# Geometric Axioms for Minkowski Spacetime and Without-Loss-of-Generality Theorems 

Richard Schmoetten Jake Palmer Jacques Fleuriot

Artificial Intelligence and its Applications Institute School of Informatics, University of Edinburgh

## Outline

Approaches to spacetime

Formalisation in Isabelle/HOL
Axioms
Theorems

Symmetries and reasoning without loss of generality

Approaches to spacetime

## Spacetime as a metric space

In Special Relativity, spacetime is defined as $\mathbb{R}^{4}$
with a Minkowski metric. $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

## Spacetime as a metric space

In Special Relativity, spacetime is defined as $\mathbb{R}^{4}$ with a Minkowski metric.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Advantage: Many things are easy to compute, since we can always assign coordinates and do linear algebra.

Disadvantage: Axioms rely on a hefty baggage of mathematical analytical foundations, hard to reconcile with experience.

## Spacetime as an ordered geometry

Since 1930s, work has been ongoing to build spacetime as an axiomatic geometry.

- more similar to Hilbert's Grundlagen in Euclidean geometry
- axioms closer to physical intuition (hopefully)


## Spacetime as an ordered geometry

Since 1930s, work has been ongoing to build spacetime as an axiomatic geometry.

- more similar to Hilbert's Grundlagen in Euclidean geometry
- axioms closer to physical intuition (hopefully)

Our primitives are the following.
Set of events $\mathcal{E}$
Set of paths $\mathcal{P}$
Betweenness [- - -]

## Formalisation in Isabelle/HOL

## Prose to Isabelle/HOL

Proof (By induction). The previous theorem applies to the case where $n=4$. We will make the inductive hypothesis that the result applies to a set of $n$ distinct events $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and demonstrate that this implies the result for the case of $n+1$ distinct events. We denote the $(n+1)$-th event as $b$. Then Axiom O5 implies that either:
(i) $\left[b a_{1} a_{n}\right]$ or (ii) $\left[a_{1} b a_{n}\right]$ or (iii) $\left[a_{1} a_{n} b\right]$

Case (i): By the inductive hypothesis and Theorem 2 we have $\left[a_{1} a_{2} a_{n}\right]$ so the previous theorem (Th.9) implies that $\left[b a_{1} a_{2} a_{n}\right]$ which implies that $\left[b a_{1} a_{2}\right]$. Thus $b$ is an element of a chain $\left[a_{1}^{*} a_{2}^{*} \ldots a_{n+1}^{*}\right]$ where $a_{1}^{*}:=b$ and (for $j \in\{2, \ldots, n+1\}$ ) $a_{j}^{*}:=a_{j-1}$.
Case (ii): Let $k$ be the smallest integer such that $\left[a_{1} b c_{k}\right]$. Then the previous theorem (Th.9) implies cither that $\left[a_{1} a_{k-1} b a_{k}\right]$, or that $k=2$ so that $\left[a_{k-1} b a_{k}\right]$. If $k-2 \geq 1$ we have $\left[a_{k-2} a_{k-1} a_{k}\right]$ which with $\left[a_{k-1} b a_{k}\right]$ implies $\left[a_{k-2} a_{k-1} b a_{k}\right]$ by the previous theorem, while if $k+1 \leq n$ we have $\left[a_{k-1} a_{k} a_{k+1}\right]$ which with $\left[a_{k-1} b a_{k}\right]$ implies $\left[a_{k-1} b a_{k} a_{k+1}\right]$; that is we have now shown that $\left[a_{k-2} a_{k-1} b\right]$ (if $\left.k-2 \geq 1\right)$ and $\left[a_{k-1} b a_{k}\right]$ and $\left[b a_{k} a_{k+1}\right]$ (if $k+1 \leq n$ ) so that $b$ is an element of a chain $\left[a_{1}^{*} a_{2}^{*} \ldots a_{n+1}^{*}\right]$ where

$$
a_{j}^{*}= \begin{cases}a_{j}, & j \leq k-1 \\ b, & j=k \\ a_{j-1}, & j>k .\end{cases}
$$

Case (iii): The proof for this case is similar to that for Case (i).

Proof (i) Theorem 4 implies that both sets $Q(a, \emptyset)$ and $Q(b, \emptyset)$ are bounded in both directions by events which do not belong to the unreachable sets themselves, so the union $Q(a, \emptyset) \cup Q(b, \emptyset)$ is bounded by distinct events $\mathrm{y}, \mathrm{z}$ which do not belong to the union of the unreachable sets.

```
text <This is case (i) of the induction in Theorem 10.>
lemma (*for 10*) chain_append_at_left_edge: [95 lines]
lemma (*for 10*) chain_append_at_right_edge: [61 lines]
lemma S_is_dense: [28 lines]
lemma (*for 10*) smallest_k_ex: [152 lines]
lemma get_closest_chain_events: [102 lines]
text <This is case (ii) of the induction in Theorem 10.>
lemma (*for 10*) chain_append_inside: [248 lines]
```

subsection "WLOG for two general symmetric relations of two context MinkowskiBetweenness begin [241 lines]
subsection "WLOG for two intervals" context MinkowskiBetweenness begin [78 lines]

## Order

$\mathbf{O 1}[a b c] \Longrightarrow \exists Q \in \mathcal{P}: a, b, c \in Q$
O2 $[a b c] \Longrightarrow[c b a]$
O3 $[a b c] \Longrightarrow a, b, c$ are distinct
O4 $[a b c] \wedge[b c d] \Longrightarrow[a b d]$
$\mathbf{O 5} a, b, c \in Q \Longrightarrow a, b, c$ are ordered
O6 analogue of Pasch's axiom


## Order

$01[a b c] \Longrightarrow \exists Q \in \mathcal{P}: a, b, c \in Q$
$\mathbf{O 2}[a b c] \Longrightarrow\left[\begin{array}{c}c \\ b\end{array}\right]$
O3 $[a b c] \Longrightarrow a, b, c$ are distinct
O4 $[a b c] \wedge[b c d] \Longrightarrow[a b d]$
$\mathbf{O 5} a, b, c \in Q \Longrightarrow a, b, c$ are ordered
O6 analogue of Pasch's axiom


## Order

$\mathbf{O 1}[a b c] \Longrightarrow \exists Q \in \mathcal{P}: a, b, c \in Q$
$\mathbf{O 2}[a b c] \Longrightarrow[c b a]$
O3 $[a b c] \Longrightarrow a, b, c$ are distinct
O4 $[a b c] \wedge[b c d] \Longrightarrow[a b d]$
O5 $a, b, c \in Q \Longrightarrow a, b, c$ are ordered
O6 analogue of Pasch's axiom


## Order

$\mathbf{0 1}[a b c] \Longrightarrow \exists Q \in \mathcal{P}: a, b, c \in Q$
$\mathbf{O 2}[a b c] \Longrightarrow[c b a]$
O3 $[a b c] \Longrightarrow a, b, c$ are distinct
O4 $[a b c] \wedge[b c d] \Longrightarrow[a b d]$
$\mathbf{O 5} a, b, c \in Q \Longrightarrow a, b, c$ are ordered
O6 analogue of Pasch's axiom


Definition (Chain)
A chain is a set of events $\left\{Q_{i}\right\}_{i \in I}$ with $I=\{0,1,2, \ldots\}$
such that

$$
\forall i \in I . \quad i \geq 2 \Longrightarrow\left[Q_{i-2} Q_{i-1} Q_{i}\right] .
$$

## Incidence (and Unreachable Sets)

I1 $\mathcal{E}$ is not empty.
I2 Distinct events are connected by intersecting paths.
I3 At most one path connects any two events.
14 Axiom of Dimension

## Incidence (and Unreachable Sets)

I5 Non-Galilean Axiom: 2 events in unreachable set
I6 Connectedness of the Unreachable Set
I7 Boundedness of the Unreachable Set

## Incidence (and Unreachable Sets)

I5 Non-Galilean Axiom: 2 events in unreachable set
I6 Connectedness of the Unreachable Set
I7 Boundedness of the Unreachable Set
a


## Incidence (and Unreachable Sets)

I5 Non-Galilean Axiom: 2 events in unreachable set
I6 Connectedness of the Unreachable Set
I7 Boundedness of the Unreachable Set


## Collinearity and Infinity

Two Collinearity Theorems to extend O6.

First CT: [af b]
Second CT: $\left[\begin{array}{ll}d e f\end{array}\right]$


## Collinearity and Infinity

Two Collinearity Theorems to extend O6.

