Realizations of Rigid Graphs

Christoph Koutschan
(joint work with Jose Capco, Matteo Gallet, Georg Grasegger, Niels Lubbes, Josef Schicho, and Elias Tsigaridas)

Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences

September 15, 2021
International Conference on Automated Deduction in Geometry RISC Hagenberg

ÖAW RICAM

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1
\end{aligned}
$$

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1
\end{aligned}
$$

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1
\end{aligned}
$$

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1
\end{aligned}
$$

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\},\{2,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1 \\
& \lambda(2,4)=1
\end{aligned}
$$

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\},\{2,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1 \\
& \lambda(2,4)=1
\end{aligned}
$$

Definition: G is called rigid, if there is exactly one way, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\},\{2,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1 \\
& \lambda(2,4)=1
\end{aligned}
$$

Definition: G is called rigid, if there is exactly one way, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Rigid and Non-Rigid Graphs

Notation: Let $G=(V, E)$ be a graph, and let $\lambda: E \rightarrow \mathbb{R}_{>0}$ be a labeling of its edges, that is realizable (as lengths in \mathbb{R}^{2}).

Example: $G=(V, E)$ with

$$
\begin{aligned}
V= & \{1,2,3,4\}, \\
E= & \{\{1,2\},\{2,3\}, \\
& \{3,4\},\{1,4\},\{2,4\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda(1,2)=\lambda(1,4)=0.75 \\
& \lambda(2,3)=\lambda(3,4)=1 \\
& \lambda(2,4)=1
\end{aligned}
$$

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid?

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? No!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? No!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? No!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? No!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? No!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given.

Three-Prism Graph

Is this graph rigid? Yes!

Definition: G is called rigid, if there are only finitely many ways, modulo rotations and translations, how it can be embedded in the plane, when the edge lengths λ are given generically.

Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman) if removing any single edge makes G non-rigid.

Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman) if removing any single edge makes G non-rigid.

Question: When can we expect rigidity?

- \# unknowns (coordinates of the vertices): $2 \cdot|V|$
- \# constraints: $|E|$
- dim(direct isometries): 3
\longrightarrow Hence, $|E| \geqslant 2|V|-3$ is a necessary condition for rigidity.

Minimally Rigid Graphs

Definition: A rigid graph G is called minimally rigid (or Laman) if removing any single edge makes G non-rigid.

Question: When can we expect rigidity?

- \# unknowns (coordinates of the vertices): $2 \cdot|V|$
- \# constraints: $|E|$
- dim(direct isometries): 3
\longrightarrow Hence, $|E| \geqslant 2|V|-3$ is a necessary condition for rigidity.
Theorem. (Geiringer 1927, Laman 1970)
A graph $G=(V, E)$ is minimally rigid if and only if

1. $|E|=2|V|-3$,
2. $\left|E^{\prime}\right| \leqslant 2\left|V^{\prime}\right|-3$ for each subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G.

Some Minimally Rigid Graphs

All minimally rigid graphs with $2 \leqslant n \leqslant 5$ vertices:

$$
n=2:
$$

Some Minimally Rigid Graphs

All minimally rigid graphs with $2 \leqslant n \leqslant 5$ vertices:

$$
n=2:
$$

$n=3:$

Some Minimally Rigid Graphs

All minimally rigid graphs with $2 \leqslant n \leqslant 5$ vertices:

Some Minimally Rigid Graphs

All minimally rigid graphs with $2 \leqslant n \leqslant 5$ vertices:

Some Minimally Rigid Graphs

All minimally rigid graphs with 6 vertices:

Some Minimally Rigid Graphs

There are 70 minimally rigid graphs with 7 vertices:

Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

n	$\#$
2	1
3	1
4	1
5	3
6	13
7	70

Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

n	$\#$
2	1
3	1
4	1
5	3
6	13
7	70

A227117 Number of minimally rigid graphs on n vertices.
1, 1, 1, 1, 3, 13, 70, 609 (list; graph; refs; listen; history; text; int OFFSET 1,5
COMmENTS All the minimally rigid graphs on n vertices graphs on $n-1$ vertices by use of two types constructions. In the first type a new ve edges are added connecting the new vertex of the graph. In the second type of const which are connected by an edge are selecte, edge between $v _1$ and $v _2$ is deleted. A new as the edges ($\left.v_{-} 1, w\right),\left(v_{-} 2, w\right)$, and ($\left.v_{-} 3, w\right)$. one to the number of vertices and two to tl

Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

n	$\#$
2	1
3	1
4	1
5	3
6	13
7	70
8	608

A227117 Number of minimally rigid graphs on n vertices.
1, 1, 1, 1, 3, 13, 70, 609 (list; graph; refs; listen; history; text; int OFFSET 1,5
COMMENTS All the minimally rigid graphs on n vertices graphs on $n-1$ vertices by use of two types constructions. In the first type a new ve edges are added connecting the new vertex of the graph. In the second type of const which are connected by an edge are selectel edge between $v _1$ and $v _2$ is deleted. A new as the edges $\left(v_{-} 1, w\right),\left(v _2, w\right)$, and $\left(v _3, w\right)$. one to the number of vertices and two to tl

Enumeration of Minimally Rigid Graphs Number of minimally rigid graphs with n vertices:

n	$\#$
2	1
3	1
4	1
5	3
6	13
7	70
8	608
9	7222
10	110132
11	2039273
12	44176717

A227117 Number of minimally rigid graphs on n vertices.
$1,1,1,1,3,13,70,609$ (list; graph; refs; listen; history; text; int; OFFSET 1,5
COMMENTS All the minimally rigid graphs on n vertices graphs on $n-1$ vertices by use of two types constructions. In the first type a new ve edges are added connecting the new vertex of the graph. In the second type of const which are connected by an edge are selecter edge between $v _1$ and $v _2$ is deleted. A new as the edges ($\left.v _1, w\right),\left(v _2, w\right)$, and $\left(v _3, w\right)$. one to the number of vertices and two to tl

A227117 Number of minimally rigid graphs in 2D on n verti
$1,1,1,1,3,13,70,608,7222,110132,2039273,44176717$ (list; graph; refs; listen; history; text; internal format)
OFFSET $\quad 1,5$

COMMENTS All the minimally rigid graphs on n vertices graphs on $n-1$ vertices by use of two types constructions. In the first type a new ver edges are added connecting the new vertex t of the graph. In the second type of constr which are connected by an edge are selectec edge between $v_{-} 1$ and $v_{-} 2$ is deleted. A new well as the edges ($v_{-} 1, w$), ($v_{-} 2, w$), and ($v_{-} ミ$ adds one to the number of vertices and two

Enumeration of Minimally Rigid Graphs

Number of minimally rigid graphs with n vertices:

Number of Realizations

Minimally rigid graph with 3 vertices: ?

Number of Realizations

Minimally rigid graph with 3 vertices: 2 realizations

Number of Realizations

Minimally rigid graph with 3 vertices: 2 realizations

Minimally rigid graph with 4 vertices: ?

Number of Realizations

Minimally rigid graph with 3 vertices: 2 realizations

Minimally rigid graph with 4 vertices: 4 realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Number of Realizations

Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be obtained by successively connecting a new vertex with two existing ones, starting with the graph • \bullet

Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be obtained by successively connecting a new vertex with two existing ones, starting with the graph $\bullet \bullet$

Number of realizations:

- Let $G=(V, E)$ be an H 1 graph.
- Fix a realizable labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$.
- Fix the positions of the first two vertices, respecting $\lambda(1,2)$.
- Each vertex that is added can be put at two different positions.

Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be obtained by successively connecting a new vertex with two existing ones, starting with the graph $\bullet \bullet$

Number of realizations:

- Let $G=(V, E)$ be an H 1 graph.
- Fix a realizable labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$.
- Fix the positions of the first two vertices, respecting $\lambda(1,2)$.
- Each vertex that is added can be put at two different positions.
\longrightarrow There are $2^{|V|-2}$ realizations.

Realizations of H1 Graphs

Definition: An H1 graph is a minimally rigid graph that can be obtained by successively connecting a new vertex with two existing ones, starting with the graph $\bullet \bullet$

Number of realizations:

- Let $G=(V, E)$ be an H 1 graph.
- Fix a realizable labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$.
- Fix the positions of the first two vertices, respecting $\lambda(1,2)$.
- Each vertex that is added can be put at two different positions. \longrightarrow There are $2^{|V|-2}$ realizations.

Definition: The Laman number $\operatorname{Lam}(G)$ of a minimally rigid graph G is the number of realizations of G, for a generic realizable labeling λ.

Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H 1 ?

Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H 1 ?
Set up a system of equations:

- Let $\left(x_{v}, y_{v}\right)$ be the coordinates of vertex v.
- For $\{u, v\} \in E$:

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Minimally Rigid Graphs that are not H1

Question: What about minimally rigid graphs that are not H 1 ?
Set up a system of equations:

- Let $\left(x_{v}, y_{v}\right)$ be the coordinates of vertex v.
- For $\{u, v\} \in E$:

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Convention: From now on we work over the complex numbers:

- $\lambda: E \rightarrow \mathbb{C}$
- $\left(x_{v}, y_{v}\right) \in \mathbb{C}^{2}$

Example: Three-Prism Graph

$$
\begin{aligned}
& \left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=\lambda(1,2)^{2} \\
& \left(x_{1}-x_{3}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}=\lambda(1,3)^{2} \\
& \left(x_{1}-x_{4}\right)^{2}+\left(y_{1}-y_{4}\right)^{2}=\lambda(1,4)^{2} \\
& \left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=\lambda(2,3)^{2} \\
& \left(x_{2}-x_{5}\right)^{2}+\left(y_{2}-y_{5}\right)^{2}=\lambda(2,5)^{2} \\
& \left(x_{3}-x_{6}\right)^{2}+\left(y_{3}-y_{6}\right)^{2}=\lambda(3,6)^{2} \\
& \left(x_{4}-x_{5}\right)^{2}+\left(y_{4}-y_{5}\right)^{2}=\lambda(4,5)^{2} \\
& \left(x_{4}-x_{6}\right)^{2}+\left(y_{4}-y_{6}\right)^{2}=\lambda(4,6)^{2} \\
& \left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}=\lambda(5,6)^{2}
\end{aligned}
$$

Example: Three-Prism Graph

$$
\begin{aligned}
& \left(\quad x_{2}\right)^{2}+\left(\quad y_{2}\right)^{2}=\lambda(1,2)^{2} \\
& \left.x_{3}\right)^{2}+\left(\quad y_{3}\right)^{2}=\lambda(1,3)^{2} \\
& \left.x_{4}\right)^{2}+\left(\quad y_{4}\right)^{2}=\lambda(1,4)^{2} \\
& \left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=\lambda(2,3)^{2} \\
& \left(x_{2}-x_{5}\right)^{2}+\left(y_{2}-y_{5}\right)^{2}=\lambda(2,5)^{2} \\
& \left(x_{3}-x_{6}\right)^{2}+\left(y_{3}-y_{6}\right)^{2}=\lambda(3,6)^{2} \\
& \left(x_{4}-x_{5}\right)^{2}+\left(y_{4}-y_{5}\right)^{2}=\lambda(4,5)^{2} \\
& \left(x_{4}-x_{6}\right)^{2}+\left(y_{4}-y_{6}\right)^{2}=\lambda(4,6)^{2} \\
& \left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}=\lambda(5,6)^{2}
\end{aligned}
$$

- Take care of translations: $\left(x_{1}, y_{1}\right)=(0,0)$

Example: Three-Prism Graph

$$
\begin{aligned}
& y_{2}=\lambda(1,2) \\
&\left(y_{3}\right)^{2}=\lambda(1,3)^{2} \\
&\left(x_{3}\right)^{2}+\left(\begin{array}{r}
y_{4}
\end{array}\right)^{2}=\lambda(1,4)^{2} \\
&\left.x_{4}\right)^{2}+\left(y_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=\lambda(2,3)^{2} \\
&\left(x_{5}\right)^{2}+\left(y_{2}-y_{5}\right)^{2}=\lambda(2,5)^{2} \\
&\left(x_{5}\right)^{2} \\
&\left(x_{3}-x_{6}\right)^{2}+\left(y_{3}-y_{6}\right)^{2}=\lambda(3,6)^{2} \\
&\left(x_{4}-x_{5}\right)^{2}+\left(y_{4}-y_{5}\right)^{2}=\lambda(4,5)^{2} \\
&\left(x_{4}-x_{6}\right)^{2}+\left(y_{4}-y_{6}\right)^{2}=\lambda(4,6)^{2} \\
&\left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}=\lambda(5,6)^{2}
\end{aligned}
$$

- Take care of translations: $\left(x_{1}, y_{1}\right)=(0,0)$
- Take care of rotations: $x_{2}=0$ and $y_{2}>0$

Example: Three-Prism Graph

$$
\begin{aligned}
& y_{2}=\lambda(1,2) \\
& \left.x_{3}\right)^{2}+\left(\quad y_{3}\right)^{2}=\lambda(1,3)^{2} \\
& \left(\quad x_{4}\right)^{2}+\left(\quad y_{4}\right)^{2}=\lambda(1,4)^{2} \\
& \left(\quad x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=\lambda(2,3)^{2} \\
& \left(\quad x_{5}\right)^{2}+\left(y_{2}-y_{5}\right)^{2}=\lambda(2,5)^{2} \\
& \left(x_{3}-x_{6}\right)^{2}+\left(y_{3}-y_{6}\right)^{2}=\lambda(3,6)^{2} \\
& \left(x_{4}-x_{5}\right)^{2}+\left(y_{4}-y_{5}\right)^{2}=\lambda(4,5)^{2} \\
& \left(x_{4}-x_{6}\right)^{2}+\left(y_{4}-y_{6}\right)^{2}=\lambda(4,6)^{2} \\
& \left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2}=\lambda(5,6)^{2}
\end{aligned}
$$

- Take care of translations: $\left(x_{1}, y_{1}\right)=(0,0)$
- Take care of rotations: $x_{2}=0$ and $y_{2}>0$

Question: How many solutions does this system have?

Gröbner Basis Approach

- Not feasible for symbolic parameters $\lambda(i, j)$

Gröbner Basis Approach

- Not feasible for symbolic parameters $\lambda(i, j)$
- Replace each $\lambda(i, j)$ by a random integer

Gröbner Basis Approach

- Not feasible for symbolic parameters $\lambda(i, j)$
- Replace each $\lambda(i, j)$ by a random integer

- Do the computation modulo $p=2^{31}-1$:

$\left\{y_{3}+1727076644, x_{5} x_{5}+1073741823 x_{6}^{2}+y_{5} y_{6}+1073741823 y_{6}^{2}+2147483458 y_{5}+1073746572, x_{4} x_{6}+1073741823 x_{6}^{2}+y_{4} y_{6}+1073741823 y_{6}^{2}+2147472199\right.$,
$x_{3} x_{6}+1073741823 x_{6}^{2}+1073741823 y_{6}^{2}+420407003 y_{6}+2147476519, x_{3} y_{5}+1449935236 x_{4} y_{5}+87139559 x_{5} y_{5}+821582392 y_{4} x_{6}+$ $534432936 y_{5} x_{6}+2127003394 x_{3} y_{6}+393122455 x_{4} y_{6}+739525427 x_{5} y_{6}+1428199694 x_{6} y_{6}+1318362776 x_{3}+45332622 x_{4}+1666067743 x_{5}+1402190174 x_{6}$. $x_{5}^{2}+y_{5}^{2}+2147483269 y_{5}+2147482119, y_{4} x_{5}+1431835485 x_{4} y_{5}+1585512332 x_{5} y_{5}+2099455504 y_{4} x_{6}+1274481640 y_{5} x_{5}+1926461619 x_{3} y_{6}+1819204411 x_{4} y_{6}+$ $2064309228 x_{5} y_{6}+1860755017 x_{6} y_{6}+758303990 x_{3}+504327305 x_{4}+513732789 x_{5}+1018326077 x_{6}, x_{4} x_{5}+y_{4} y_{5}+2147483458 y_{5}+2147472715$,
$y_{4}^{2}+544418756 y_{4} y_{5}+47332294 y_{5}^{2}+1603064889 y_{4} y_{6}+1508400303 y_{5} y_{6}+591751051 y_{6}^{2}+1072510925, x_{4} y_{4}+1252848948 x_{4} y_{5}+1309508129 x_{5} y_{5}+2016071435 y_{4} x_{6}+$ $1654953235 y_{5} x_{6}+1839606594 x_{3} y_{6}+577627465 x_{4} y_{6}+876148120 x_{5} y_{6}+335588542 x_{6} y_{6}+2136682920 x_{3}+1038483061 x_{4}+157778557 x_{5}+540431639 x_{6}$,
$x_{3} y_{4}+204011627 x_{4} y_{5}+839002279 x_{5} y_{5}+368180718 y_{4} x_{6}+1641249205 y_{5} x_{6}+430135887 x_{3} y_{6}+486556477 x_{4} y_{6}+1706891994 x_{5} y_{6}+83415671 x_{6} y_{6}+123469149 x_{3}+$ $554422930 x_{4}+1257780688 x_{5}+1936702634 x_{6}, x_{4}^{2}+1603064891 y_{4} y_{5}+2100151353 y_{5}^{2}+544418758 y_{4} y_{6}+639083344 y_{5} y_{6}+1555732596 y_{6}^{2}+1074934697$,
$x_{3}^{2}+1527353090, y_{6}^{3}+72446234 x_{3} x_{4}+191839850 x_{3} x_{5}+1293615843 y_{4} y_{5}+2115905836 y_{5}^{2}+158590087 x_{6}^{2}+808924606 y_{4} y_{6}+945043470 y_{5} y_{6}+57464572 y_{6}^{2}+$ $1061760435 y_{4}+458639039 y_{5}+890226333 y_{6}+306458357, x_{6} y_{6}^{2}+1202942319 x_{4} y_{5}+891621123 x_{5} y_{5}+694981073 y_{4} x_{6}+1268149853 y_{5} x_{6}+$ $566843284 x_{3} y_{6}+1579449712 x_{4} y_{6}+2096672325 x_{5} y_{6}+217935702 x_{6} y_{6}+1838771945 x_{3}+1574100689 x_{4}+890711649 x_{5}+527754025 x_{6}$,
$y_{5} y_{5}^{2}+1397298562 x_{3} x_{4}+1093626759 x_{3} x_{5}+1874498615 y_{4} y_{5}+410806791 y_{5}^{2}+34715881 x_{6}^{2}+1602680419 y_{4} y_{6}+1365806073 y_{5} y_{6}+1574368257 y_{6}^{2}+$ $1986672592 y_{4}+1454700418 y_{5}+207782012 y_{6}+817238271, x_{5} y_{6}^{2}+906551028 x_{4} y_{5}+2088326233 x_{5} y_{5}+983660499 y_{4} x_{6}+2020744231 y_{5} x_{6}+438982960 x_{3} y_{6}+$ $105460105 x_{4} y_{6}+1791765415 x_{5} y_{6}+752681903 x_{6} y_{6}+1243232341 x_{3}+236567207 x_{4}+2039336095 x_{5}+204724127 x_{6}, y_{4} y_{6}^{2}+1798033564 x_{3} x_{4}+1368970181 x_{3} x_{5}+$ $2111288438 y_{4} y_{5}+2116525889 y_{5}^{2}+631579871 x_{6}^{2}+2098374939 y_{4} y_{6}+14559548 y_{5} y_{6}+265925976 y_{6}^{2}+768097244 y_{4}+197849421 y_{5}+1272087803 y_{6}+1950925264$,
$x_{4} y_{6}^{2}+2000108329 x_{4} y_{5}+138882411 x_{5} y_{5}+1964621882 y_{4} x_{6}+1562619152 y_{5} x_{6}+274800980 x_{3} y_{6}+381168929 x_{4} y_{6}+1561080504 x_{5} y_{6}+646135501 x_{6} y_{6}+$ $1252024999 x_{3}+1828948462 x_{4}+1907059409 x_{5}+1062878925 x_{6}, x_{3} y_{6}^{2}+1940064434 x_{4} y_{5}+1699323466 x_{5} y_{5}+2767389 y_{4} x_{6}+309430653 y_{5} x_{6}+$ $1746152111 x_{3} y_{6}+1486922955 x_{4} y_{6}+1042873400 x_{5} y_{6}+1877302158 x_{6} y_{6}+898857598 x_{3}+2023749908 x_{4}+1369459334 x_{5}+1937240806 x_{6}$,
$x_{6}^{2} y_{6}+1859350309 x_{3} x_{4}+828165967 x_{3} x_{5}+1319416915 y_{4} y_{5}+1281531769 y_{5}^{2}+416445396 x_{6}^{2}+555896977 y_{4} y_{6}+838162654 y_{5} y_{6}+1094699319 y_{6}^{2}+$ $1025635396 y_{4}+758820774 y_{5}+1932663106 y_{6}+902372666, y_{5} x_{6} y_{6}+1776737250 x_{4} y_{5}+1335234339 x_{5} y_{5}+197659465 y_{4} x_{6}+388691694 y_{5} x_{5}+$ $1214819713 x_{3} y_{6}+1236939013 x_{4} y_{6}+1895585096 x_{5} y_{6}+1457663787 x_{6} y_{6}+1908824636 x_{3}+1937866443 x_{4}+906541898 x_{5}+1779256072 x_{6}$,
$y_{4} x_{6} y_{6}+392800087 x_{4} y_{5}+43314235 x_{5} y_{5}+1752015765 y_{4} x_{6}+697637736 y_{5} x_{6}+1174862040 x_{3} y_{6}+1726470482 x_{4} y_{6}+524280549 x_{5} y_{6}+1783594194 x_{6} y_{6}+$ $777027038 x_{3}+1196924612 x_{4}+669351278 x_{5}+136564514 x_{6}, y_{5}^{2} y_{6}+769157270 x_{3} x_{4}+30129177 x_{3} x_{5}+147541859 y_{4} y_{5}+696342885 y_{5}^{2}+953052903 x_{6}^{2}+63094056 y_{4} y_{6}+$ $1607776536 y_{5} y_{6}+2003959420 y_{6}^{2}+1657122998 y_{4}+1041341194 y_{5}+643382090 y_{5}+298205040, x_{5} y_{5} y_{6}+1361368571 x_{4} y_{5}+443005480 x_{5} y_{5}+749246637 y_{4} x_{5}+$ $556781711 y_{5} x_{6}+268588588 x_{3} y_{6}+179323388 x_{4} y_{6}+260672145 x_{5} y_{6}+542764427 x_{6} y_{6}+2031844241 x_{3}+112806238 x_{4}+2024966158 x_{5}+1634398898 x_{6}$,
$y_{4} y_{5} y_{6}+1495723262 x_{3} x_{4}+1150552515 x_{3} x_{5}+647627904 y_{4} y_{5}+834052394 y_{5}^{2}+680400990 x_{6}^{2}+703082161 y_{4} y_{6}+1261907640 y_{5} y_{6}+1146980666 y_{6}^{2}+$ $339024153 y_{4}+1829077048 y_{5}+1120614065 y_{6}+420646718, x_{4} y_{5} y_{6}+391789202 x_{4} y_{5}+1778622432 x_{5} y_{5}+32574434 y_{4} x_{6}+638884222 y_{5} x_{6}+$ $2008976092 x_{3} y_{6}+1158838637 x_{4} y_{6}+298082231 x_{5} y_{6}+579017100 x_{6} y_{6}+541015847 x_{3}+1347513279 x_{4}+1774560872 x_{5}+1614705109 x_{6}$,
$x_{3} x_{5} y_{6}+1581681716 x_{3} x_{4}+486946881 x_{3} x_{5}+42162009 y_{4} y_{5}+1075313850 y_{5}^{2}+1564800523 x_{6}^{2}+198951616 y_{4} y_{6}+1466002977 y_{5} y_{6}+932669036 y_{6}^{2}+248319512 y_{4}+$ $862020011 y_{5}+649537600 y_{6}+815933435, x_{3} x_{4} y_{6}+1343545648 x_{3} x_{4}+1023324514 x_{3} x_{5}+40371239 y_{4} y_{5}+1905289341 y_{5}^{2}+1639954889 x_{6}^{2}+786545101 y_{4} y_{6}+$ $1219192433 y_{5} y_{5}+321512152 y_{6}^{2}+1631897898 y_{4}+850776521 y_{5}+530499711 y_{6}+2036743747, x_{6}^{3}+1359379754 x_{4} y_{5}+4699239 x_{5} y_{5}+1446967796 y_{4} x_{6}+$ $260472488 y_{5} x_{6}+701675423 x_{3} y_{6}+1889155319 x_{4} y_{6}+112548169 x_{5} y_{6}+1629096917 x_{6} y_{6}+658508665 x_{3}+820850436 x_{4}+665336977 x_{5}+1707190979 x_{6}$,
$y_{5} x_{6}^{2}+1013046601 x_{3} x_{4}+969596453 x_{3} x_{5}+1553889292 y_{4} y_{5}+1185309841 y_{5}^{2}+1987921573 x_{6}^{2}+1033458441 y_{4} y_{6}+1320068753 y_{5} y_{6}+1102491211 y_{6}^{2}+$ $1104911459 y_{4}+1375116864 y_{5}+672833739 y_{6}+626376074, y_{4} x_{5}^{2}+2009134087 x_{3} x_{4}+1611713763 x_{3} x_{5}+168461479 y_{4} y_{5}+1706153267 y_{5}^{2}+$ $1769015690 \mathrm{x}_{6}^{2}+1182579576 \mathrm{y}_{4} \mathrm{y}_{6}+557864255 \mathrm{y}_{5} \mathrm{y}_{6}+503714053 \mathrm{y}_{6}^{2}+176291393 \mathrm{y}_{4}+1354065871 \mathrm{y}_{5}+954347026 \mathrm{y}_{6}+734410570$,
$y_{5}^{2} x_{6}+619010252 x_{4} y_{5}+916121455 x_{5} y_{5}+1431371638 y_{4} x_{6}+969212309 y_{5} x_{6}+1949990023 x_{3} y_{6}+414782496 x_{4} y_{6}+1907745509 x_{5} y_{6}+970368126 x_{6} y_{6}+$ $1740320236 x_{5}+1975330810 x_{4}+2143293978 x_{5}+252311982 x_{6}, y_{4} y_{5} x_{6}+558167487 x_{4} y_{5}+433016430 x_{5} y_{5}+2075138717 y_{4} x_{6}+1434835475 y_{5} x_{6}+$ $531264210 x_{3} y_{5}+427467244 x_{4} y_{6}+1374860777 x_{5} y_{6}+149117380 x_{6} y_{6}+1826680361 x_{3}+969629736 x_{4}+766694650 x_{5}+1666548268 x_{6}$,
$y_{5}^{3}+649714439 x_{3} x_{4}+1076476457 x_{3} x_{5}+1435812662 y_{4} y_{5}+2053151093 y_{5}^{2}+280374149 x_{5}^{2}+1469939973 y_{4} y_{6}+1400337770 y_{5} y_{6}+1634063342 y_{6}^{2}+$ $354162717 y_{4}+737861553 y_{5}+816931778 y_{6}+1428529698, x_{5} y_{5}^{2}+1136639110 x_{4} y_{5}+121108532 x_{5} y_{5}+2127022098 y_{4} x_{6}+701800649 y_{5} x_{5}+$ $1281723728 x_{3} y_{6}+2092528324 x_{4} y_{6}+1816317333 x_{5} y_{6}+1524717023 x_{6} y_{6}+737384683 x_{3}+261085830 x_{4}+712596842 x_{5}+1219275979 x_{6}$,
$y_{4} y_{5}^{2}+1382099903 x_{3} x_{4}+1674451197 x_{3} x_{5}+1964164303 y_{4} y_{5}+610824582 y_{5}^{2}+1726175807 x_{6}^{2}+1045412838 y_{4} y_{6}+1328732288 y_{5} y_{6}+1416893499 y_{6}^{2}+$ $509989107 y_{4}+356562705 y_{5}+701591991 y_{6}+90791056, x_{4} y_{5}^{2}+1125381690 x_{4} y_{5}+343309511 x_{5} y_{5}+412315532 y_{4} x_{6}+392837310 y_{5} x_{6}+$ $\left.1859774430 x_{9} y_{6}+1289634195 x_{4} y_{6}+511405427 x_{5} y_{6}+2104680646 x_{6} y_{6}+1304660656 x_{3}+1431387822 x_{4}+2142663821 x_{5}+395031648 x_{6}\right\}$

- Do the computation modulo $p=2^{31}-1$:

$534432936 y_{5} x_{6}+2127003394 x_{3} y_{6}+393122455 x_{4} y_{6}+739525427 x_{5} y_{6}+1428199694 x_{6} y_{6}+1318362776 x_{3}+45332622 x_{4}+1666067743 x_{5}+1402190174 x_{6}$.
독 $+y_{5}^{2}+2147483269 y_{5}+2147482119$, x $x+1431835485 x_{4} y_{5}+1585512332 x_{5} y_{5}+2099455504 y_{4} x_{6}+1274481640 y_{5} x_{6}+1926461619 x_{3} y_{6}+1819204411 x_{4} y_{5}+$

[17 $+544418756 y_{4} y_{5}+47332294 y_{5}^{2}+1603064889 y_{4} y_{6}+1508400303 y_{5} y_{6}+591751051 y_{5}^{2}+1072510925$, wivit $1252848948 x_{4} y_{5}+1309508129 x_{5} y_{5}+2016071435 y_{4} x_{6}+$ $1654953235 y_{5} x_{6}+1839606594 x_{3} y_{6}+577627465 x_{4} y_{6}+876148120 x_{5} y_{6}+335588542 x_{6} y_{6}+2136682920 x_{3}+1038483051 x_{4}+157778557 x_{5}+540431639 x_{6}$,

$554422930 x_{4}+1257780688 x_{5}+1936702634 x_{6}, x_{1}+1603064891 y_{4} y_{5}+2100151353 y_{5}^{2}+544418758 y_{4} y_{6}+639083344 y_{5} y_{6}+1555732596 y_{6}^{2}+1074934697$,
 $1061760435 y_{4}+458639039 y_{5}+890226333 y_{6}+306458357$, $x_{6} y_{6}{ }^{4}+1202942319 x_{4} y_{5}+891621123 x_{5} y_{5}+694981073 y_{4} x_{6}+1268149853 y_{5} x_{6}+$ $566843284 x_{3} y_{6}+1579449712 x_{4} y_{6}+2096672325 x_{5} y_{6}+217935702 x_{6} y_{6}+1838771945 x_{3}+1574100689 x_{4}+890711649 x_{5}+527754025 x_{6}$,
$+1397298562 x_{3} x_{4}+1093626759 x_{3} x_{5}+1874498615 y_{4} y_{5}+410806791 y_{5}^{2}+34715881 x_{6}^{2}+1602680419 y_{4} y_{6}+1365806073 y_{5} y_{6}+1574368257 y_{6}^{2}+$ $1986672592 y_{4}+1454700418 y_{5}+207782012 y_{6}+817238271$, $x_{5} y_{6}+906551028 x_{4} y_{5}+2088326233 x_{5} y_{5}+983660499 y_{4} x_{6}+2000744231 y_{5} x_{6}+438982960 x_{3} y_{6}+$ $105460105 x_{4} y_{6}+1791756415 x_{5} y_{6}+752681903 x_{6} y_{6}+1243232341 x_{3}+236567207 x_{4}+2039336095 x_{5}+204724127 x_{6}, y_{4} v_{6}+1798033564 x_{3} x_{4}+136 B 970181 x_{3} x_{5}+$ $2111288438 y_{4} y_{5}+2116525889 y_{5}^{2}+631579871 x_{6}^{2}+2098374939 y_{4} y_{6}+14559548 y_{5} y_{6}+265925976 y_{6}^{2}+768097244 y_{4}+197849421 y_{5}+1272087803 y_{6}+1950925264$, $+2000108329 x_{4} y_{5}+138882411 x_{5} y_{5}+1964621882 y_{4} x_{6}+1562619152 y_{5} x_{6}+274800980 x_{3} y_{6}+381168929 x_{4} y_{6}+1561080504 x_{5} y_{6}+646135501 x_{6} y_{6}+$ $1252024999 x_{3}+1828948462 x_{4}+1907059409 x_{5}+1062878925 x_{6}$. \qquad $+1940064434 x_{4} y_{5}+1699323466 x_{5} y_{5}+2767389 y_{4} x_{6}+309430653 y_{5} x_{6}+$ $1746152111 x_{3} y_{6}+1486922955 x_{4} y_{6}+1012873400 x_{5} y_{6}+1877302158 x_{6} y_{6}+898857598 x_{3}+2023749908 x_{4}+1369459334 x_{5}+1937240806 x_{6}$,
$+1859350309 x_{3} x_{4}+828165967 x_{3} x_{5}+1319416915 y_{4} y_{5}+1281531769 y_{5}^{2}+416445396 x_{6}^{2}+555896977 y_{4} y_{6}+838162654 y_{5} y_{6}+1094699319 y_{6}^{2}+$ $1025635396 y_{4}+758820774 y_{5}+1932663106 y_{6}+902372666$, wninn $+1776737250 x_{4} y_{5}+1335234339 x_{5} y_{5}+197659465 y_{4} x_{6}+388691694 y_{5} x_{6}+$ $1214819713 x_{3} y_{6}+1236939013 x_{4} y_{6}+1895585096 x_{5} y_{6}+1457663787 x_{6} y_{6}+1908824636 x_{3}+1937866443 x_{4}+906541898 x_{5}+1779256072 x_{6}$,
$x_{0}+392800087 x_{4} y_{5}+43314235 x_{5} y_{5}+1752015765 y_{4} x_{6}+697637736 y_{5} x_{6}+1174862040 x_{3} y_{6}+1726470482 x_{4} y_{6}+524280549 x_{5} y_{6}+1783594194 x_{6} y_{6}+$ $777027038 x_{3}+1196924612 x_{4}+669351278 x_{5}+136564514 x_{6}, \nu_{5}^{2}+769157270 x_{3} x_{4}+30129177 x_{3} x_{5}+147541859 y_{4} y_{5}+696342885 y_{5}^{2}+953052903 x_{6}^{2}+63094058 y_{4} y_{6}+$ $1607776536 y_{5} y_{6}+2003959420 y_{6}^{2}+1657122998 y_{4}+1041341194 y_{5}+643382090 y_{5}+298205040$, $y_{5} y_{5} y_{6}+1361368571 x_{4} y_{5}+443005480 x_{5} y_{5}+749246637 y_{4} x_{5}+$ $556781711 y_{5} x_{6}+268588588 x_{3} y_{6}+179323388 x_{4} y_{6}+260672145 x_{5} y_{6}+542764427 x_{6} y_{6}+2031844241 x_{3}+112806238 x_{4}+2024966158 x_{5}+1634398898 x_{6}$, $+1495723262 x_{3} x_{4}+1150552515 x_{3} x_{5}+647627904 y_{4} y_{5}+834052394 y_{5}^{2}+680400990 x_{6}^{2}+703082161 y_{4} y_{6}+1261907640 y_{5} y_{6}+1146980666 y_{6}^{2}+$
 $2008976092 x_{3} y_{6}+1158838637 x_{4} y_{6}+298082231 x_{5} y_{6}+579017100 x_{6} y_{6}+541015847 x_{3}+1347513279 x_{4}+1774560872 x_{5}+1614705109 x_{6}$,
드느․ $+1581681716 x_{3} x_{4}+486946881 x_{3} x_{5}+421622009 y_{4} y_{5}+1075313850 y_{5}^{2}+1564800523 x_{6}^{2}+198951616 y_{4} y_{6}+1466002977 y_{5} y_{6}+932669036 y_{6}^{2}+248319512 y_{4}+$ $862020011 y_{5}+649537600 y_{6}+815933435$, wint $+1343545648 x_{3} x_{4}+1023324514 x_{3} x_{5}+40371239 y_{4} y_{5}+1905289341 y_{5}^{2}+1639954889 x_{6}^{2}+786545101 y_{4} y_{6}+$ $1219192433 y_{5} y_{5}+321512152 y_{6}^{2}+1631897898 y_{4}+850776521 y_{5}+530499711 y_{6}+2036743747, x_{8}+1359379754 x_{4} y_{5}+4699239 x_{5} y_{5}+1446967796 y_{4} x_{6}+$ $260472488 y_{5} x_{6}+701675423 x_{3} y_{6}+1889155319 x_{4} y_{6}+112548169 x_{5} y_{6}+1629096917 x_{6} y_{6}+658508665 x_{3}+820850436 x_{4}+665336977 x_{5}+1707190979 x_{6}$, $+1013046601 x_{3} x_{4}+969596453 x_{3} x_{5}+1553889292 y_{4} y_{5}+1185309841 y_{5}^{2}+1987921573 x_{6}^{2}+1033458441 y_{4} y_{6}+1320068753 y_{5} y_{6}+1102491211 y_{6}^{2}+$ $1104911459 y_{4}+1375116864 y_{5}+672833739 y_{6}+626376074, x_{4} x_{13}+2009134087 x_{3} x_{4}+1611713763 x_{3} x_{5}+168461479 y_{4} y_{5}+1706153267 y_{5}^{2}+$ $1769015690 \mathrm{x}_{6}^{2}+1182579576 \mathrm{y}_{4} \mathrm{y}_{6}+557864255 \mathrm{y}_{5} \mathrm{y}_{6}+503714053 \mathrm{y}_{6}^{2}+176291393 \mathrm{y}_{4}+1354065871 \mathrm{y}_{5}+954347026 \mathrm{y}_{6}+734410570$,
$1+619010252 x_{4} y_{5}+916121455 x_{5} y_{5}+1431371638 y_{4} x_{6}+969212309 y_{5} x_{6}+1949990023 x_{3} y_{6}+414782496 x_{4} y_{6}+1907745509 x_{5} y_{6}+970368126 x_{6} y_{6}+$ $1740320236 x_{5}+1975330810 x_{4}+2143293978 x_{5}+252311982 x_{6}, ~ y y_{6}+558167487 x_{4} y_{5}+433016430 x_{5} y_{5}+2075138717 y_{4} x_{6}+1434835475 y_{5} x_{6}+$ $531264210 x_{3} y_{5}+427467244 x_{4} y_{6}+1374860777 x_{5} y_{6}+149117380 x_{6} y_{6}+1826680361 x_{3}+969629736 x_{4}+766694650 x_{5}+1666548268 x_{6}$,
固 $+649714439 x_{3} x_{4}+1076476457 x_{3} x_{5}+1435812662 y_{4} y_{5}+2053151093 y_{5}^{2}+280374149 x_{5}^{2}+1469939973 y_{4} y_{6}+1400337770 y_{5} y_{6}+1634063342 y_{6}^{2}+$ $354162717 y_{4}+737861553 y_{5}+816931778 y_{6}+1428529698$, $x_{5} y_{5}+1136639110 x_{4} y_{5}+121108532 x_{5} y_{5}+2127022098 y_{4} x_{0}+701800649 y_{5} x_{5}+$ $1281723728 x_{3} y_{6}+2092528324 x_{4} y_{6}+1816317333 x_{5} y_{6}+1524717023 x_{6} y_{6}+737384683 x_{3}+261085830 x_{4}+712596842 x_{5}+1219275979 x_{6}$,

㨁 $+1382099903 x_{3} x_{4}+1674451197 x_{3} x_{5}+1964164303 y_{4} y_{5}+610824582 y_{5}^{2}+1726175807 x_{6}^{2}+1045412838 y_{4} y_{6}+1328732288 y_{5} y_{6}+1416893499 y_{6}^{2}+$ $509989107 y_{4}+356562705 y_{5}+701591991 y_{6}+90791056, x_{6} v_{5}+1125381690 x_{4} y_{5}+343309511 x_{5} y_{5}+412315532 y_{4} x_{6}+392837310 y_{5} x_{6}+$ $\left.1859774430 x_{5} y_{6}+1289634195 x_{4} y_{6}+511405427 x_{5} y_{6}+2104680646 x_{6} y_{6}+1304660656 x_{3}+1431387822 x_{4}+2142663821 x_{5}+395031648 x_{6}\right\}$

Determine the Number of Solutions

Leading monomials:

y_{3}	$x_{5} x_{6}$	$x_{4} x_{6}$	$x_{3} x_{6}$	$x_{3} y_{5}$	x_{5}^{2}	$y_{4} x_{5}$	$x_{4} x_{5}$
y_{4}^{2}	$x_{4} y_{4}$	$x_{3} y_{4}$	x_{4}^{2}	x_{3}^{2}	y_{6}^{3}	$x_{6} y_{6}^{2}$	$y_{5} y_{6}^{2}$
$x_{5} y_{6}^{2}$	$y_{4} y_{6}^{2}$	$x_{4} y_{6}^{2}$	$x_{3} y_{6}^{2}$	$x_{6}^{2} y_{6}$	$y_{5} x_{6} y_{6}$	$y_{4} x_{6} y_{6}$	$y_{5}^{2} y_{6}$
$x_{5} y_{5} y_{6}$	$y_{4} y_{5} y_{6}$	$x_{4} y_{5} y_{6}$	$x_{3} x_{5} y_{6}$	$x_{3} x_{4} y_{6}$	x_{6}^{3}	$y_{5} x_{6}^{2}$	$y_{4} x_{6}^{2}$
$y_{5}^{2} x_{6}$	$y_{4} y_{5} x_{6}$	y_{5}^{3}	$x_{5} y_{5}^{2}$	$y_{4} y_{5}^{2}$	$x_{4} y_{5}^{2}$		

Determine the Number of Solutions

Leading monomials:

y_{3}	$x_{5} x_{6}$	$x_{4} x_{6}$	$x_{3} x_{6}$	$x_{3} y_{5}$	x_{5}^{2}	$y_{4} x_{5}$	$x_{4} x_{5}$
y_{4}^{2}	$x_{4} y_{4}$	$x_{3} y_{4}$	x_{4}^{2}	x_{3}^{2}	y_{6}^{3}	$x_{6} y_{6}^{2}$	$y_{5} y_{6}^{2}$
$x_{5} y_{6}^{2}$	$y_{4} y_{6}^{2}$	$x_{4} y_{6}^{2}$	$x_{3} y_{6}^{2}$	$x_{6}^{2} y_{6}$	$y_{5} x_{6} y_{6}$	$y_{4} x_{6} y_{6}$	$y_{5}^{2} y_{6}$
$x_{5} y_{5} y_{6}$	$y_{4} y_{5} y_{6}$	$x_{4} y_{5} y_{6}$	$x_{3} x_{5} y_{6}$	$x_{3} x_{4} y_{6}$	x_{6}^{3}	$y_{5} x_{6}^{2}$	$y_{4} x_{6}^{2}$
$y_{5}^{2} x_{6}$	$y_{4} y_{5} x_{6}$	y_{5}^{3}	$x_{5} y_{5}^{2}$	$y_{4} y_{5}^{2}$	$x_{4} y_{5}^{2}$		

Monomials under the staircase:

1	y_{6}	x_{6}	y_{5}	x_{5}	y_{4}	x_{4}	x_{3}
y_{6}^{2}	$x_{6} y_{6}$	$y_{5} y_{6}$	$x_{5} y_{6}$	$y_{4} y_{6}$	$x_{4} y_{6}$	$x_{3} y_{6}$	x_{6}^{2}
$y_{5} x_{6}$	$y_{4} x_{6}$	y_{5}^{2}	$x_{5} y_{5}$	$y_{4} y_{5}$	$x_{4} y_{5}$	$x_{3} x_{5}$	$x_{3} x_{4}$

$\longrightarrow 24$ complex solutions.

Laman Numbers

All but one m.r. graphs with 6 vertices have Laman number 16 .

Laman Numbers

All but one m.r. graphs with 6 vertices have Laman number 16 .

The only exception is the three-prism graph with $\operatorname{Lam}(\square)=24$.

Laman Number as Degree

Recall: For each edge $\{u, v\} \in E$ we get an equation

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Laman Number as Degree

Recall: For each edge $\{u, v\} \in E$ we get an equation

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Idea: $\operatorname{Lam}(G)$ is obtained as the degree of the map

$$
\begin{aligned}
f_{G}: & \mathbb{C}^{V} \times \mathbb{C}^{V} \rightarrow \mathbb{C}^{E} \\
& \left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}\right)_{\{u, v\} \in E}
\end{aligned}
$$

Laman Number as Degree

Recall: For each edge $\{u, v\} \in E$ we get an equation

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Idea: $\operatorname{Lam}(G)$ is obtained as the degree of the map

$$
f_{G}: \mathbb{C}^{V} \times \mathbb{C}^{V} \rightarrow \mathbb{C}^{E}
$$

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}\right)_{\{u, v\} \in E}
$$

i.e., by the number how often a generic $(\lambda(u, v))_{\{u, v\} \in E} \in \mathbb{C}^{E}$ is hit by the $\operatorname{map} f_{G}$ (modulo translations and rotations).

Laman Number as Degree

Recall: For each edge $\{u, v\} \in E$ we get an equation

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=\lambda(u, v)^{2} .
$$

Idea: $\operatorname{Lam}(G)$ is obtained as the degree of the map

$$
f_{G}: \mathbb{C}^{V} \times \mathbb{C}^{V} \rightarrow \mathbb{C}^{E}
$$

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}\right)_{\{u, v\} \in E}
$$

i.e., by the number how often a generic $(\lambda(u, v))_{\{u, v\} \in E} \in \mathbb{C}^{E}$ is hit by the $\operatorname{map} f_{G}$ (modulo translations and rotations).

Strategy: Apply methods from algebraic geometry.

- Work in projective space.
- f_{G} then should be a homogeneous map.

Laman Number as Degree

Apply a change of variables to the map f_{G} :

$$
\left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}=
$$

Laman Number as Degree

Apply a change of variables to the map f_{G} :

$$
\begin{aligned}
& \left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}= \\
& \left(\left(x_{u}-x_{v}\right)+\mathrm{i}\left(y_{u}-y_{v}\right)\right) \cdot\left(\left(x_{u}-x_{v}\right)-\mathrm{i}\left(y_{u}-y_{v}\right)\right)=
\end{aligned}
$$

Laman Number as Degree

Apply a change of variables to the map f_{G} :

$$
\begin{aligned}
& \left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}= \\
& \left(\left(x_{u}-x_{v}\right)+\mathrm{i}\left(y_{u}-y_{v}\right)\right) \cdot\left(\left(x_{u}-x_{v}\right)-\mathrm{i}\left(y_{u}-y_{v}\right)\right)= \\
& (\underbrace{\left(x_{u}+\mathrm{i} y_{u}\right)}_{\downarrow}-\underbrace{\left(x_{v}+\mathrm{i} y_{v}\right)}_{\downarrow}) \cdot(\underbrace{\left(x_{v}-\mathrm{i} y_{u}\right)}_{\downarrow}-\underbrace{\downarrow}_{\downarrow}(\underbrace{\left(x_{v}-\mathrm{i} y_{v}\right)}_{y_{u}})
\end{aligned}
$$

Laman Number as Degree

Apply a change of variables to the map f_{G} :

$$
\begin{aligned}
& \left(x_{u}-x_{v}\right)^{2}+\left(y_{u}-y_{v}\right)^{2}= \\
& \left(\left(x_{u}-x_{v}\right)+\mathrm{i}\left(y_{u}-y_{v}\right)\right) \cdot\left(\left(x_{u}-x_{v}\right)-\mathrm{i}\left(y_{u}-y_{v}\right)\right)= \\
& (\underbrace{\left(x_{u}+\mathrm{i} y_{u}\right)}_{\downarrow}-\underbrace{\left(x_{v}+\mathrm{i} y_{v}\right)}_{\downarrow}) \cdot(\underbrace{\left(\left(x_{u}-\mathrm{i} y_{u}\right)\right.}_{\downarrow}-\underbrace{\downarrow}_{\downarrow}(\underbrace{\left(x_{v}-\mathrm{i} y_{v}\right)}_{y_{u}})
\end{aligned}
$$

Hence our map becomes

$$
\begin{aligned}
f_{G}: & \mathbb{C}^{V} \times \mathbb{C}^{V} \rightarrow \mathbb{C}^{E} \\
& \left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{u}-y_{v}\right)\right)_{\{u, v\} \in E}
\end{aligned}
$$

Laman Number as Degree

Handle translations and rotations:

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).
- Fix the length of one edge (again, by projectivization).

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).
- Fix the length of one edge (again, by projectivization).

Define $\operatorname{Comp}(G)$, the set of connected components of a graph G,
$\operatorname{Comp}(G):=\{C \subseteq V \mid C$ is a connected component of $G\}$.

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).
- Fix the length of one edge (again, by projectivization).

