C D, rk({A,B,C ,D}) ≤ 4

(A10) ∀ A B C A′ B ′, ∃ M,
rk({A,B,C}) = 3 ∧
rk({A′,B ′}) = 2⇒
rk({A,B,C ,M}) = 3 ∧
rk({A′,B ′,M}) = 2
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Result

In dimensions 2 and 3, the geometric axioms “are
equivalent” to the corresponding ones expressed in matroid
terms.
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Utilization through a simple example

∀ A B C ,∀ A′ B ′ C ′, ∃ M N,∀ P
rk({A,B,C}) = 3 ∧ rk({A′,B ′,C ′}) = 3 ∧
rk(A,B,C ,A′,B ′,C ′) = 4⇒
rk({A,B,C ,M}) = 3 ∧ rk({A′,B ′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧ rk({A′,B ′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
(
rk({M,N,P}) = 2⇔
rk({A,B,C ,P}) = 3 ∧ rk({A′,B ′,C ′,P}) = 3
)
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Utilization through a simple example (2)
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Utilization through a simple example (2)
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Utilization through a simple example (2)

Lemma
With the previous notations, there is at least one point M in
the intersection of the two planes. (Proof by A10.)
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Utilization through a simple example (2)

Lemma
With the previous notations, there is at least one point M in
the intersection of the two planes. (Proof by A10.)

Lemma
In an incidence projective plane, if three points M,N and Q
are on the three edges of a triangle ABC , then at least two
of these three points are different.



Mechanization of
incidence
projective

geometry in higher
dimensions, a
combinatorial

approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and
incidence geometry

Utilization through a simple example (2)

Lemma
In an incidence projective plane, if three points M,N and Q
are on the three edges of a triangle ABC , then at least two
of these three points are different.

There are two cases: A = M or A 6= M:
Case rk({A,M}) = 2.
Then rk({A,C ,M,N,Q}) = 3 because
rk({A,B,C ,M,N,Q}) + rk({A,M}) ≤ rk({A,B,M}) + rk({A,C ,M,N,Q})
with: rk({A,C ,M,N,Q}) + rk({N}) ≤ rk({M,N,Q}) + rk({A,C ,N})
we have rk({M,N,Q}) ≥ 2.
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Utilization through a simple example (2)

Lemma
With the previous notations, there is at least one point M in
the intersection of the two planes. (Proof by A10.)

Lemma
In an incidence projective plane, if three points M,N and Q
are on the three edges of a triangle ABC , then at least two
of these three points are different.

Lemma
In a 3D incidence projective space, the intersection of two
different planes is a line.
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Utilization through a simple example (3)

∀ A B C A′ B ′ C ′ M N,P
rk({A,B,C}) = 3 ∧ rk({A′,B ′,C ′}) = 3 ∧
rk(A,B,C ,A′,B ′,C ′) = 4∧
rk({A,B,C ,M}) = 3 ∧ rk({A′,B ′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧ rk({A′,B ′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
(
rk({M,N,P}) = 2⇔
rk({A,B,C ,P}) = 3 ∧ rk({A′,B ′,C ′,P}) = 3
)
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2

Sketch of a proof

rk({A,B,C ,M,P}) = 3
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2

Sketch of a proof

rk({A,B,C ,M,P}) = 3

(i) rk({A,B,C ,M,P}) ≥ 3
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2

Sketch of a proof

rk({A,B,C ,M,P}) = 3

(i) rk({A,B,C ,M,P}) ≥ 3
(ii) rk({A,B,C ,M,P}) + rk({A,B,C})

≤
rk({A,B,C ,M})+rk({A,B,C ,P})
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2

Sketch of a proof

rk({A,B,C ,M,P}) = 3

(i) rk({A,B,C ,M,P}) ≥ 3
(ii) rk({A,B,C ,M,P}) + 3

≤
3 + 3
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Utilization through a simple example (3)

