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Projective Space Geometry

• Context
• Incidence Geometry

• points, lines and an incidence relation
• Projective Incidence Geometry

• in 2D : 2 lines always intersect
• in 3D : Pasch’s axiom

• Simple description : only 6 axioms

• Goal :
• Specifying some finite models of projective geometry
• Formally checking the axioms
• Computing spreads and packings
• Proving some of their properties
• Taking Coq to its limits (w.r.t. specification and w.r.t. proof)
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Objects and Operations

• Objects : Point, Line
Parameter Point, Line : Type.

• Incidence relation : incid_lp
Parameter incid_lp : Point -> Line -> bool.

• Boolean equalities on points and lines : eqP, eqL
Parameter eqP : Point -> Point -> bool.
Parameter eqL : Line -> Line -> bool.

• All distinct points and/or lines : dist_3p, dist_4p, . . . , dist_5l
Definition dist_3p (A B C :Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).

Definition dist_4p (A B C D:Point) : bool := ...
Definition dist_5l (l1 l2 l3:Line) : bool := ...
Definition dist_5l (l1 l2 l3 l4 l5:Line) : bool := ...

• Intersection of 2 lines : Intersect_In
Definition Intersect_In (l1 l2 :Line) (P:Point) :=
incid_lp P l1 && incid_lp P l2.
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Axioms for Projective Space Geometry :
from a geometry point of view

• a1 : throught 2 points, there is one line.
• uniqueness : Given 2 points and 2 lines, if the 2 points are

both on both lines, either the points are equal, or the lines.
• a2 : Pasch’s axiom (if 2 lines intersect. . . ).
• a3_1 : Each line has at least 3 points.
• a3_2 : There exists 2 lines which do not intersect (dim>2).
• a3_3 : Given 3 distinct lines, there exists a fourth one

which intersects with all three (dim<=3).
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Axioms for Projective Space Geometry :
from a geometry point of view

• Pasch’s axiom
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Axioms for Projective Space Geometry :
from a geometry point of view

Axiom a1_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.

Axiom uniqueness : forall (A B :Point)(l1 l2:Line),
incid_lp A l1 -> incid_lp B l1 -> incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.

Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.

Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.

Axiom a3_2 : exists l1:Line, exists l2:Line,
forall p:Point, (incid_lp p l1 && incid_lp p l2).

Axiom a3_3 : forall l1 l2 l3:Line, dist_3l l1 l2 l3 ->
exists l4 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In l1 l4 J1 && Intersect_In l2 l4 J2 && Intersect_In l3 l4 J3.
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Axioms for Projective Space Geometry :
from a logic point of view

Axiom a1_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.

Axiom uniqueness : forall (A B :Point)(l1 l2:Line),
incid_lp A l1 -> incid_lp B l1 -> incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.

Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.

Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.

Axiom a3_2 : exists l1:Line, exists l2:Line,
forall p:Point, (incid_lp p l1 && incid_lp p l2).

Axiom a3_3 : forall l1 l2 l3:Line, dist_3l l1 l2 l3 ->
exists l4 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In l1 l4 J1 && Intersect_In l2 l4 J2 && Intersect_In l3 l4 J3.
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Finite Projective Spaces PG(3,q)

# points # lines # points per line
PG(3,2) 15 35 3
PG(3,3) 40 130 4
PG(3,4) 85 357 5
PG(3,q) (q2 + 1)(q + 1) (q2 + q + 1)(q2 + 1) q + 1

• By duality : # planes = # points.
• Describing the incidence relation of PG(3, q) :

for each line, we provide the q+1 points which belong to it.
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Coq specifications

• Point and Line as simple inductive types.
• Case analysis is easy.
• Finding a witness can be challenging.

= trying each possible value and running the tactics.
• Writing the specification is a bit boring (even worse with

higher orders).
Inductive Point := P0 | P1 | P2 | ... | P14.

• Automation
• An external program to generate the specification
• Also useful to generate the witnesses for existential proofs

• incidence relation as a boolean predicate
• decidable equality
• ad-hoc order relation on points and lines
• witnesses are computed in advance
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Inductive Definitions and Functions
Inductive Point :=
| P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 .

Inductive Line :=
| L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9
| L10 | L11 | L12 | L13 | L14 | L15 | L16 | L17 | L18 | L19
| L20 | L21 | L22 | L23 | L24 | L25 | L26 | L27 | L28 | L29
| L30 | L31 | L32 | L33 | L34 .

Definition incid_lp (p:Point) (l:Line) : bool :=
match l with
| L0 => match p with P0 | P1 | P2 => true | _ => false end
| L1 => match p with P0 | P3 | P4 => true | _ => false end
| L2 => match p with P0 | P5 | P6 => true | _ => false end
| L3 => match p with P0 | P7 | P8 => true | _ => false end
| L4 => match p with P0 | P10 | P9 => true | _ => false end
| [...]
end.

Definition f_a3_3 (l1:Line) (l2:Line) (l3:Line) :=
match l3 with
| L0 => match l2 with

| L0 => match l1 with
| L0 => (L0,(P0,P0,P0))
| _ => (L0,(P0,P0,P0))

end
| _ => (L0, (P0,P0,P0))
end

| L1 => [...]
end.

12 / 23



Outline

1 Projective Geometry, esp. in 3D

2 Data Structures for Finite Projective Geometry

3 Spreads and Packings

4 Formal Proofs

5 Conclusions and Future Work

13 / 23



Spreads and Packings of PG(3,q)

• A spread of PG(3,q) is a set of q2 + 1 lines which are
pairwise disjoint and thus partitions the set of points.
• In PG(3,2), it corresponds to some sets of 5 lines.

• A packing of PG(3,q) is a set of q2 + q + 1 spreads which
are pairwise disjoint and thus partitions the set of lines.
• In PG(3,2), it corresponds to some sets of 7 spreads.
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Results for PG(3,2)

• There are 56 (isomorphic) spreads in PG(3,2).
• There are 240 packings in PG(3,2), upto isomorphism.
• These 240 packings are divided into 2 distinct equivalence

classes (120 packings each).
• See Finite Projective Spaces of Three Dimensions

(Hirschfeld,1985) for details
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Spreads

• Formal definition of a spread

Definition is_partition (p q r s t: list Point) :bool :=
(forall_Point (fun x => inb x p || inb x q || inb x r || inb x s || inb x t)) &&
(forall_Point (fun x => negb (inb x p && inb x q && inb x r && inb x s && inb x t))).

Definition is_spread5 (l1 l2 l3 l4 l5:Line) : bool :=
disj_5l l1 l2 l3 l4 l5 && is_partition l1 l2 l3 l4.

• Spreads are computed externally.
• This exactly computes all the spreads of PG(3,2).

Lemma is_spread_descr : forall l1 l2 l3 l4 l5,
(is_spread5 l1 l2 l3 l4 l5) <-> In [l1;l2;l3;l4;l5] spreads.

• Proceeds by induction of the 5 variables l1, l2, l3, l4, l5
(355 = 52 521 875 cases)
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Spreads

• All these spreads are isomorphic.
• Collineation : bijection which respects the incidence relation
• There exists a collineation between each pair of spreads.

Lemma all_isomorphic_lemma : forall t1 t2 : list Line,
In t1 spreads -> In t2 spreads -> are_isomorphic t1 t2.

• Proof achieved using a circular argument
S0 → S1 → S2 → . . .→ S55 → S0
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Packings

• We build the 240 packings of PG(3,2).
• We still need to show that they are no other packings of

PG(3,2).
• We build 2 classes of isomorphim (120 packings each).
• We still need to show that they are actually two distinct

classes.
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Issues and Solutions

• Issues
• Finding effective representations of objects for both

computation and formal (automated reasoning)
• Reaching the Frontiers/Limitations of Coq

• Solutions
• Enhancing Coq abilities
• Circumventing the limitations

• Simplifying
• Decomposing the proof
• . . .
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Conclusions and Future Work

• Achievements
• Some (Big) Formal Proofs in PG(3,2)
• Pushing Coq to its limits

• Next steps (examples of state-of-the-art results)
• Betten. The packings of PG(3,3) . 2015
• Svetlana Topalova and Stela Zhelezova. On transitive

parallelisms of PG(3,4). 2017
• Using alternative provers

• Lean
• Z3
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Thanks ! Questions?

https://github.com/magaud/PG3q
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