Define $\operatorname{Comp}(G)$, the set of connected components of a graph G,

$$
\operatorname{Comp}(G):=\{C \subseteq V \mid C \text { is a connected component of } G\} .
$$

Let

$$
L_{G}:=\left\langle\left(\chi_{C}(v)\right)_{v \in V} \mid C \in \operatorname{Comp}(G)\right\rangle \subseteq \mathbb{C}^{V}
$$

where $\chi_{C}(v)$ is 1 if $v \in C$ and 0 otherwise.

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).
- Fix the length of one edge (again, by projectivization).

Define $\operatorname{Comp}(G)$, the set of connected components of a graph G,

$$
\operatorname{Comp}(G):=\{C \subseteq V \mid C \text { is a connected component of } G\} .
$$

Let

$$
L_{G}:=\left\langle\left(\chi_{C}(v)\right)_{v \in V} \mid C \in \operatorname{Comp}(G)\right\rangle \subseteq \mathbb{C}^{V}
$$

where $\chi_{C}(v)$ is 1 if $v \in C$ and 0 otherwise.
Proposition: The Laman number $\operatorname{Lam}(G)$ of $G=(V, E)$ is given by the degree of the map

$$
\begin{aligned}
f_{G}: & \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \times \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \rightarrow \mathbb{P}^{|E|-1}, \\
& {\left[\left(x_{v}\right)_{v \in V}\right],\left[\left(y_{v}\right)_{v \in V}\right] \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{u}-y_{v}\right)\right)_{\{u, v\} \in E} }
\end{aligned}
$$

Laman Number as Degree

Handle translations and rotations:

- Move one vertex to the origin (for each connected component).
- Fix the position of another vertex (using projective space \mathbb{P}).
- Fix the length of one edge (again, by projectivization).

Define $\operatorname{Comp}(G)$, the set of connected components of a graph G,

$$
\operatorname{Comp}(G):=\{C \subseteq V \mid C \text { is a connected component of } G\} .
$$

Let

$$
L_{G}:=\left\langle\left(\chi_{C}(v)\right)_{v \in V} \mid C \in \operatorname{Comp}(G)\right\rangle \subseteq \mathbb{C}^{V}
$$

where $\chi_{C}(v)$ is 1 if $v \in C$ and 0 otherwise.
Proposition: The Laman number $\operatorname{Lam}(G)$ of $G=(V, E)$ is given by the degree of the map

$$
\begin{aligned}
f_{G}: & \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \times \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \rightarrow \mathbb{P}^{|E|-1}, \\
& {\left[\left(x_{v}\right)_{v \in V}\right],\left[\left(y_{v}\right)_{v \in V}\right] \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{u}-y_{v}\right)\right)_{\{u, v\} \in E} }
\end{aligned}
$$

Bigraphs

Definition: A bigraph $B=(G, H)$ is a pair of graphs $G=(V, \mathcal{E})$ and $H=(W, \mathcal{E})$, allowing several components, multiple edges and self-loops. The set \mathcal{E} is called the set of biedges.

Bigraphs

Definition: A bigraph $B=(G, H)$ is a pair of graphs $G=(V, \mathcal{E})$ and $H=(W, \mathcal{E})$, allowing several components, multiple edges and self-loops. The set \mathcal{E} is called the set of biedges.

We define the corresponding map f_{B} for a bigraph:

$$
\begin{aligned}
f_{B}: & \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \times \mathbb{P}\left(\mathbb{C}^{W} / L_{H}\right) \rightarrow \mathbb{P}^{|\mathcal{E}|-1} \\
& {\left[\left(x_{v}\right)_{v \in V}\right],\left[\left(y_{w}\right)_{w \in W}\right] \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{t}-y_{w}\right)\right)_{e \in \mathcal{E}} }
\end{aligned}
$$

where $\{u, v\} \subseteq V$ are the vertices to which e is connected in G, and for $\{t, w\} \subseteq W$ analogously.

Bigraphs

Definition: A bigraph $B=(G, H)$ is a pair of graphs $G=(V, \mathcal{E})$ and $H=(W, \mathcal{E})$, allowing several components, multiple edges and self-loops. The set \mathcal{E} is called the set of biedges.

We define the corresponding map f_{B} for a bigraph:

$$
\begin{aligned}
f_{B}: & \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \times \mathbb{P}\left(\mathbb{C}^{W} / L_{H}\right) \rightarrow \mathbb{P}^{|\mathcal{E}|-1} \\
& {\left[\left(x_{v}\right)_{v \in V}\right],\left[\left(y_{w}\right)_{w \in W}\right] \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{t}-y_{w}\right)\right)_{e \in \mathcal{E}} }
\end{aligned}
$$

where $\{u, v\} \subseteq V$ are the vertices to which e is connected in G, and for $\{t, w\} \subseteq W$ analogously.

Definition: The Laman number $\operatorname{Lam}(B)$ of a bigraph B is defined to be $\operatorname{deg}\left(f_{B}\right)$.

Bigraphs

Definition: A bigraph $B=(G, H)$ is a pair of graphs $G=(V, \mathcal{E})$ and $H=(W, \mathcal{E})$, allowing several components, multiple edges and self-loops. The set \mathcal{E} is called the set of biedges.

We define the corresponding map f_{B} for a bigraph:

$$
\begin{aligned}
f_{B}: & \mathbb{P}\left(\mathbb{C}^{V} / L_{G}\right) \times \mathbb{P}\left(\mathbb{C}^{W} / L_{H}\right) \rightarrow \mathbb{P}^{|\mathcal{E}|-1} \\
& {\left[\left(x_{v}\right)_{v \in V}\right],\left[\left(y_{w}\right)_{w \in W}\right] \mapsto\left(\left(x_{u}-x_{v}\right) \cdot\left(y_{t}-y_{w}\right)\right)_{e \in \mathcal{E}} }
\end{aligned}
$$

where $\{u, v\} \subseteq V$ are the vertices to which e is connected in G, and for $\{t, w\} \subseteq W$ analogously.

Definition: The Laman number $\operatorname{Lam}(B)$ of a bigraph B is defined to be $\operatorname{deg}\left(f_{B}\right)$.

Proposition: For $B=(G, G)$ we have $\operatorname{Lam}(B)=\operatorname{Lam}(G)$.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.
- The pair $\left(d_{V}, d_{W}\right)$ is called a bidistance.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.
- The pair $\left(d_{V}, d_{W}\right)$ is called a bidistance.
- For a general weight vector wt, all bidistances are different. Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.
- The pair $\left(d_{V}, d_{W}\right)$ is called a bidistance.
- For a general weight vector wt, all bidistances are different. Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.
- We choose the special weight vector $(1, \ldots, 1)$. In this case the values of d_{V} and d_{W} are restricted to 0 and 1 .

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.
- The pair $\left(d_{V}, d_{W}\right)$ is called a bidistance.
- For a general weight vector wt, all bidistances are different. Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.
- We choose the special weight vector $(1, \ldots, 1)$. In this case the values of d_{V} and d_{W} are restricted to 0 and 1 .
- Each bidistance can be characterized by a single 0/1-vector.

Counting via Bidistances

- Introduce a new parameter s and work over the field $\mathbb{C}\{\{s\}\}$ of Puiseux series.
- Study the preimage of a "perturbed" point $\lambda_{e} s^{\mathrm{wt}(e)}$ for some weight vector $\mathrm{wt} \in \mathbb{Q}^{\mathcal{E}}$.
- Apply tropicalization: Let $d_{V}\left(\right.$ resp. $\left.d_{W}\right)$ be the valuations of the x - (resp. y-) coordinates in the preimage of $\lambda_{e} s^{\mathrm{wt}(e)}$.
- The pair $\left(d_{V}, d_{W}\right)$ is called a bidistance.
- For a general weight vector wt, all bidistances are different. Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.
- We choose the special weight vector $(1, \ldots, 1)$. In this case the values of d_{V} and d_{W} are restricted to 0 and 1 .
- Each bidistance can be characterized by a single 0/1-vector.
- The set of preimages is partitioned w.r.t. the bidistances:

$$
\operatorname{Lam}(B)=\sum_{d} \operatorname{Lam}\left(B_{d}\right)
$$

Puiseux Series

- $\mathbb{K}=\mathbb{C}\{\{s\}\}$: field of Puiseux series with coefficients in \mathbb{C}
- This field comes with a valuation $\nu: \mathbb{K} \backslash\{0\} \longrightarrow \mathbb{Q}$:

$$
\nu\left(\sum_{i=k}^{+\infty} c_{i} s^{i / n}\right)=\frac{k}{n} \quad \text { if } c_{k} \neq 0
$$

i.e., the order of a Puiseux series.

- $\nu(a \cdot b)=\nu(a)+\nu(b)$ and $\nu(a+b) \geqslant \min \{\nu(a), \nu(b)\}$

Puiseux Series

- $\mathbb{K}=\mathbb{C}\{\{s\}\}$: field of Puiseux series with coefficients in \mathbb{C}
- This field comes with a valuation $\nu: \mathbb{K} \backslash\{0\} \longrightarrow \mathbb{Q}$:

$$
\nu\left(\sum_{i=k}^{+\infty} c_{i} s^{i / n}\right)=\frac{k}{n} \quad \text { if } c_{k} \neq 0
$$

i.e., the order of a Puiseux series.

- $\nu(a \cdot b)=\nu(a)+\nu(b)$ and $\nu(a+b) \geqslant \min \{\nu(a), \nu(b)\}$

For the map $f_{B, \mathbb{K}}: \mathbb{P}_{\mathbb{K}}^{(\ldots)} \times \mathbb{P}_{\mathbb{K}}^{(\ldots)} \longrightarrow \mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$, obtained as the extension of scalars from f_{B}, we have $\operatorname{deg}\left(f_{B, \mathbb{K}}\right)=\operatorname{deg}\left(f_{B}\right)$.

Puiseux Series

- $\mathbb{K}=\mathbb{C}\{\{s\}\}$: field of Puiseux series with coefficients in \mathbb{C}
- This field comes with a valuation $\nu: \mathbb{K} \backslash\{0\} \longrightarrow \mathbb{Q}$:

$$
\nu\left(\sum_{i=k}^{+\infty} c_{i} s^{i / n}\right)=\frac{k}{n} \quad \text { if } c_{k} \neq 0
$$

i.e., the order of a Puiseux series.

- $\nu(a \cdot b)=\nu(a)+\nu(b)$ and $\nu(a+b) \geqslant \min \{\nu(a), \nu(b)\}$

For the map $f_{B, \mathbb{K}}: \mathbb{P}_{\mathbb{K}}^{(\ldots)} \times \mathbb{P}_{\mathbb{K}}^{(\ldots)} \longrightarrow \mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$, obtained as the extension of scalars from f_{B}, we have $\operatorname{deg}\left(f_{B, \mathbb{K}}\right)=\operatorname{deg}\left(f_{B}\right)$.

Study the preimage of a "perturbed" point in $\mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$:

$$
f_{B, \mathbb{K}}^{-1}\left(\left(\lambda_{e} s^{\mathrm{wt}(e)}\right)_{e \in \mathcal{E}}\right) \quad \text { for some } \mathrm{wt} \in \mathbb{Q}^{\mathcal{E}} \text { and } \lambda \in \mathbb{C}^{\mathcal{E}},
$$

instead of studying the preimage $f_{B}^{-1}(p)$ for some $p \in \mathbb{P}_{\mathbb{C}}^{|\mathcal{E}|-1}$.

New Coordinates, New Equations

Introduce new coordinates

- $x_{u v}$ for all $u, v \in V$ that are connected by an edge in G
- $y_{t w}$ for all $t, w \in W$ that are connected by an edge in H
\longrightarrow They correspond to the factors $\left(x_{u}-x_{v}\right)$ resp. $\left(y_{t}-y_{w}\right)$.

New Coordinates, New Equations

Introduce new coordinates

- $x_{u v}$ for all $u, v \in V$ that are connected by an edge in G
- $y_{t w}$ for all $t, w \in W$ that are connected by an edge in H
\longrightarrow They correspond to the factors $\left(x_{u}-x_{v}\right)$ resp. $\left(y_{t}-y_{w}\right)$.
Select a distinguished biedge $\bar{e} \in \mathcal{E}$. Then these coordinates satisfy the system of equations:

$$
\begin{aligned}
x_{\bar{u} \bar{v}}=y_{\bar{t} \bar{w}} & =1 & & \\
x_{u v} y_{t w} & =\lambda_{e} s^{\mathrm{wt}(e)} & & \text { for all } e \in \mathcal{E} \backslash\{\bar{e}\} \\
\sum_{\mathscr{C}} x_{u v} & =0 & & \text { for all cycles } \mathscr{C} \text { in } G \\
\sum_{\mathscr{D}} y_{t w} & =0 & & \text { for all cycles } \mathscr{D} \text { in } H
\end{aligned}
$$

In particular, $x_{u v}=-x_{v u}$.

Tropicalization

Goal: For a fixed point $p=\left(\lambda_{e} s^{\mathrm{wt}(e)}\right)_{e \in \mathcal{E}} \in \mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$ we want to determine its preimages $f_{B, \mathbb{K}}^{-1}(p)$.

Tropicalization

Goal: For a fixed point $p=\left(\lambda_{e} s^{\mathrm{wt}(e)}\right)_{e \in \mathcal{E}} \in \mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$ we want to determine its preimages $f_{B, \mathbb{K}}^{-1}(p)$.

Idea:

- Apply tropicalization: look only at the valuations!
- An algebraic relation between Puiseux series implies a piecewise linear relation between their orders.
- For $q \in f_{B, \mathbb{K}}^{-1}(p)$ let $d_{V}(u, v)=\nu\left(q_{x_{u v}}\right), d_{W}(t, w)=\nu\left(q_{y_{t w}}\right)$.
- This way we obtain a discrete object, a pair of functions $\left(d_{V}, d_{W}\right)$, that we call bidistance.

Tropicalization

Goal: For a fixed point $p=\left(\lambda_{e} s^{\mathrm{wt}(e)}\right)_{e \in \mathcal{E}} \in \mathbb{P}_{\mathbb{K}}^{|\mathcal{E}|-1}$ we want to determine its preimages $f_{B, \mathbb{K}}^{-1}(p)$.

Idea:

- Apply tropicalization: look only at the valuations!
- An algebraic relation between Puiseux series implies a piecewise linear relation between their orders.
- For $q \in f_{B, \mathbb{K}}^{-1}(p)$ let $d_{V}(u, v)=\nu\left(q_{x_{u v}}\right), d_{W}(t, w)=\nu\left(q_{y_{t w}}\right)$.
- This way we obtain a discrete object, a pair of functions $\left(d_{V}, d_{W}\right)$, that we call bidistance.

Gain: We can then partition the set $f_{B, \mathbb{K}}^{-1}(p)$ according to the bidistances that are determined by its elements.

Bidistances

The functions d_{V} and d_{W} satisfy

- $d_{V}(u, v)=d_{V}(v, u)$ for all (u, v), and similarly for d_{W}
- $d_{V}(u, v)+d_{W}(t, w)=\mathrm{wt}(e)$ for all $e \in \mathcal{E} \backslash\{\bar{e}\}$
- $d_{V}(\bar{u}, \bar{v})=d_{W}(\bar{t}, \bar{w})=0$
- for every cycle \mathscr{C} in G, the minimum of the values of d_{V} on the pairs of vertices (u, v) appearing in \mathscr{C} is attained at least twice, and similarly for d_{W}.

Definition: Every pair of functions $\left(d_{V}, d_{W}\right)$ satisfying the above conditions is called a bidistance compatible with wt $\in \mathbb{Q}^{|\mathcal{E}|-1}$.

Recursion for the Laman number

Idea: We partition the set $f_{B, \mathbb{K}}^{-1}(p)$ according to the bidistances.
Lemma: The number of preimages sharing the same bidistance d can be obtained as the Laman number of a "simpler" Graph B_{d}.

Hence we obtain the following recursion:
Theorem:

$$
\operatorname{Lam}(B)=\sum_{d} \operatorname{Lam}\left(B_{d}\right)
$$

Recursion for the Laman number

Idea: We partition the set $f_{B, \mathbb{K}}^{-1}(p)$ according to the bidistances.
Lemma: The number of preimages sharing the same bidistance d can be obtained as the Laman number of a "simpler" Graph B_{d}.

Hence we obtain the following recursion:
Theorem:

$$
\operatorname{Lam}(B)=\sum_{d} \operatorname{Lam}\left(B_{d}\right)
$$

Unfortunately, it is not very useful for practical purposes:

1. Enumeration of bidistances d : difficult
2. Computation of $\operatorname{Lam}\left(B_{d}\right)$: difficult

Two specializations in order to get more explicit formulas. . .

First Strategy

By choosing a general weight vector $\mathrm{wt} \in \mathbb{Q}^{|\mathcal{E}|-1}$, one can show that $\operatorname{Lam}\left(B_{d}\right)=1$ for every bidistance d compatible with wt.

Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.

First Strategy

By choosing a general weight vector wt $\in \mathbb{Q}^{|\mathcal{E}|-1}$, one can show that $\operatorname{Lam}\left(B_{d}\right)=1$ for every bidistance d compatible with wt.

Hence $\operatorname{Lam}(B)$ equals the number of such bidistances.
The computation of $\operatorname{Lam}(B)$ is therefore reduced to a piecewise linear problem:

1. Enumeration of bidistances d : difficult
2. Computation of $\operatorname{Lam}\left(B_{d}\right)$: trivial

Second Strategy

Idea: We choose the special weight vector $(1, \ldots, 1) \in \mathbb{Q}^{|\mathcal{E}|-1}$.
We can show that in this case the values of d_{V} and d_{W} are

- integers
- moreover: only the values 0 and 1 can occur.

Second Strategy

Idea: We choose the special weight vector $(1, \ldots, 1) \in \mathbb{Q}^{|\mathcal{E}|-1}$.
We can show that in this case the values of d_{V} and d_{W} are

- integers
- moreover: only the values 0 and 1 can occur.

Hence, each bidistance can be characterized by a single vector in $\{0,1\}^{|\mathcal{E}|-1}$ (since $d_{V}+d_{W}=1$ for all $e \in \mathcal{E} \backslash\{\bar{e}\}$).

1. Enumeration of bidistances d : easy
2. Computation of $\operatorname{Lam}\left(B_{d}\right)$: feasible

Operations on Graphs

For constructing the graph B_{d}, we need to introduce two operations on graphs:

- complement
- quotient

Graph Complement

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph complement $G \backslash E^{\prime}$ is defined as

$$
G \backslash E^{\prime}:=\left(V, E \backslash E^{\prime}\right)
$$

Graph Complement

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph complement $G \backslash E^{\prime}$ is defined as

$$
G \backslash E^{\prime}:=\left(V, E \backslash E^{\prime}\right)
$$

Example:

Graph Complement

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph complement $G \backslash E^{\prime}$ is defined as

$$
G \backslash E^{\prime}:=\left(V, E \backslash E^{\prime}\right)
$$

Example:

Graph Complement

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph complement $G \backslash E^{\prime}$ is defined as

$$
G \backslash E^{\prime}:=\left(V, E \backslash E^{\prime}\right)
$$

Example:

Graph Quotient

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph quotient G / E^{\prime} is constructed as follows:

- Connected components of $\left(V, E^{\prime}\right)$ become vertices of G / E^{\prime}.
- Each edge in $E \backslash E^{\prime}$ induces an edge of G / E^{\prime}.

Graph Quotient

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph quotient G / E^{\prime} is constructed as follows:

- Connected components of $\left(V, E^{\prime}\right)$ become vertices of G / E^{\prime}.
- Each edge in $E \backslash E^{\prime}$ induces an edge of G / E^{\prime}.

Example:

Graph Quotient

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph quotient G / E^{\prime} is constructed as follows:

- Connected components of $\left(V, E^{\prime}\right)$ become vertices of G / E^{\prime}.
- Each edge in $E \backslash E^{\prime}$ induces an edge of G / E^{\prime}.

Example:

Graph Quotient

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph quotient G / E^{\prime} is constructed as follows:

- Connected components of $\left(V, E^{\prime}\right)$ become vertices of G / E^{\prime}.
- Each edge in $E \backslash E^{\prime}$ induces an edge of G / E^{\prime}.

Example:

Graph Quotient

Let $G=(V, E)$ be a graph and let $E^{\prime} \subseteq E$.
Definition: The graph quotient G / E^{\prime} is constructed as follows:

- Connected components of $\left(V, E^{\prime}\right)$ become vertices of G / E^{\prime}.
- Each edge in $E \backslash E^{\prime}$ induces an edge of G / E^{\prime}.

Example:

Operations on Bigraphs

We define the following two operations on a bigraph $B=(G, H)$:
For a subset $\mathcal{M} \subseteq \mathcal{E}$ of the biedges \mathcal{E} let

- $\mathcal{M}_{B}:=(G / \mathcal{M}, H \backslash \mathcal{M})$
- $B^{\mathcal{M}}:=(G \backslash \mathcal{M}, H / \mathcal{M})$

Operations on Bigraphs

We define the following two operations on a bigraph $B=(G, H)$:
For a subset $\mathcal{M} \subseteq \mathcal{E}$ of the biedges \mathcal{E} let

- $\mathcal{M}_{B}:=(G / \mathcal{M}, H \backslash \mathcal{M})$
- $B^{\mathcal{M}}:=(G \backslash \mathcal{M}, H / \mathcal{M})$

$B=(G, H)$

Operations on Bigraphs

We define the following two operations on a bigraph $B=(G, H)$:
For a subset $\mathcal{M} \subseteq \mathcal{E}$ of the biedges \mathcal{E} let

- $\mathcal{M}_{B}:=(G / \mathcal{M}, H \backslash \mathcal{M})$
- $B^{\mathcal{M}}:=(G \backslash \mathcal{M}, H / \mathcal{M})$

$$
B=(G, H) \quad \mathcal{M} \subseteq \mathcal{E}
$$

Operations on Bigraphs

We define the following two operations on a bigraph $B=(G, H)$:
For a subset $\mathcal{M} \subseteq \mathcal{E}$ of the biedges \mathcal{E} let

- $\mathcal{M}_{B}:=(G / \mathcal{M}, H \backslash \mathcal{M})$
- $B^{\mathcal{M}}:=(G \backslash \mathcal{M}, H / \mathcal{M})$

$B=(G, H) \quad \mathcal{M} \subseteq \mathcal{E}$

Operations on Bigraphs

We define the following two operations on a bigraph $B=(G, H)$:
For a subset $\mathcal{M} \subseteq \mathcal{E}$ of the biedges \mathcal{E} let

- $\mathcal{M}_{B}:=(G / \mathcal{M}, H \backslash \mathcal{M})$
- $B^{\mathcal{M}}:=(G \backslash \mathcal{M}, H / \mathcal{M})$

$B=(G, H) \quad \mathcal{M} \subseteq \mathcal{E}$

The bigraph $B^{\mathcal{M}}$

The Combinatorial Algorithm

Theorem. Let $B=(G, H)$ be a bigraph with $G=(V, \mathcal{E})$ and $H=(W, \mathcal{E})$. Choose $\bar{e} \in \mathcal{E}$. Then

$$
\operatorname{Lam}(B)=\operatorname{Lam}\left({ }^{\{\bar{e}\}} B\right)+\operatorname{Lam}\left(B^{\{\bar{e}\}}\right)+
$$

Initial conditions:

- $\operatorname{Lam}(G)=\operatorname{Lam}(G, G)$
- $\operatorname{Lam}(B)=0$ if G or H contains a loop.
- $\operatorname{Lam}(B)=0$ if $|V|-|\operatorname{Comp}(G)|+|W|-|\operatorname{Comp}(H)| \neq|\mathcal{E}|+1$.
- $\operatorname{Lam}(B)=1$ if $|\mathcal{E}|=1$ and if there are no loops.

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6
$\#$	24

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7
$\#$	24	56

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8
$\#$	24	56	136

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8	9
$\#$	24	56	136	344

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8	9	10
$\#$	24	56	136	344	880

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8	9	10	11
$\#$	24	56	136	344	880	2288

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8	9	10	11	12
$\#$	24	56	136	344	880	2288	6180

Minimally Rigid Graphs with Most Realizations

Question: Among all minimally rigid graphs with n vertices, which one has the largest number of realizations?

n	6	7	8	9	10	11	12		18
$\#$	24	56	136	344	880	2288	6180	\ldots	$\geqslant 1953816$

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.
- One gets $2+k \cdot(|V|-2)$ vertices and $1+k \cdot(|E|-1)$ edges.

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.
- One gets $2+k \cdot(|V|-2)$ vertices and $1+k \cdot(|E|-1)$ edges.
- The resulting graph has Laman number $\operatorname{Lam}(G)^{k}$.

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.
- One gets $2+k \cdot(|V|-2)$ vertices and $1+k \cdot(|E|-1)$ edges.
- The resulting graph has Laman number $\operatorname{Lam}(G)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 2$, there exists an n-vertex graph with realizations at least

$$
\operatorname{Lam}(G)^{\lfloor(n-2) /(|V|-2)\rfloor} .
$$

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.
- One gets $2+k \cdot(|V|-2)$ vertices and $1+k \cdot(|E|-1)$ edges.
- The resulting graph has Laman number $\operatorname{Lam}(G)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 2$, there exists an n-vertex graph with realizations at least

$$
2^{(n-2) \bmod (|V|-2)} \cdot \operatorname{Lam}(G)^{\lfloor(n-2) /(|V|-2)\rfloor} .
$$

Caterpillar Construction

- Choose a m.r. graph $G=(V, E)$ (e.g.: three-prism graph).
- Place k copies of G and connect them with shared edges.
- One gets $2+k \cdot(|V|-2)$ vertices and $1+k \cdot(|E|-1)$ edges.
- The resulting graph has Laman number $\operatorname{Lam}(G)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 2$, there exists an n-vertex graph with realizations at least

$$
2^{(n-2) \bmod (|V|-2)} \cdot \operatorname{Lam}(G)^{\lfloor(n-2) /(|V|-2)\rfloor} .
$$

Growth rate using the three-prism graph: $24^{n / 4} \approx 2.21336^{n}$.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.
- One gets $3+k \cdot(|V|-3)$ vertices and $3+k \cdot(|E|-3)$ edges.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.
- One gets $3+k \cdot(|V|-3)$ vertices and $3+k \cdot(|E|-3)$ edges.
- Resulting graph has Laman number $2 \cdot(\operatorname{Lam}(G) / 2)^{k}$.

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.
- One gets $3+k \cdot(|V|-3)$ vertices and $3+k \cdot(|E|-3)$ edges.
- Resulting graph has Laman number $2 \cdot(\operatorname{Lam}(G) / 2)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 3$, there exists an n-vertex graph with realizations at least

$$
2 \cdot\left(\frac{\operatorname{Lam}(G)}{2}\right)^{\lfloor(n-3) /(|V|-3)\rfloor}
$$

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.
- One gets $3+k \cdot(|V|-3)$ vertices and $3+k \cdot(|E|-3)$ edges.
- Resulting graph has Laman number $2 \cdot(\operatorname{Lam}(G) / 2)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 3$, there exists an n-vertex graph with realizations at least

$$
2^{(n-3) \bmod (|V|-3)} \cdot 2 \cdot\left(\frac{\operatorname{Lam}(G)}{2}\right)^{\lfloor(n-3) /(|V|-3)\rfloor}
$$

- Choose a m.r. graph $G=(V, E)$ containing a triangle H.
- Place k copies of G sharing this triangle $H=(W, F)$.
- One gets $3+k \cdot(|V|-3)$ vertices and $3+k \cdot(|E|-3)$ edges.
- Resulting graph has Laman number $2 \cdot(\operatorname{Lam}(G) / 2)^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant 3$, there exists an n-vertex graph with realizations at least

$$
2^{(n-3) \bmod (|V|-3)} \cdot 2 \cdot\left(\frac{\operatorname{Lam}(G)}{2}\right)^{\lfloor(n-3) /(|V|-3)\rfloor}
$$

Growth rate using the three-prism graph: $12^{n / 3} \approx 2.28943^{n}$.

- Choose a m.r. graph $G=(V, E)$ containing a subgraph H.
- Place k copies of G sharing this m.r. subgraph $H=(W, F)$.
- $|W|+k \cdot(|V|-|W|)$ vertices and $|F|+k \cdot(|E|-|F|)$ edges.
- Resulting graph: Lam $\geqslant \operatorname{Lam}(H) \cdot(\operatorname{Lam}(G) / \operatorname{Lam}(H))^{k}$.

Hence, for any minimally rigid graph G and $n \geqslant|W|$, there exists an n-vertex graph with realizations at least

$$
2^{(n-|W|) \bmod (|V|-|W|)} \cdot \operatorname{Lam}(H) \cdot\left(\frac{\operatorname{Lam}(G)}{\operatorname{Lam}(H)}\right)^{\lfloor(n-|W|) /(|V|-|W|)\rfloor}
$$

Real realizations

Question: Given a m.r. graph G, can we find a real labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$ such that there exist $\operatorname{Lam}(G)$ real embeddings?

Real realizations

Question: Given a m.r. graph G, can we find a real labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$ such that there exist $\operatorname{Lam}(G)$ real embeddings?

Answer: Sometimes, but not always.

Real realizations

Question: Given a m.r. graph G, can we find a real labeling $\lambda: E \rightarrow \mathbb{R}_{>0}$ such that there exist $\operatorname{Lam}(G)$ real embeddings?

Answer: Sometimes, but not always.

Example:

