## Supporting proving and discovering geometric inequalities in GeoGebra by using Tarski

Christopher W. Brown ${ }^{1}$ Zoltán Kovács ${ }^{2}$ Róbert Vajda ${ }^{3}$

${ }^{1}$ United States Naval Academy, Annapolis, MD, USA
${ }^{2}$ The Private University College of Education of the Diocese of Linz, Austria
${ }^{3}$ Bolyai Institute, Szeged, Hungary

## ADG 2021, 16 September 2021

${ }^{2}$ Author is supported by the grant PID2020-113192GB-I00 from the Spanish MICINN.
${ }^{3}$ Author is supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00015.

## Abstract

We introduce GeoGebra Discovery that can automatically prove or discover geometric inequalities. It consists of

- an extended version of GeoGebra,
- a controller web service realgeom,
- and the computational tool Tarski (with the extensive help of QEPCAD B).
We successfully solve several non-trivial problems in Euclidean planar geometry via a simple graphical user interface.


## GeoGebra: open platform for teaching and learning math

## geogebra.org

```
\equivGe% Gebra Q search classroom Resources
```

\equivGe% Gebra Q search classroom Resources
\#\#News Feed
\#\#News Feed
A Resources
A Resources

- Profile
- Profile
A. People

```
A. People
```

```
1. Home
```

```
1. Home
```

```
1. Home
```

- Classroom

■ロ App Downloads

```
GeoGebra for Teaching and Learning Math
Free digital tools for class activities, graphing, geometry, collaborative whiteboard and more
    CLASSROOM RESOURCES
```

    CLASSROOM RESOURCES
    ```
```

    START CALCULATOR
    ```
    START CALCULATOR
```

    START CALCULATOR
    START CALCULATOR

```

CLASSROOM RESOURCES

Powerful Math Apps
Calculator Suite
3D Calculator
CAS Calculator
Geometry

Ready for Tests
Graphing Calculator
Scientific Calculator
GeoGebra Classic
Testing

\section*{About GeoGebra}

Contact us: office@geogebra.org
Terms of Service - Privacy - License
\# Language: English

© 2021 GeoGebra


More Great Apps
Notes
App Store
Google Play
App Downloads

\section*{GeoGebra Discovery: an experimental version of GeoGebra}

\section*{github.com/kovzol/geogebra-discovery}
\begin{tabular}{|l|c|c|c|}
\hline Feature & GeoGebra & \begin{tabular}{c} 
GeoGebra \\
Discovery
\end{tabular} & \\
\hline Discover tool/command & no & yes step \\
\hline Compare command & no & yes & Scheduled for merging into GeoGebra \\
\hline IncircleCenter command & no & \begin{tabular}{c} 
yes (with prover \\
support)
\end{tabular} & GeoGebra Team: approve/update \\
\hline Incircle tool & no & \begin{tabular}{c} 
Gebra Team: approve (discuss \\
Center(Incircle) first)
\end{tabular} \\
\hline IncircleCenter tool & no & geoGebra Team: approve/update
\end{tabular}

\section*{GeoGebra Discovery: an experimental version of GeoGebra} github.com/kovzol/geogebra-discovery
\begin{tabular}{|c|c|c|c|}
\hline Feature & GeoGebra & GeoGebra Discovery & Next step \\
\hline Discover tool/command & no & yes & - Scheduled for merging into GeoGebra \\
\hline Compare command & no & yes & - GeoGebra Team: approve/update \\
\hline IncircleCenter command & no & yes (with prover support) & GeoGebra Team: approve (discuss Center(Incircle) first) \\
\hline Incircle tool & no & yes & GeoGebra Team: approve/update \\
\hline IncircleCenter tool & no & yes & GeoGebra Team: approve/update \\
\hline LocusEquation tool & no & yes & - GeoGebra Team: approve/update \\
\hline Envelope tool & no & yes & - GeoGebra Team: approve/update \\
\hline Raspberry Pi 3D View & no & yes & - GeoGebra Team: approve/update \\
\hline Java OpenGL & 2.2 & 2.4 & - GeoGebra Team: approve/update \\
\hline Giac: threads on Linux & no & yes & - GeoGebra Team: approve/update \\
\hline Same color for circles with the same radius & no & yes & - GeoGebra Team: approve/update \\
\hline Proving inequalities & no & yes & - Use Tarski as a dynamic library \\
\hline ApplyMap command & no & prototype & - Fix bugs and make improvements \\
\hline
\end{tabular}

\section*{Implementation: System layout of GeoGebra Discovery}

September 2020

- R. Vajda and Z. Kovács, "GeoGebra and the realgeom reasoning tool," in PAAR+SC-Square 2020. Workshop on Practical Aspects of Automated Reasoning and Satisfiability Checking and Symbolic Computation Workshop 2020, P. Fontaine, K. Korovin, I. S. Kotsireas, et al., Eds., 2752 vols., Nov. 28, 2020, pp. 204-219. eprint: http://ceur-ws.org/Vol-2752/paper15.pdf. [Online]. Available: https://doi.org/urn:nbn:de:0074-2752-0

\section*{Implementation: System layout of GeoGebra Discovery}

March 2021


\section*{Implementation: System layout of GeoGebra Discovery}

May 2021


\section*{Implementation: System layout of GeoGebra Discovery} July 2021


\section*{Implementation: System layout of GeoGebra Discovery}

\section*{Planned, on-going work}

\section*{GeoGebra 5/6}


Giac


\section*{Motivation}

A generalization of the Pythagorean Theorem

\section*{(1) Equational hypotheses:}


\section*{Motivation}

\section*{A generalization of the Pythagorean Theorem}
(1) Equational hypotheses:

(2) Non-degeneracy condition:
\[
v_{10} \cdot\left(v_{5} \cdot v_{4}-v_{6} \cdot v_{3}-v_{5} \cdot v_{2}+v_{3} \cdot v_{2}+v_{6} \cdot v_{1}-v_{4} \cdot v_{1}\right)=1
\]
(3) Exploration related equation: \(\mu \cdot v_{7}^{2}=v_{8}^{2}+v_{9}^{2}\)
(9) Non-equational assumptions: \(v_{7}>0 \wedge v_{8}>0 \wedge v_{9}>0\)

\section*{Motivation}

\section*{A generalization of the Pythagorean Theorem}
(1) Equational hypotheses:

(2) Non-degeneracy condition:
\[
v_{10} \cdot\left(v_{5} \cdot v_{4}-v_{6} \cdot v_{3}-v_{5} \cdot v_{2}+v_{3} \cdot v_{2}+v_{6} \cdot v_{1}-v_{4} \cdot v_{1}\right)=1
\]
(3) Exploration related equation: \(\mu \cdot v_{7}^{2}=v_{8}^{2}+v_{9}^{2}\)
(4) Non-equational assumptions: \(v_{7}>0 \wedge v_{8}>0 \wedge v_{9}>0\) \(\Rightarrow\)

\section*{Motivation}

\section*{A generalization of the Pythagorean Theorem}
(1) Equational hypotheses:

(2) Non-degeneracy condition:
\[
v_{10} \cdot\left(v_{5} \cdot v_{4}-v_{6} \cdot v_{3}-v_{5} \cdot v_{2}+v_{3} \cdot v_{2}+v_{6} \cdot v_{1}-v_{4} \cdot v_{1}\right)=1
\]
(3) Exploration related equation: \(\mu \cdot v_{7}^{2}=v_{8}^{2}+v_{9}^{2}\)
(4) Non-equational assumptions: \(v_{7}>0 \wedge v_{8}>0 \wedge v_{9}>0\)
\[
\Rightarrow \mu>1 / 2
\]

\section*{Motivation}

A generalization of the Pythagorean Theorem

\section*{Symbolic check in GeoGebra (via Relation \(\left(a^{2}+b^{2}, c^{2}\right)\) ):}

It is generally true that:
- \(\left(a^{2}+b^{2}\right)>((1 / 2)) \cdot\left(c^{2}\right)\)
under the condition:
- the construction is not degenerate
OK
(1) Exploration related equation:
\[
Q_{1}=\mu \cdot Q_{2}
\]
where \(Q_{1}\) and \(Q_{2}\) are the geometric quantities to compare and \(\mu \in \mathbb{R}\) is a new variable ("proportion" or "ratio").
(2) Derivation of an equivalent form of the (semi-)algebraic system:
(1) elimination via Gröbner bases, for algebraic systems,