First CT: [af $b$ ]
Second CT: [d ef]


$$
\begin{aligned}
& \text { theorem }(* 6 i i *) \text { infinite_paths: } \\
& \text { assumes "P } \in \mathcal{P} " \\
& \text { shows "infinite } P "
\end{aligned}
$$

## Chains, transitivity and linear order

A chain $\left\{Q_{i}\right\}_{i \in I}$ with $I=\{0,1,2, \ldots\}$ gives an index function

$$
f: I \rightarrow \mathcal{E}, i \mapsto Q_{i} \quad \text { with } I \subseteq \mathbb{N} .
$$

## Chains, transitivity and linear order

A chain $\left\{Q_{i}\right\}_{i \in I}$ with $I=\{0,1,2, \ldots\}$ gives an index function

$$
f: I \rightarrow \mathcal{E}, i \mapsto Q_{i} \quad \text { with } I \subseteq \mathbb{N} .
$$

```
theorem order_finite_chain2:
    assumes "long_ch_by_ord2 f X"
    and "finite X"
    and "0\leqi^i < j ^ j < l ^ l < card X"
    shows "[[(llfil)(f j) (f l)]]"
```


## Chains, transitivity and linear order

A chain $\left\{Q_{i}\right\}_{i \in I}$ with $I=\{0,1,2, \ldots\}$ gives an index function

$$
f: I \rightarrow \mathcal{E}, i \mapsto Q_{i} \quad \text { with } I \subseteq \mathbb{N} .
$$

```
theorem order_finite_chain2:
    assumes "long_ch_by_ord2 f X"
    and "finite X"
    and "0\leq i ^ i < j ^ j < l ^ l < card X"
    shows "[[(f i) (f j) (f l)]]"
```

theorem path_finsubset_chain:
assumes $" Q \in \mathcal{P}$ "
and " $\mathrm{X} \subseteq \mathrm{Q}$ "
and "card $X \geq 2 "$
shows "ch X"

## Symmetries and reasoning without loss of generality

## Reversing chains 1

```
lemma chain_sym:
    assumes "[f[a..b..c] X]"
    shows "[גn. f (card X - 1 - n) [c..b..a]X]"
```

We use this lemma in proving linear order on paths (path_finsubset_chain):

1. inductively append an event $e$ onto a chain $[f[a . . b . . c] X]$
2. consider cases $[e a b],\left[\begin{array}{lll}a & b & e\end{array}\right]$ (and $\left[\begin{array}{lll}a & e & b\end{array}\right)$

## Reversing chains 1

lemma chain_sym:
assumes "[f[a..b..c]X]"
shows "[גn. f (card X - 1 - n ) [c..b..a]X]"

We use this lemma in proving linear order on paths (path_finsubset_chain):

1. inductively append an event $e$ onto a chain $[f[a . . b . . c] X]$
2. consider cases $\left[\begin{array}{lll}e & b\end{array}\right],\left[\begin{array}{lll}a & b & e\end{array}\right]$ (and $\left[\begin{array}{lll}a & e & b\end{array}\right)$
3. $f_{2}: i \mapsto f(|X|-1-n)$
4. $g_{2}: i \mapsto \begin{cases}b & \text { if } i=0 \\ f_{2}(i-1) & \text { otherwise }\end{cases}$
5. $g: i \mapsto g_{2}(|X|-1-n)$

## Reversing chains 2

```
lemma chain_unique_upto_rev:
    assumes "[f[a..c]X]" "[g[x..z]X]"
        and "card \(X \geq 3 "\) "i < card \(X "\)
    shows "f i \(=\mathrm{g}\) i \(\vee \mathrm{f} i=\mathrm{g}(\operatorname{card} \mathrm{X}-\mathrm{i}-1)\) "
```

- not present in the prose monograph
- makes it obvious there is more to chains than just their events
- used in an early proof of a theorem, "filling in" the original


## Without Loss Of Generality (WLOG)

- Frequently used in pen-and-paper proofs, sometimes informally, often encompasses different symmetries
- Hard to mechanise:

1. copy-paste-replace
2. use variables or intermediate lemmas
3. explicitly identify symmetries

- Our theory has several lemmas:

1. for different levels of generality
2. for different cases of distinctness and degeneracy
```
lemma linorder_less_wlog:
```



```
    shows "P a b"
```


## WLOG for interval endpoints 1

lemma wlog_interval_endpoints_distinct:

$$
\begin{aligned}
& \Longrightarrow \text { (betw4 a b c d } \longrightarrow P \text { I J) } \wedge \\
& \text { (betw4 a c b d } \longrightarrow P \text { I J) } \wedge \\
& \text { (betw4 a c d b } \longrightarrow P \text { I J)" }
\end{aligned}
$$

shows " $\ I$ J Q a b c d.
【I = interval $a \operatorname{b} ; \mathrm{J}=$ interval $c \mathrm{~d}$;
$I \subseteq Q ; J \subseteq Q ; Q \in \mathcal{P}$;
$\mathrm{a} \neq \mathrm{b} \wedge \mathrm{a} \neq \mathrm{c} \wedge \mathrm{a} \neq \mathrm{d} \wedge \mathrm{b} \neq \mathrm{c} \wedge \mathrm{b} \neq \mathrm{d} \wedge \mathrm{c} \neq \mathrm{d} \rrbracket$
$\Longrightarrow \mathrm{P}$ I J"

## WLOG for interval endpoints 1

lemma wlog_interval_endpoints_distinct:

$$
\begin{aligned}
& \Longrightarrow \text { (betw4 a b c d } \longrightarrow P \text { I J) } \wedge \\
& \text { (betw4 a c b d } \longrightarrow P \text { I J) } \wedge \\
& \text { (betw4 a c d b } \longrightarrow P \text { I J)" }
\end{aligned}
$$

shows " $\ I$ J Q a b c d.
【I = interval a b; $\mathrm{J}=$ interval $\mathrm{c} d ;$ $I \subseteq Q ; J \subseteq Q ; Q \in \mathcal{P}$;
$\mathrm{a} \neq \mathrm{b} \wedge \mathrm{a} \neq \mathrm{c} \wedge \mathrm{a} \neq \mathrm{d} \wedge \mathrm{b} \neq \mathrm{c} \wedge \mathrm{b} \neq \mathrm{d} \wedge \mathrm{c} \neq \mathrm{d} \rrbracket$
$\Longrightarrow P$ I J"

P is symmetric

## WLOG for interval endpoints 1

lemma wlog_interval_endpoints_distinct:
assumes " $\bigwedge I \quad J . \llbracket i s \_i n t ~ I ; ~ i s \_i n t ~ J ; ~ P ~ I ~ J \rrbracket ~ \Longrightarrow P ~ J ~ I " ~$
shows " $\ I \quad J$ Q a b c d.
【I = interval $a \mathrm{~b} ; \mathrm{J}=$ interval $\mathrm{c} d$; $I \subseteq Q ; J \subseteq Q ; Q \in \mathcal{P}$; $\mathrm{a} \neq \mathrm{b} \wedge \mathrm{a} \neq \mathrm{c} \wedge \mathrm{a} \neq \mathrm{d} \wedge \mathrm{b} \neq \mathrm{c} \wedge \mathrm{b} \neq \mathrm{d} \wedge \mathrm{c} \neq \mathrm{d} \rrbracket$
$\Longrightarrow P$ I J"

Essentially distinct orderings

## WLOG for interval endpoints 2

Proofs mirror the structure of the preceding lemma.

1. State the desired result
2. Split up the proof into essentially distinct cases with fixed
events
```
let ?prop = "\lambda I J. is_int (I\capJ) V (I\capJ) = {}"
{fix I J a b c d
    assume "I = interval a b" "J = interval c d"
    { assume "betw4 a b c d"
        have "I\capJ={}"
    } { assume "betw4 a c b d"
        have "I\capJ = interval c b" ...
    } { assume "betw4 a c d b"
        have "I\capJ = interval c d" ...
    } }
then show "is_int (I1\capI2)"
    using wlog_interval_endpoints_distinct symmetry assms
    by simp
```


## WLOG for interval endpoints 2

Proofs mirror the structure of the preceding lemma.

1. State the desired result
2. Split up the proof into essentially distinct cases with fixed
events
```
let ?prop = "\lambda I J. is_int (I\capJ) V (I\capJ) = {}"
{fix I J a b c d
    assume "I = interval a b" "J = interval c d"
    { assume "betw4 a b c d"
        have "I\capJ={}"
    } { assume "betw4 a c b d"
        have "I\capJ = interval c b" ...
    } { assume "betw4 a c d b"
        have "I\capJ = interval c d" ...
    } }
then show "is_int (I1\capI2)"
    using wlog_interval_endpoints_distinct symmetry assms
    by simp
```


## WLOG for interval endpoints 2

Proofs mirror the structure of the preceding lemma.

1. State the desired result
2. Split up the proof into essentially distinct cases with fixed events
```
let ?prop = "\lambda I J. is_int (I\capJ) V (I\capJ) = {}"
{ fix I J a b c d
    assume "I = interval a b" "J = interval c d"
    { assume "betw4 a b c d")
        have "I\capJ = {}"
    } { assume "betw4 a c b d"
        have "I\capJ = interval c b" .. 
    } { assume "betw4 a c d b")
        have "I\capJ = interval c d" ...
    } }
then show "is_int (I1\capI2)"
    using wlog_interval_endpoints_distinct symmetry assms
    by simp
```


## References

[1] Richard Schmoetten, Jake Palmer, and Jacques Fleuriot. Schutz' independent axioms for Minkowski spacetime. Archive of Formal Proofs, July 2021.
https://isa-afp.org/entries/Schutz_Spacetime.html, Formal proof development.
[2] Richard Schmoetten, Jake E. Palmer, and Jacques D. Fleuriot. Towards formalising Schutz' axioms for Minkowski spacetime in Isabelle/HOL. http://arxiv.org/abs/2108.10868v2.
[3] John W. Schutz. Independent Axioms for Minkowski Space-Time. CRC Press, October 1997.

## Summary and Future Work

- We have formalised most of Chapter 3, several other lemmas.
- We can explicitly use symmetries to replace copy-paste proofs.
- WLOG lemmas can automate (to a degree) the switch from a symmetry to a sufficient list of cases.


## Summary and Future Work

- We have formalised most of Chapter 3, several other lemmas.
- We can explicitly use symmetries to replace copy-paste proofs.
- WLOG lemmas can automate (to a degree) the switch from a symmetry to a sufficient list of cases.

Directions to explore in the future:
$\triangleright$ continue the mechanisation (Continuity, Chapter 4)
$\triangleright$ extend generality of WLOG lemmas, identify content-independent aspects

## Isotropy

If $Q, R, S$ are distinct paths which meet at some event $x$ and if $Q_{a} \in Q$ is an event distinct from $x$ such that

$$
Q\left(Q_{\mathrm{a}}, R, x, \emptyset\right)=Q\left(Q_{\mathrm{a}}, S, x, \emptyset\right)
$$

then
(i) there is a mapping $\theta: \mathcal{E} \longrightarrow \mathcal{E}$
(ii) which induces a bijection $\Theta: \mathcal{P} \longrightarrow \mathcal{P}$, such that
(iii) the events of $Q$ are invariant, and
(iv) $\Theta: R \longrightarrow S$.


## Continuity

Set of bounds $\mathcal{B}=\left\{Q_{b}: i<j \Longrightarrow\left[Q_{i} Q_{j} Q_{b}\right] ; Q_{i}, Q_{j}, Q_{b} \in Q\right\}$
Closest bound $Q_{b} \in \mathcal{B}$ such that for all $Q_{b^{\prime}} \in \mathcal{B} \backslash\left\{Q_{b}\right\}$,

$$
\left[\begin{array}{lll}
Q_{0} & Q_{b} & Q_{b^{\prime}}
\end{array}\right]
$$

Continuity Any bounded infinite chain has a closest bound.

```
definition is_bound_f :: ... "is_bound_f Q_b Q f \equiv
    \foralli j ::nat. [f[(f 0)..]Q] ^
    (i<j \longrightarrow [[(f i) (f j) Q_b]])"
definition bounded :: ... "bounded Q \equiv
    \exists Q_b f. is_bound_f Q_b Q f"
definition closest_bound :: ... "closest_bound Q_b Q \equiv
    \existsf. is_bound_f Q_b Q f ^
```



```
        \longrightarrow[[(f 0) Q_b Q_b']])"
```

