Spreads and Packings of PG(3,2), Formally!

Picture taken from David A. Richter
http://homepages.wmich.edu/~drichter/projectivespace.htm

Nicolas Magaud - Université de Strasbourg, France

ADG 2021 : International Workshop on Automated Deduction in Geometry September 15-17, 2021

Outline

(1) Projective Geometry, esp. in 3D
(2) Data Structures for Finite Projective Geometry
(3) Spreads and Packings
(4) Formal Proofs
(5) Conclusions and Future Work

Projective Space Geometry

- Context
- Incidence Geometry
- points, lines and an incidence relation
- Projective Incidence Geometry
- in 2D : 2 lines always intersect
- in 3D : Pasch's axiom
- Simple description : only 6 axioms
- Goal :
- Specifying some finite models of projective geometry
- Formally checking the axioms
- Computing spreads and packings
- Proving some of their properties
- Taking Coq to its limits (w.r.t. specification and w.r.t. proof)

Objects and Operations

- Objects : Point, Line Parameter Point, Line : Type.
- Incidence relation : incid_lp

```
Parameter incid_lp : Point -> Line -> bool.
```

- Boolean equalities on points and lines : eqP, eqL

```
Parameter eqP : Point -> Point -> bool.
Parameter eqL : Line -> Line -> bool.
```

- All distinct points and/or lines : dist_3p, dist_4p, ..., dist_5l

```
Definition dist_3p (A B C :Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).
Definition dist_4p (A B C D:Point) : bool := ...
Definition dist_5l (l1 12 13:Line) : bool := ...
Definition dist_51 (l1 12 13 14 15:Line) : bool := ...
```

- Intersection of 2 lines : Intersect_In

```
Definition Intersect_In (l1 l2 :Line) (P:Point) :=
incid_lp P l1 && incid_lp P l2.
```


Axioms for Projective Space Geometry : from a geometry point of view

- a1 : throught 2 points, there is one line.
- uniqueness : Given 2 points and 2 lines, if the 2 points are both on both lines, either the points are equal, or the lines.
- a2: Pasch's axiom (if 2 lines intersect. . .).
- a3_1 : Each line has at least 3 points.
- a3_2 : There exists 2 lines which do not intersect (dim>2).
- a3_3 : Given 3 distinct lines, there exists a fourth one which intersects with all three ($\mathrm{dim}<=3$).

Axioms for Projective Space Geometry : from a geometry point of view

- Pasch's axiom

Axioms for Projective Space Geometry : from a geometry point of view

```
Axiom al_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.
Axiom uniqueness : forall (A B :Point)(l1 12:Line),
incid_lp A ll -> incid_lp B l1 -> incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D }->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.
Axiom a3_2 : exists 11:Line, exists l2:Line,
forall p:Point, (incid_lp p l1 && incid_lp p l2).
Axiom a3_3 : forall 11 12 13:Line, dist_31 11 12 13 ->
exists 14 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In 11 14 J1 && Intersect_In 12 14 J2 && Intersect_In l3 14 J3.
```


Axioms for Projective Space Geometry : from a logic point of view

```
Axiom al_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.
Axiom uniqueness : forall (A B :Point)(11 12:Line),
incid_lp A ll -> incid_lp B l1 -> incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.
Axiom a3_2 : exists 11:Line, exists 12:Line,
forall p:Point, (incid_lp p l1 && incid_lp p l2).
Axiom a3_3 : forall 11 12 13:Line, dist_31 11 12 13 ->
exists 14 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In 11 14 J1 && Intersect_In 12 14 J2 && Intersect_In l3 14 J3.
```


Finite Projective Spaces PG(3,q)

	\# points	\# lines	\# points per line
$P G(3,2)$	15	35	3
$P G(3,3)$	40	130	4
$P G(3,4)$	85	357	5
$P G(3, q)$	$\left(q^{2}+1\right)(q+1)$	$\left(q^{2}+q+1\right)\left(q^{2}+1\right)$	$q+1$

- By duality : \# planes = \# points.
- Describing the incidence relation of $\operatorname{PG}(3, q)$: for each line, we provide the $q+1$ points which belong to it.

Outline

(1) Projective Geometry, esp. in 3D

(2) Data Structures for Finite Projective Geometry
(3) Spreads and Packings
(4) Formal Proofs
(5) Conclusions and Future Work

Coq specifications

- Point and Line as simple inductive types.
- Case analysis is easy.
- Finding a witness can be challenging.
= trying each possible value and running the tactics.
- Writing the specification is a bit boring (even worse with higher orders).
Inductive Point := P0 | P1 | P2 | ... | P14.
- Automation
- An external program to generate the specification
- Also useful to generate the witnesses for existential proofs
- incidence relation as a boolean predicate
- decidable equality
- ad-hoc order relation on points and lines
- witnesses are computed in advance

Inductive Definitions and Functions

```
Inductive Point :=
| P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14.
Inductive Line :=
| L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9
| L10 | L11 | L12 | L13 | L14 | L15 | L16 | L17 | L18 | L19
| L20 | L21 | L22 | L23 | L24 | L25 | L26 | L27 | L28 | L29
| L30 | L31 | L32 | L33 | L34.
            Definition incid_lp (p:Point) (l:Line) : bool :=
match l with
| L0 => match p with P0 | P1 | P2 => true | _ => false end
| L1 => match p with P0 | P3 | P4 => true | _ => false end
| L2 => match p with P0 | P5 | P6 => true | _ => false end
| L3 => match p with P0 | P7 | P8 => true | _ => false end
| L4 => match p with P0 | P10 | P9 => true | _ => false end
| [...]
end.
Definition f_a3_3 (l1:Line) (12:Line) (13:Line) :=
match l3 with
    | L0 => match l2 with
        | L0 => match l1 with
                        | LO => (L0,(P0,PO,PO))
                        | _ => (L0, (P0,P0,P0))
                            end
        |__=> (L0, (P0,P0,P0))
        end
    | L1 => [...]
end.
```

클

Outline

(1) Projective Geometry, esp. in 3D

2 Data Structures for Finite Projective Geometry
(3) Spreads and Packings
(4) Formal Proofs
(5) Conclusions and Future Work

Spreads and Packings of PG(3,q)

- A spread of $\operatorname{PG}(3, q)$ is a set of $q^{2}+1$ lines which are pairwise disjoint and thus partitions the set of points.
- In PG(3,2), it corresponds to some sets of 5 lines.
- A packing of $\operatorname{PG}(3, q)$ is a set of $q^{2}+q+1$ spreads which are pairwise disjoint and thus partitions the set of lines.
- In PG(3,2), it corresponds to some sets of 7 spreads.

Results for PG(3,2)

- There are 56 (isomorphic) spreads in PG(3,2).
- There are 240 packings in $\mathrm{PG}(3,2)$, upto isomorphism.
- These 240 packings are divided into 2 distinct equivalence classes (120 packings each).
- See Finite Projective Spaces of Three Dimensions (Hirschfeld,1985) for details

Outline

(1) Projective Geometry, esp. in 3D
(2) Data Structures for Finite Projective Geometry

3 Spreads and Packings
(4) Formal Proofs
(5) Conclusions and Future Work

Spreads

- Formal definition of a spread

```
Definition is_partition (p q r s t: list Point) :bool :=
(forall_Point (fun x => inb x p || inb x q|| inb x r || inb x s || inb x t)) &&
(forall_Point (fun x => negb (inb x p && inb x q && inb x r && inb x s && inb x t))).
Definition is_spread5 (11 12 13 14 l5:Line) : bool :=
disj_5l l1 l2 13 14 15 && is_partition l1 12 l3 14.
```

- Spreads are computed externally.
- This exactly computes all the spreads of PG(3,2).

Lemma is_spread_descr : forall 11121314 15,
(is_spread5 1112131415) <-> In $[11 ; 12 ; 13 ; 14 ; 15]$ spreads.

- Proceeds by induction of the 5 variables $l_{1}, l_{2}, l_{3}, l_{4}, l_{5}$ ($35^{5}=52521875$ cases)

Spreads

- All these spreads are isomorphic.
- Collineation : bijection which respects the incidence relation
- There exists a collineation between each pair of spreads.

Lemma all_isomorphic_lemma : forall t1 t2 : list Line,
In t1 spreads $->$ In t2 spreads \rightarrow are_isomorphic t1 t2.

- Proof achieved using a circular argument $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \ldots \rightarrow S_{55} \rightarrow S_{0}$

Packings

- We build the 240 packings of $P G(3,2)$.
- We still need to show that they are no other packings of PG(3,2).
- We build 2 classes of isomorphim (120 packings each).
- We still need to show that they are actually two distinct classes.

Issues and Solutions

- Issues
- Finding effective representations of objects for both computation and formal (automated reasoning)
- Reaching the Frontiers/Limitations of Coq
- Solutions
- Enhancing Coq abilities
- Circumventing the limitations
- Simplifying
- Decomposing the proof
- ...

Outline

(1) Projective Geometry, esp. in 3D
(2) Data Structures for Finite Projective Geometry
(3) Spreads and Packings
4) Formal Proofs
(5) Conclusions and Future Work

Conclusions and Future Work

- Achievements
- Some (Big) Formal Proofs in PG(3,2)
- Pushing Coq to its limits
- Next steps (examples of state-of-the-art results)
- Betten. The packings of PG(3,3) . 2015
- Svetlana Topalova and Stela Zhelezova. On transitive parallelisms of $P G(3,4) .2017$
- Using alternative provers
- Lean
- Z3

Thanks! Questions?

https://github.com/magaud/PG3q