(2) cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.
(1) Exploration related equation:
\[
Q_{1}=\mu \cdot Q_{2}
\]
where \(Q_{1}\) and \(Q_{2}\) are the geometric quantities to compare and \(\mu \in \mathbb{R}\) is a new variable ("proportion" or "ratio").
(2) Derivation of an equivalent form of the (semi-)algebraic system:
(1) elimination via Gröbner bases, for algebraic systems,
(2) cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.
\[
\Rightarrow
\]
(1) Exploration related equation:
\[
Q_{1}=\mu \cdot Q_{2}
\]
where \(Q_{1}\) and \(Q_{2}\) are the geometric quantities to compare and \(\mu \in \mathbb{R}\) is a new variable ("proportion" or "ratio").
(2) Derivation of an equivalent form of the (semi-)algebraic system:
(1) elimination via Gröbner bases, for algebraic systems,
(2) cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.
\[
\Rightarrow m \cdot Q_{2} \underset{(=)}{<} Q_{1} \underset{(=)}{<} M \cdot Q_{2}
\]
where \(m, M \in \mathbb{R}_{0}^{+}\)are sharp constants.

\section*{A semi-algebraic technique}

\section*{Cylindrical Algebraic Decomposition (CAD) and Real Quantifier Elimination (RQE)}

\section*{Definition}

Given a set \(S\) of polynomials in \(\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\), a CAD is a decomposition of \(\mathbb{R}^{n}\) into special connected semi-algebraic sets, on which each polynomial has constant sign, either + , - or 0 .


Example: \(S=\left\{x_{1}^{2}+x_{2}^{2}-1\right\}\) and a CAD of it. Here \(\mathbb{R}^{2}\) can be decomposed into 13 semi-algebraic sets \((13=1+3+5+3+1)\).

\section*{Reformulating the problem as input for RQE (via CAD)}

\section*{Generalization of the Pythagorean theorem}

The quantified formula (after simplifying):
\[
\begin{aligned}
& \underset{v_{10}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9} \in \mathbb{R}}{\exists} v_{7}>0 \wedge v_{8}>0 \wedge v_{9}>0 \wedge \\
& v_{10} v_{6}=1 \wedge-v_{5}^{2}+2 v_{5}-v_{6}^{2}+v_{8}^{2}=1 \wedge v_{5}^{2}+v_{6}^{2}=v_{9}^{2} \wedge \\
& v 7=1 \wedge \mu=v_{8}^{2}+v_{9}^{2} .
\end{aligned}
\]

\section*{Reformulating the problem as input for RQE (via CAD)}

\section*{Generalization of the Pythagorean theorem}

The quantified formula (after simplifying):
\[
\begin{aligned}
& \underset{v_{10}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9} \in \mathbb{R}}{\exists} v_{7}>0 \wedge v_{8}>0 \wedge v_{9}>0 \wedge \\
& v_{10} v_{6}=1 \wedge-v_{5}^{2}+2 v_{5}-v_{6}^{2}+v_{8}^{2}=1 \wedge v_{5}^{2}+v_{6}^{2}=v_{9}^{2} \wedge \\
& v 7=1 \wedge \mu=v_{8}^{2}+v_{9}^{2} . \\
& \\
& \quad \Rightarrow \mu>1 / 2 \text { (a quantifier-free formula). }
\end{aligned}
\]

\section*{Additional ways for users to enter input}
.instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right)\)

\section*{Additional ways for users to enter input}
.instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\)

\section*{Additional ways for users to enter input}
.instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,

\section*{Additional ways for users to enter input}
instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. \(\operatorname{Prove}\left(a^{2}+b^{2}>c^{2} / 3\right)\)

\section*{Additional ways for users to enter input}
instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2} / 3\right) \rightarrow\)

\section*{Additional ways for users to enter input}
.instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2} / 3\right) \rightarrow\) true,

\section*{Additional ways for users to enter input}
instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2} / 3\right) \rightarrow\) true,
- ...

\section*{Additional ways for users to enter input}
instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2} / 3\right) \rightarrow\) true,
- ...
(2) Low-level command Compare \(\left(a^{2}+b^{2}, c^{2}\right)\) to get direct result \((\rightarrow\) JavaScript API)

\section*{Additional ways for users to enter input}
.instead of using Relation \(\left(a^{2}+b^{2}, c^{2}\right)\)
(1) Direct proof by typing Prove \(\left(a^{2}+b^{2}>c^{2} / 2\right)\), or by trial-and-error:
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2}\right) \rightarrow\) false,
- e.g. Prove \(\left(a^{2}+b^{2}>c^{2} / 3\right) \rightarrow\) true,
- ...
(2) Low-level command Compare \(\left(a^{2}+b^{2}, c^{2}\right)\) to get direct result \((\rightarrow\) JavaScript API)
(3) In simpler cases: point-and-click (via the Relation tool)

Shortest path between two sides of a regular pentagon?
Quick answer by using the Relation \({ }_{a=\text { ? }}\) b tool


\section*{Shortest path between two sides of a regular pentagon?}

\section*{First attempt: a numerical comparison (no result)}
\(\mathbf{k}\) does not have the same length as \(\mathbf{f}\) (checked numerically)

More...

\section*{Shortest path between two sides of a regular pentagon?}

Second-third attempts: symbolic comparisons with proportions

\section*{Relation}

It is generally true that:
- \(\mathbf{f} \leq \mathbf{k} \leq(((\sqrt{ } 5+1) / 2) \cdot \mathbf{f})\)
under the condition:
- the construction is not degenerate

> OK

\section*{Shortest path between two sides of a regular pentagon?}

\section*{The (semi-)algebraic translation of the geomeric setup}


\section*{Shortest path between two sides of a regular pentagon?}

Final input for Tarski (after delineraization) \(\Rightarrow\) output

\section*{File Edit Tabs Help}
```

-v15*v8+v8+v16*v7-v16,-v10+2*v7*v8-v8,v7^2-v7-v8^2-v9+1,-v11*v14+v12*v13,-v13^2+2*v13*v15-v15^2-v14^
2+2*v14*v16-v16^2+v21^2,-m+v21,-v22+1]) -> [v10,v7,v8,v12,v9,v11,v15,v16,v14,v13,v21,m,v22]
2021-09-13 15:42:30.621 L0G: after removing unnecessary variables, vars=[v10,v7,v8,v12,v9,v11,v15,v1
6,v14,v13,v21,m,v22]
2021-09-13 15:42:30.621 L0G: after removing m, vars=v10,v7,v8,v12,v9,v11,v15,v16,v14,v13,v21,v22
2021-09-13 15:42:30.621 LOG: code=(def process (lambda (F) (def L (getargs F)) (def V (get L 0 0 l))
(def B (bbwb (get L 1))) (if (equal? (get B 0) 'UNSAT) [false] ((lambda () (def G (qfr (t-ex V (get
B 1)))) (if (equal? (t-type G) 1) G (if (equal? (t-type G) 6) (qepcad-api-call G 'T) (if (equal? (t
type G) 5) (qepcad-api-call (bin-reduce t-or (map (lambda (H) (qepcad-api-call (exclose H '(m)) 'T)
(getargs G))) 'T) (qepcad-api-call G 'T))))))))) (def expand (lambda (F)
(def V (get A 0 0 1)) (def G (get A 1)) (def X (dnf G)) (f) (def

```

```

ormalize (bin-reduce t-or (map (lambda (G) (if (equal? (t-type G) 6) (process G) G)) (expand F))))))
(epc [ ex v10,v11,v12,v13,v14,v15,v16,v21,v22,v7,v8,v9 [v21>0 /\ v22>0 /\ v10 v7-2 v7 v8-v12+v8 v9+v
8=0 <br> -v10 v8+v8^2-v11-v7^2+v7 v9+v7=0 \ v7^2-2 v7+v8^2=0 /\ 4 v7^2-6 v7+1=0 /\ -v15 v8+v8+v16 v7-
v16=0 \ -v10+2 v7 v8-v8=0 \ v7^2-v7-v8^2-v9+1=0 八 -v11 v14+v12 v13=0 /\ -v13^2+2 v13 v15-v15^2-v1
4^2+2 v14 v16-v16^2+v21^2=0 \-m+v21=0 \ -v22+1=0 \ (-v14^2-v13^2+v14 v12+v13 v11)>=0 /\(-v16^2-
v15^2+v16 v8+v15 v7+v15-v7)>=0 /\ v8>0 /\ (v7-1)>0]])
[m - 1 >= 0 \ m^2 - m - 1 <= 0]:tar
2021-09-13 15:42:32.8 LOG: result=m - 1 >= 0 <br>m^2 - m - 1 <= 0
2021-09-13 15:42:32.8 LOG: mathcode=solve([(m - 1 >= 0),(m^2 - m - 1 <= 0),(m>0)],m)
GIAC: solve([(m - 1 >= 0),(m^2 - m - 1 <= 0),(m>0)],m) -> list[((m>=1) and (m<=((\sqrt{}{5}+1)/2)))]
2021-09-13 15:42:32.801 ((m>=1) and (m<=((sqrt5+1)/2)))

```

\section*{Euler's Inequality}


\section*{Theorem (Euler 1765, Chapple 1746)}

In all triangle it holds that \(R \geq 2 \cdot r\) where \(R\) is the circumradius and \(r\) is the inradius of the triangle.

\section*{Euler's Inequality in an isosceles triangle}

\section*{(Semi-)algebraic translation}


\section*{Euler's Inequality in an isosceles triangle}

\section*{Output in GeoGebra Discovery}
Relation
R and \(r\) are parallel
(checked numerically)
It is generally true that:
under the condition:
e the construction is not degenerate

OK

\section*{Euler's Inequality}

Benchmarking (outputs in seconds, timeout: 30 secs, Intel Xeon CPU X5675 @ 3.07 GHz )

\section*{CAD backend}
\begin{tabular}{llrr} 
Case & Result & Mathematica & Tarski + QEPCAD B \\
\hline Isosceles & \(R \geq 2 \cdot r\) & 1.2 & 8.7 \\
Right & \(R \geq(\sqrt{2}+1) \cdot r\) & 2.1 & 4.3 \\
General & \(R \geq 2 \cdot r\) & timeout & 21.5
\end{tabular}

\section*{Euler's Inequality}

\section*{Benchmarking (outputs in seconds, timeout: 30 secs, Intel Xeon CPU X5675 © 3.07 GHz )}

CAD backend
\begin{tabular}{llrr} 
Case & Result & Mathematica & Tarski + QEPCAD B \\
\hline Isosceles & \(R \geq 2 \cdot r\) & 1.2 & 8.7 \\
Right & \(R \geq(\sqrt{2}+1) \cdot r\) & 2.1 & 4.3 \\
General & \(R \geq 2 \cdot r\) & timeout & 21.5
\end{tabular}
- A. Strzeboński, "Cylindrical algebraic decomposition using local projections," Journal of Symbolic Computation, vol. 76, pp. 36-64, Sep. 2016
- F. Vale-Enriquez and C. Brown, "Polynomial constraints and unsat cores in Tarski," in Mathematical Software - ICMS 2018. LNCS, vol. 10931, Springer, Cham, 2018, pp. 466-474

\section*{Benchmarks}
- 131 simple/moderate tests Database
- \(117 / 116\) can be successfully solved (Mathematica/Tarski) within 30 seconds
- 131 simple/moderate tests Database
- \(117 / 116\) can be successfully solved (Mathematica/Tarski) within 30 seconds


Density estimate on 103 tests that work uniformly (timing in ms),
\[
\mu_{M}=1361, \mu_{T}=2841, \sigma_{M}=3379, \sigma_{T}=4616
\]
- 131 simple/moderate tests Database
- \(117 / 116\) can be successfully solved (Mathematica/Tarski) within 30 seconds


Density estimate on 103 tests that work uniformly (timing in ms),
\[
\mu_{M}=1361, \mu_{T}=2841, \sigma_{M}=3379, \sigma_{T}=4616
\]
- 46 additional tests to prove a given conjecture Database
- 33/35 can be successfully proven (Mathematica/Tarski) within 40 seconds


The yellow region corresponds to a semi-algebraic set!```