∀ A B C A′ B′ C ′ M N,P

rk({A,B,C}) = 3 ∧
rk({A′,B′,C ′}) = 3 ∧
rk(A,B,C ,A′,B′,C ′) = 4 ∧
rk({A,B,C ,M}) = 3 ∧
rk({A′,B′,C ′,M}) = 3 ∧
rk({A,B,C ,N}) = 3 ∧
rk({A′,B′,C ′,N}) = 3 ∧
rk({M,N}) = 2 ∧
rk({A,B,C ,P}) = 3 ∧
rk({A′,B′,C ′,P}) = 3⇒
rk({M,N,P}) = 2

Sketch of a proof

rk({A,B,C ,M,P}) = 3

rk({A′,B′,C ′,M,P}) = 3

rk({A,B,C ,M,N,P}) = 3

rk({A′,B′,C ′,M,N,P}) = 3

rk({A,B,C ,A′,B′,C ′,M,N,P}) = 4

rk({M,N,P}) = 2
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The incomplete matroid problem

Problems
Let E be a given set and r be a rank function on E . The
value of r is only known for some subsets of E ,

I is r fully defined on P(E )?

I given a set A ⊆ E , is it possible to compute r(A)?

It is possible to answer by using a simple but tedious method.
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Rules of the game

Considering the powerset P(E ) where the bounds of the
rank function are initialized for each set, one applies as much
as possible the following rules.
8 rules corresponding to axioms A2 and A3:

Monotonicity
(r1) if X ⊆ Y and rkMin(X ) > rkMin(Y ) then rkMin(Y ) ← rkMin(X )
(r2) if Y ⊆ X and rkMin(Y ) > rkMin(X ) then rkMin(X ) ← rkMin(Y )
(r3) if X ⊆ Y and rkMax(Y ) < rkMax(X ) then rkMax(X ) ← rkMax(Y )

(r4) if Y ⊆ X and rkMax(X ) < rkMax(Y ) then rkMax(Y ) ← rkMax(X )

Submodularity
(r5) if rkMax(X ) + rkMax(Y )− rkMin(X ∩ Y ) < rkMax(X ∪ Y )
then rkMax(X ∪ Y ) ← (rkMax(X ) + rkMax(Y )− rkMin(X ∩ Y ))
(r6) if rkMax(X ) + rkMax(Y )− rkMin(X ∪ Y ) < rkMax(X ∩ Y )
then rkMax(X ∩ Y ) ← (rkMax(X ) + rkMax(Y )− rkMin(X ∪ Y ))
(r7) if rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ) > rkMin(X )
then rkMin(X ) ← (rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ))
(r8) if rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(X ) > rkMin(Y )
then rkMin(Y ) ← (rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(X ))
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Implementation

A matroid Based Incidence geometry Prover (Bip)

I basic solver of the incomplete matroid problem in the
geometric case ... but yielding proofs that can be
automatically verified by Coq;

I originally two versions: 2D and 3D;

I aimed to help a mathematician in proving “small parts”
of a theorem ... but used to prove significant theorems;

I huge complexity (at least exponential in the number of
points)
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Limitations

A closed world hypothesis

The previous method works on a given set of points E .
Theoretically, it is possible to add some auxiliary point on
the fly, but we then face to a huge complexity.

Disjunctive situations

Sometimes, there are several possibilities, but to complete
each of them the different cases have to be explicitly given
by the user (see the example above).

Usability

In the first prototype, all was hard codded and a
re-compilation was needed for each example.
Poor interaction with Coq.
⇒ IO with files and ad hoc description language
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Limitations

Complexity and huge Coq proofs

As said before, the time and space complexities are
exponential, but also the proofs can be huge (several dozen
of kilo-lines). Coq is unable to treat a monolithic of that
size.
⇒ systematic decomposition into basic lemmas.
⇒ several conclusions taken into account.

Dimensions
The initial prototype only dealt with dimensions 2 and 3.
⇒ small changes on data structures and small changes in
Coq context to deal with higher dimensions.
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Desargues’s theorem in 3D and 4D

Recall : a crucial step in the proof of Desargues’s theorem in
2D, sometimes called 2.5d configuration.
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Desargues’s theorem in 3D and 4D
Real 3D configuration (figure made with Geogebra 3D):
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Desargues’s theorem in 3D and 4D

Desargues’s theorem in 4D

given 2 pentachores P and P ′ which are in perspective from
a point O, the 10 points defined by the intersection of the
corresponding edges define a 3D space and form a 2.5d
Desargues’s configuration.
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Desargues’s theorem in 3D and 4D

Desargues’s theorem in 4D

given 2 pentachores P and P ′ which are in perspective from
a point O, the 10 points defined by the intersection of the
corresponding edges define a 3D space and form a 2.5d
Desargues’s configuration.

Symmetry
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Desargues’s theorem in 3D and 4D

context

dimension 4

endofcontext

points

Oo A B C D E Ap Bp Cp Dp Ep

ab ac ad ae bc bd be cd ce de

hypotheses

A B C D E : 5

A Ap : 2

B Bp : 2

C Cp : 2

D Dp : 2

E Ep : 2

Ap Bp Cp Dp Ep : 5

Oo A Ap : 2

Oo B Bp : 2 # B

Oo C Cp : 2 # C

Oo D Dp : 2 # D

Oo E Ep : 2 # E

ab A B : 2

ab Ap Bp : 2

ac A C : 2

ac Ap Cp : 2

ad A D : 2

ad Ap Dp : 2

ae A E : 2

ae Ap Ep : 2

bc B C : 2

bc Bp Cp : 2

bd B D : 2

bd Bp Dp : 2

be B E : 2

be Bp Ep : 2

cd C D : 2

cd Cp Dp : 2

ce C E : 2

ce Cp Ep : 2

de D E : 2

de Dp Ep : 2

Oo B C D E : 5

A Oo C D E : 5

A B Oo D E : 5

A B C Oo E : 5

A B C D Oo : 5

Oo Bp Cp Dp Ep : 5

Ap Oo Cp Dp Ep : 5

Ap Bp Oo Dp Ep : 5

Ap Bp Cp Oo Ep : 5

Ap Bp Cp Dp Oo : 5

conclusion

ab ac ad ae bc bd be cd ce de : 4

cd ce de : 2

bd be de : 2

bc be ce : 2

bc bd cd : 2

ad ae de : 2

ac ae ce : 2

ac ad cd : 2

ab ae be : 2

ab ad bd : 2

ad ac bc : 2

end



Mechanization of
incidence
projective

geometry in higher
dimensions, a
combinatorial

approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and
incidence geometry

Desargues’s theorem in 3D and 4D

4D
I 21 points involved

I the proof of 11 values of ranks are required

I Computation time : about 1 week

I Coq file size : 47,4 Mb

I number of lines : 497157 (a lot of comments)

I number of lemmas : 2517

For the first line of the conclusion
I Computation time : about 1 week

I Coq file size : 6.2 Mb (x 11 = 68.2 Mb)

I number of lines : 62,000 (x 11 = 682,000 lines)

I number of lemmas : 635 ( x 11 = 6985)
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Desargues’s theorem in 5D

Theorem
In a projective incidence space of dimension 5, for all couple
of 5-simplexes which are in perspective from a point O if the
15 couples of corresponding edges intersect each in exactly
one point, then

I these points belong to a 4-dimensional space H, and

I they form a figure composed by the vertices of a
pentachore P and the intersection of the edges of P
with a hyperplane of H.

Comments
I 28 points are involved,

I the expected computation time will be about 128 weeks
∼ 2 years and a half (with my old PC)
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Simple example in 5D

Hyperplanes in 5D

I (Axiom) In 5D, the intersection of a hyperplane (dim 4)
and a line is at least a point:
∀ A B C D E M N, exists P,
rk({A,B,C ,D,E}) = 5 ∧ rk({M,N}) = 2⇒
rk({A,B,C ,D,E ,P}) = 5 ∧ rk({M,N,P}) = 2

I (Theorem) In 5D, the intersection of two distinct
hyperplanes is a 3-dimensional space.
Sketch of the proof:
I there are four independent points in the intersection (5

cases)
I these four points span the intersection (double

inclusion)
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Existence (none of A ... E is in the intersection)
# there are 4 points in <ABCDE> inter <A’B’C’D’E’> case ABCDE notin <A’B’C’D’E’>

context

dimension 5

layers 1

endofcontext

layer 0

points

A B C D E A’ B’ C’ D’ E’ p1 p2 p3 p4

hypotheses

A B C D E : 5

A’ B’ C’ D’ E’ : 5

A B C D E A’ B’ C’ D’ E’ : 6

p1 A B : 2

p1 A : 2

p1 B : 2

p2 A C : 2

p2 C : 2

p2 A : 1

p3 A D : 2

p3 D : 2

p3 A : 2

p4 A E : 2

p4 A : 2

p4 E : 2

p1 A’ B’ C’ D’ E’ : 5

p2 A’ B’ C’ D’ E’ : 5

p3 A’ B’ C’ D’ E’ : 5

p4 A’ B’ C’ D’ E’ : 5

conclusion

None

endoflayer

conclusion

p1 p2 p3 p4 : 4

end
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Simple example in 5D

# in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional

# all subsets of 5 points (as independent as possible) have a rank equal to 4

context

dimension 5

layers 1

endofcontext

layer 0

points

A B C D E A’ B’ C’ D’ E’ I J K L M

hypotheses

A B C D E : 5

A’ B’ C’ D’ E’ : 5

A B C D E A’ B’ C’ D’ E’ : 6

I A B C D E : 5

J A B C D E : 5

K A B C D E : 5

L A B C D E : 5

M A B C D E : 5

I A’ B’ C’ D’ E’ : 5

J A’ B’ C’ D’ E’ : 5

K A’ B’ C’ D’ E’ : 5

L A’ B’ C’ D’ E’ : 5

M A’ B’ C’ D’ E’ : 5

I J K L : 4

conclusion

None

endoflayer

conclusion

I J K L M : 4

end
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Simple example in 5D

# in dim 5, the intersection of 2 different 4-dimensional space is 3-dimensional

# here : the 3-space is included in the intersection.

context

dimension 5

layers 1

endofcontext

layer 0

points

A B C D E A’ B’ C’ D’ E’ I J K L M

hypotheses

A B C D E : 5

A’ B’ C’ D’ E’ : 5

A B C D E A’ B’ C’ D’ E’ : 6

I A B C D E : 5

J A B C D E : 5

K A B C D E : 5

L A B C D E : 5

I A’ B’ C’ D’ E’ : 5

J A’ B’ C’ D’ E’ : 5

K A’ B’ C’ D’ E’ : 5

L A’ B’ C’ D’ E’ : 5

I J K L : 4

I J K L M : 4

conclusion

None

endoflayer

conclusion

M A B C D E : 5

M A’ B’ C’ D’ E’ : 5

end



Mechanization of
incidence
projective

geometry in higher
dimensions, a
combinatorial

approach

P. Schreck

Introduction

Incidence geometry

Matroid theory and
incidence geometry

Conclusion

A positive conclusion

The matroid approach easily allows to consider incidence
geometry in higher dimensions.
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However
I it suffers of a huge complexity
I it is not fully automatized:

I existential quantification not taken into account
I incapacity to deal with several cases
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A positive conclusion

The matroid approach easily allows to consider incidence
geometry in higher dimensions.

However
I it suffers of a huge complexity
I it is not fully automatized:

I existential quantification not taken into account
I incapacity to deal with several cases

To be continued
I interactivity

I consider smarter algorithms
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