Automated Generation of Illustrations for Synthetic Geometry Proofs

Predrag Janičić
Julien Narboux
University of Belgrade, Serbia University of Strasbourg, France

ADG 2021, virtual/Hagenberg, Austria, September 15-17, 2021.

Illustrations in Geometry

- In mathematics, especially geometry, illustrations are often very valuable, but almost always just an informal content
- Links between proofs and illustrations are loose
- However, proofs, in some cases, can carry information for illustrations

Existing approaches

- Visualization of statements:
- using algebraic methods and computations (Gao, Wang)
- within dynamic geometry tools (GeoGebra etc)
- Visualization of proofs:
- Full angle method (Wilson and Fleuriot)
- JGEX algebraic methods (Ye et. al.)
- PCoq: heuristic for constraint solving
- Some of the above do not support introducing new points
- In all approaches: visualization rules are hard-coded

Background: Coherent Logic (CL)

- A FOL formula is said to be coherent if it is of the form:

$$
A_{1}(\vec{x}) \wedge \ldots \wedge A_{n}(\vec{x}) \Rightarrow \exists \vec{y}\left(B_{1}(\vec{x}, \vec{y}) \vee \ldots \vee B_{m}(\vec{x}, \vec{y})\right)
$$

where universal closure is assumed, A_{i} denote atomic formulae, B_{i} denote conjunctions of atomic formulae

- CL is simple, allows simple forward chaining proofs
- Human-readable, natural language proofs but also machine verifiable proofs can be easily obtained
- Any first-order theory can be translated into CL
- Several automated theorem provers for CL, one recent: Larus (Janičić/Narboux) ${ }^{1}$

[^0]
Coherent Logic: Toy Example

Consider the following set of axioms:
ax1: $\forall x(p(x) \Rightarrow r(x) \vee q(x))$
ax2: $\forall x(q(x) \Rightarrow \perp)$
and the following conjecture that can be proved as a CL theorem:
$\forall x(p(x) \Rightarrow r(x))$
Consider arbitrary a such that: $p(a)$. It should be proved that $r(a)$.

1. $r(a) \vee q(a)$ (by MP, from $p(a)$ using axiom ax1; instantiation: $X \mapsto a$)
2. Case $r(a):$
3. Proved by assumption! (by QEDas)
4. Case $q(a)$:
5. \perp (by MP, from $q(a)$ using axiom ax2; instantiation: $X \mapsto a$)
6. Contradiction! (by QEDefq)
7. Proved by case split! (by QEDcs, by $r(a), q(a)$)

Basic Idea for Generating Illustrations

- If we know how to visually interpret proof steps that introduce new objects or facts, we can produce a complete illustration
- The illustration is based on a sequence of such objects in one universum (i.e., model)
- A natural choice for the universum is Cartesian space
- This idea is well-suited to CL and to forward chaining proofs

Rule Applications

- Consider the axiom:

$$
\forall x, y(\operatorname{point}(x) \wedge \operatorname{point}(y) \Rightarrow \exists z \text { between }(x, z, y))
$$

- It may have attached the visual interpretation: ,,for two Cartesian points a and b, a Cartesian point c is created as the midpoint of $a b^{\prime \prime}$
- If the axiom is applied to the points a and b, with associated Cartesian coordinates $(2,5)$ and $(4,11)$, then the new witness point will have the associated Cartesian coordinates $(3,8)$
- Not only new witnesses can be created, but also some new features can also be illustrated

Illustrating Proof Branches

- It makes no much sense to illustrate all proof branches
- An illustration is created for at most one proof branch:
- If all proof branches end with contradiction, then they all belong to some upper contradictory proof branch, and we illustrate neither of them.
- If there are some proof branches that do not end with contradiction, then one that corresponds to the model being built should be illustrated.

Premises and Initial Configuration

- How do we start the illustration in the first place?
- We prove theorems of the form: $A_{0}(\vec{x}) \wedge \ldots \wedge A_{n-1}(\vec{x}) \Rightarrow \exists \vec{y}\left(B_{0}(\vec{x}, \vec{y}) \vee \ldots \vee B_{m-1}(\vec{x}, \vec{y})\right)$
- In order to build the initial illustration we need some constants \vec{a} such that: $A_{0}(\vec{a}) \wedge \ldots \wedge A_{n-1}(\vec{a})$ holds.
- How can we find and illustrate such objects?
- By proving and illustrating the conjecture $\exists \vec{x}\left(A_{0}(\vec{x}) \wedge \ldots \wedge A_{n-1}(\vec{x})\right)$.
- If the above conjecture is not theorem, the premises are inconsistent and the statement is trivially valid

Illustrations for Axioms and Theorems

- The visual interpretation of each theorem can either be
- provided by the user or
- produced automatically recursively, using the same approach.
- Ultimately, what we need are only visual interpretations of all axioms, provided by a human.

Randomization

- In order to make illustrations partly unpredictable and more interesting, some randomization may be added to the visual interpretations

Implementation

- We implemented the described method within our automated theorem prover for coherent logic, Larus
- For the target language we chose the GCL language - a rich, special purpose language for mathematical, especially geometry illustrations.
- For each axiom, the user has to provide a corresponding visualisation in terms of a GCLC function; for example:

For any two points A and random r
B, there is a point C such expression $r,\{1+r\}$ that $\operatorname{bet}(A, B, C)$ towards C A B r'

- Step-by-step visuelization (animations) supported

Example Theorem（from Elements

Theorem

proposition＿11：$\forall A \forall B \forall C(\operatorname{bet} S(A, C, B) \Rightarrow \exists X(\operatorname{per}(A, C, X)))$

Proof：

Consider arbitrary a, b, c such that： $\operatorname{bet} S(a, c, b)$ ．It should be proved that $\exists X \operatorname{per}(a, c, X)$ ．
1．Let w be such that $\operatorname{bet} S(a, c, w) \wedge \operatorname{cong}(c, w, a, c)$（by MP，from $\operatorname{bet} S(a, c, b)$ ， $\operatorname{bet} S(a, c, b)$ using axiom lemma＿extension）

2．Let $w 1$ be such that equilateral $(a, w, w 1) \wedge \operatorname{triangle}(a, w, w 1)($ by $M P$, from $\operatorname{bet} S(a, c, w) \wedge \operatorname{cong}(c, w, a, c)$ using axiom proposition＿01）

3．$w 1=c \vee w 1 \neq c$（by MP，using axiom eq＿excluded＿middle）
4．Case $w 1=c$ ：
5． $\operatorname{col}(a, w, w 1)$（by MP，from $\operatorname{betS}(a, c, w) \wedge \operatorname{cong}(c, w, a, c), w 1=c$ using axiom colEqSub2）
6．\perp（by MP，from $\operatorname{col}(a, w, w 1)$ ，equilateral $(a, w, w 1) \wedge \operatorname{triangle}(a, w, w 1)$ using axiom nnncolNegElim）
7．Contradiction！（by QEDefq）
8．Case $w 1 \neq c$ ：
9． $\operatorname{per}(a, c, w 1)$（by MP，from $\operatorname{betS}(a, c, w) \wedge \operatorname{cong}(c, w, a, c), \operatorname{bet} S(a, c, w) \wedge \operatorname{cong}(c, w, a, c)$ ， equilateral $(a, w, w 1) \wedge$ triangle $(a, w, w 1), w 1 \neq c$ using axiom defrightangle 2$)$
10．Proved by assumption！（by QEDas）
11．Proved by case split！（by QEDcs，by $w 1=c, w 1 \neq c$ ）

Janičić，Narboux
 Illustrations for Geometry Proofs

Example Theorem: Illustration

A code provided by the user:

```
% fof(lemma_extension,axiom, (! [A,B,P,Q] : (? [X] :
    ((( A != B ) & ( P != Q )) => ((betS(A,B,X) & cong(B,X,P,Q))))))).
procedure lemma_extension { A B P Q X } {
    distance d1 A B
    distance d2 P Q
    expression r { 1+(d1/d2) }
    towards X A B r
    drawsegment A X
    cmark X
}
```


Example

A code generated by the prover:

```
% ----- Proof illustration -----
include lemma_extension.gcl
include proposition_01.gcl
include defrightangle2.gcl
include proposition_11_exists.gcl
%-----------------------------
procedure proposition_11 { a b c w } {
    call lemma_extension { a c a c w }
    mark_t w
    call proposition_01 { a w w1 }
    mark_t w1
    % --- Illustration for branch 2
    call defrightangle2 { a c w1 w }
}
%------------------------------
call proposition_11_exists { a b c }
call proposition_11 { a b c w }
```


CL and Geometry Illustrations - Example

Four steps in illustration of the proposition 11

Conclusions and Future Work

- The approach is a sort of constraint solving based on theorem proving
- Proofs of existence depend on the axioms provided (for instance, an axiom that enables angle trisection)
- The approach is:
simple as it is a small extension to a CL prover modular as all illustrations rely only on visual interpretations of axioms used
flexible as one can provide different visual counterparts of the axioms, but also of particular lemmas used

[^0]:

