Supporting proving and discovering geometric inequalities in GeoGebra by using Tarski

Christopher W. Brown ¹ Zoltán Kovács ² Róbert Vajda ³

¹United States Naval Academy, Annapolis, MD, USA
²The Private University College of Education of the Diocese of Linz, Austria
³Bolyai Institute, Szeged, Hungary

ADG 2021, 16 September 2021

¹ Author is supported by the grant PID2020-113192GB-I00 from the Spanish MICINN.
² Author is supported by the grant EFOP-3.6.2-16-2017-00015.
We introduce *GeoGebra Discovery* that can automatically prove or discover geometric inequalities. It consists of

- an extended version of *GeoGebra*,
- a controller web service *realgeom*,
- and the computational tool *Tarski* (with the extensive help of *QEPCAD B*).

We successfully solve several non-trivial problems in Euclidean planar geometry via a simple graphical user interface.
Supporting inequalities in GeoGebra by using Tarski

<table>
<thead>
<tr>
<th>Feature</th>
<th>GeoGebra</th>
<th>GeoGebra Discovery</th>
<th>Next step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discover tool/command</td>
<td>no</td>
<td>yes</td>
<td>Scheduled for merging into GeoGebra</td>
</tr>
<tr>
<td>Compare command</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>IncircleCenter command</td>
<td>no</td>
<td>yes (with prover support)</td>
<td>GeoGebra Team: approve (discuss Center(Incircle) first)</td>
</tr>
<tr>
<td>Incircle tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>IncircleCenter tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>LocusEquation tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Envelope tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Raspberry Pi 3D View</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Java OpenGL</td>
<td>2.2</td>
<td>2.4</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Giac: threads on Linux</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Same color for circles with the same radius</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Proving inequalities</td>
<td>no</td>
<td>yes</td>
<td>Use Tarski as a dynamic library</td>
</tr>
<tr>
<td>ApplyMap command</td>
<td>no</td>
<td>prototype</td>
<td>Fix bugs and make improvements</td>
</tr>
</tbody>
</table>
GeoGebra Discovery: an experimental version of GeoGebra

github.com/kovzol/geogebra-discovery

<table>
<thead>
<tr>
<th>Feature</th>
<th>GeoGebra</th>
<th>GeoGebra Discovery</th>
<th>Next step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discover tool/command</td>
<td>no</td>
<td>yes</td>
<td>Scheduled for merging into GeoGebra</td>
</tr>
<tr>
<td>Compare command</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>IncircleCenter command</td>
<td>no</td>
<td>yes (with prover support)</td>
<td>GeoGebra Team: approve (discuss Center(Incircle) first)</td>
</tr>
<tr>
<td>Incircle tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>IncircleCenter tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>LocusEquation tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Envelope tool</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Raspberry Pi 3D View</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Java OpenGL</td>
<td>2.2</td>
<td>2.4</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Giac: threads on Linux</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Same color for circles with the same radius</td>
<td>no</td>
<td>yes</td>
<td>GeoGebra Team: approve/update</td>
</tr>
<tr>
<td>Proving inequalities</td>
<td>no</td>
<td>yes</td>
<td>Use Tarski as a dynamic library</td>
</tr>
<tr>
<td>ApplyMap command</td>
<td>no</td>
<td>prototype</td>
<td>Fix bugs and make improvements</td>
</tr>
</tbody>
</table>
Supporting inequalities in GeoGebra by using Tarski
Implementation: System layout of GeoGebra Discovery

Planned, on-going work

Supporting inequalities in GeoGebra by using Tarski
Motivation
A generalization of the Pythagorean Theorem

1.

Equational hypotheses:

\[
\begin{align*}
A(v_1, v_2) & : v_1^2 - v_4^2 - v_3^2 + 2v_4v_2 - v_2^2 + 2v_3v_1 - v_1^2 = 0 \\
b & : v_5^2 - v_6^2 - v_5^2 + 2v_6v_2 - v_2^2 + 2v_5v_1 - v_1^2 = 0 \\
a & : v_8^2 - v_9^2 - v_5^2 + 2v_6v_4 - v_4^2 + 2v_5v_3 - v_3^2 = 0
\end{align*}
\]
Motivation
A generalization of the Pythagorean Theorem

1 Equational hypotheses:

\[A(v_1, v_2) \]

\[c: v_7^2 - v_4^2 - v_3^2 + 2v_4v_2 - v_2^2 + 2v_3v_1 - v_1^2 = 0 \]

\[b: v_5^2 - v_6^2 - v_9^2 + 2v_6v_2 - v_2^2 + 2v_5v_1 - v_1^2 = 0 \]

\[a: v_8^2 - v_9^2 - v_5^2 + 2v_5v_4 - v_4^2 + 2v_5v_3 - v_3^2 = 0 \]

2 Non-degeneracy condition:

\[v_{10} \cdot (v_5 \cdot v_4 - v_6 \cdot v_3 - v_5 \cdot v_2 + v_3 \cdot v_2 + v_6 \cdot v_1 - v_4 \cdot v_1) = 1 \]

3 Exploration related equation: \(\mu \cdot v_7^2 = v_8^2 + v_9^2 \)

4 Non-equational assumptions: \(v_7 > 0 \land v_8 > 0 \land v_9 > 0 \)
Motivation
A generalization of the Pythagorean Theorem

1. Equational hypotheses:

\[a : v_8^2 - v_5^2 - v_6^2 + 2v_5v_4 - v_4^2 + 2v_5v_3 - v_3^2 = 0 \]
\[b : v_9^2 - v_6^2 - v_7^2 + 2v_6v_2 - v_2^2 + 2v_5v_1 - v_1^2 = 0 \]
\[c : v_7^2 - v_4^2 - v_3^2 + 2v_4v_2 - v_2^2 + 2v_3v_1 - v_1^2 = 0 \]

2. Non-degeneracy condition:

\[v_{10} \cdot (v_5 \cdot v_4 - v_6 \cdot v_3 - v_5 \cdot v_2 + v_3 \cdot v_2 + v_6 \cdot v_1 - v_4 \cdot v_1) = 1 \]

3. Exploration related equation:

\[\mu \cdot v_7^2 = v_8^2 + v_9^2 \]

4. Non-equational assumptions:

\[v_7 > 0 \land v_8 > 0 \land v_9 > 0 \]

⇒
Motivation
A generalization of the Pythagorean Theorem

1. **Equational hypotheses:**

 \[A(v_1, v_2) \]

 \[c : v_1^2 - v_4^2 - v_3^2 + 2v_4v_2 - v_2^2 + 2v_3v_1 - v_1^2 = 0 \]

 \[b : v_5^2 - v_6^2 - v_7^2 + 2v_6v_2 - v_2^2 + 2v_5v_1 - v_1^2 = 0 \]

 \[a : v_8^2 - v_5^2 - v_9^2 + 2v_5v_4 - v_4^2 + 2v_8v_3 - v_3^2 = 0 \]

2. **Non-degeneracy condition:**

 \[v_{10} \cdot \left(v_5 \cdot v_4 - v_6 \cdot v_3 - v_5 \cdot v_2 + v_3 \cdot v_2 + v_6 \cdot v_1 - v_4 \cdot v_1 \right) = 1 \]

3. **Exploration related equation:**

 \[\mu \cdot v_7^2 = v_8^2 + v_9^2 \]

4. **Non-equational assumptions:**

 \[v_7 > 0 \land v_8 > 0 \land v_9 > 0 \]

 \[\Rightarrow \mu > 1/2 \]
Symbolic check in GeoGebra (via $\text{Relation}(a^2 + b^2, c^2)$):

It is generally true that:
- $(a^2 + b^2) \geq (1/2) \cdot (c^2)$

under the condition:
- the construction is not degenerate
1 Exploration related equation:

\[Q_1 = \mu \cdot Q_2 \]

where \(Q_1 \) and \(Q_2 \) are the geometric quantities to compare and \(\mu \in \mathbb{R} \) is a new variable ("proportion" or "ratio").

2 Derivation of an equivalent form of the (semi-)algebraic system:

1 elimination via Gröbner bases, for algebraic systems,
2 cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.
Exploration related equation:

\[Q_1 = \mu \cdot Q_2 \]

where \(Q_1 \) and \(Q_2 \) are the geometric quantities to compare and \(\mu \in \mathbb{R} \) is a new variable ("proportion" or "ratio").

Derivation of an equivalent form of the (semi-)algebraic system:

1. Elimination via Gröbner bases, for algebraic systems,
2. Cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.
Applied methods

1. Exploration related equation:

\[Q_1 = \mu \cdot Q_2 \]

where \(Q_1 \) and \(Q_2 \) are the geometric quantities to compare and \(\mu \in \mathbb{R} \) is a new variable (“proportion” or “ratio”).

2. Derivation of an equivalent form of the (semi-)algebraic system:

- elimination via Gröbner bases, for algebraic systems,
- cylindrical algebraic decomposition (CAD) and real quantifier elimination (RQE), for semi-algebraic systems.

\[\Rightarrow m \cdot Q_2 \leq Q_1 \leq M \cdot Q_2 \]

where \(m, M \in \mathbb{R}_0^+ \) are sharp constants.
A semi-algebraic technique
Cylindrical Algebraic Decomposition (CAD) and Real Quantifier Elimination (RQE)

Definition

Given a set \(S \) of polynomials in \(\mathbb{Z}[x_1, x_2, \ldots, x_n] \), a CAD is a decomposition of \(\mathbb{R}^n \) into special connected semi-algebraic sets, on which each polynomial has constant sign, either +, − or 0.

Example: \(S = \{x_1^2 + x_2^2 - 1\} \) and a CAD of it. Here \(\mathbb{R}^2 \) can be decomposed into 13 semi-algebraic sets (\(13 = 1 + 3 + 5 + 3 + 1 \)).
Reformulating the problem as input for RQE (via CAD)

Generalization of the Pythagorean theorem

The quantified formula (after simplifying):

$$\exists \nu_{10}, \nu_5, \nu_6, \nu_7, \nu_8, \nu_9 \in \mathbb{R}$$

$$\nu_7 > 0 \land \nu_8 > 0 \land \nu_9 > 0 \land$$

$$\nu_{10} \nu_6 = 1 \land -\nu_5^2 + 2\nu_5 - \nu_6^2 + \nu_8^2 = 1 \land \nu_5^2 + \nu_6^2 = \nu_9^2 \land$$

$$\nu_7 = 1 \land \mu = \nu_8^2 + \nu_9^2.$$
Reformulating the problem as input for RQE (via CAD)

Generalization of the Pythagorean theorem

The quantified formula (after simplifying):

\[\exists v_10, v_5, v_6, v_7, v_8, v_9 \in \mathbb{R} \]
\[v_7 > 0 \land v_8 > 0 \land v_9 > 0 \land \]
\[v_{10} v_6 = 1 \land -v_5^2 + 2v_5 - v_6^2 + v_8^2 = 1 \land v_5^2 + v_6^2 = v_9^2 \land \]
\[v_7 = 1 \land \mu = v_8^2 + v_9^2. \]

\[\Rightarrow \mu > 1/2 \text{ (a quantifier-free formula).} \]
Direct proof by typing \(\text{Prove}(a^2 + b^2 > c^2/2) \), or by trial-and-error:
- e.g. \(\text{Prove}(a^2 + b^2 > c^2) \)
Additional ways for users to enter input
...instead of using Relation($a^2 + b^2, c^2$)

Direct proof by typing Prove($a^2 + b^2 > c^2/2$), or by trial-and-error:
- e.g. Prove($a^2 + b^2 > c^2$) →
Additional ways for users to enter input

...instead of using $\text{Relation}(a^2 + b^2, c^2)$

1. Direct proof by typing $\text{Prove}(a^2 + b^2 > c^2/2)$, or by trial-and-error:
 - e.g. $\text{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false}$,
Additional ways for users to enter input
... instead of using \(\text{Relation}(a^2 + b^2, c^2) \)

1. Direct proof by typing \(\text{Prove}(a^2 + b^2 > c^2/2) \), or by trial-and-error:
 - e.g. \(\text{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false} \),
 - e.g. \(\text{Prove}(a^2 + b^2 > c^2/3) \)
Additional ways for users to enter input

...instead of using \texttt{Relation}(a^2 + b^2, c^2)

1. Direct proof by typing \texttt{Prove}(a^2 + b^2 > c^2/2), or by trial-and-error:
 - e.g. \texttt{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false},
 - e.g. \texttt{Prove}(a^2 + b^2 > c^2/3) \rightarrow
Additional ways for users to enter input
...instead of using $\text{Relation}(a^2 + b^2, c^2)$

1. Direct proof by typing $\text{Prove}(a^2 + b^2 > c^2/2)$, or by trial-and-error:
 - e.g. $\text{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false}$,
 - e.g. $\text{Prove}(a^2 + b^2 > c^2/3) \rightarrow \text{true}$,
Direct proof by typing `Prove(a^2 + b^2 > c^2/2)`, or by trial-and-error:

- e.g. `Prove(a^2 + b^2 > c^2) → false`
- e.g. `Prove(a^2 + b^2 > c^2/3) → true`
- ...
1. **Direct proof by typing** $\text{Prove}(a^2 + b^2 > c^2/2)$, or by trial-and-error:
 - e.g. $\text{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false}$,
 - e.g. $\text{Prove}(a^2 + b^2 > c^2/3) \rightarrow \text{true}$,
 - ...

2. **Low-level command** $\text{Compare}(a^2 + b^2, c^2)$ to get direct result (\rightarrow JavaScript API)
Additional ways for users to enter input
...instead of using \(\text{Relation}(a^2 + b^2, c^2) \)

1. Direct proof by typing \(\text{Prove}(a^2 + b^2 > c^2/2) \), or by trial-and-error:
 - e.g. \(\text{Prove}(a^2 + b^2 > c^2) \rightarrow \text{false} \),
 - e.g. \(\text{Prove}(a^2 + b^2 > c^2/3) \rightarrow \text{true} \),
 - ...

2. Low-level command \(\text{Compare}(a^2 + b^2, c^2) \) to get direct result (\(\rightarrow \) JavaScript API)

3. In simpler cases: point-and-click (via the Relation tool)
Shortest path between two sides of a regular pentagon?

Quick answer by using the Relation tool

Brown, Kovács and Vajda
Supporting inequalities in GeoGebra by using Tarski
Shortest path between two sides of a regular pentagon?
First attempt: a numerical comparison (no result)

Relation

k does not have the same length as f
(checked numerically)
Shortest path between two sides of a regular pentagon?
Second-third attempts: symbolic comparisons with proportions

It is generally true that:
\[f \leq k \leq \left(\frac{\sqrt{5}+1}{2} \right) \cdot f \]
under the condition:
\[\text{the construction is not degenerate} \]
Shortest path between two sides of a regular pentagon?
The (semi-)algebraic translation of the geometric setup

\[E(v_{11}, v_{12}) \]

\[C(v_7, v_8) \]

\[F(v_{13}, v_{14}) \]

\[A(v_1, v_2) \]

\[G(v_{15}, v_{16}) \]

\[B(v_3, v_4) \]

- \(v_7v_4 + v_8v_3 + v_7v_2 - v_3v_2 - v_8v_1 + v_4v_1 > 0 \)
- \(v_8v_1 - v_4^2 + v_7v_3 - v_3^2 - v_8v_2 + v_4v_2 - v_7v_1 + v_3v_1 > 0 \)
- \(-1 + 2v_5 + 4v_5^2 = 0 \)
- \(-1 + v_6^2 + v_6^2 = 0 \)
- \(-v_7 - v_6v_4 + v_3 + v_5v_3 + v_6v_2 - v_3v_1 = 0 \)
- \(-v_8 + v_4 + v_5v_4 + v_6v_3 - v_5v_2 - v_6v_1 = 0 \)
- \(-v_9 + v_7 - v_8v_5 + v_7v_5 + v_6v_4 - v_3v_3 = 0 \)
- \(-v_{10} + v_8 + v_7v_6 + v_8v_5 - v_7v_4 - v_3v_3 = 0 \)
- \(-v_{11} + v_9 - v_10v_6 + v_8v_6 + v_9v_5 - v_7v_5 = 0 \)
- \(-v_{12} + v_{10} + v_9v_6 - v_7v_6 + v_{10}v_5 - v_8v_5 = 0 \)
- \(v_{20} - v_{10}^2 - v_{15}^2 + 2v_{10}v_{14} - v_{14}^2 + 2v_{15}v_{13} - v_{13}^2 = 0 \)

- \(v_{19} - v_4^2 - v_3^2 + 2v_4v_2 - v_2^2 + 2v_3v_1 - v_1^2 = 0 \)

\(-v_{16}^2 - v_{15}^2 + v_{16}v_8 + v_{15}v_7 + v_{16}v_4 - v_8v_4 + v_{15}v_3 - v_7v_3 \geq 0 \)

\(-v_{15}v_8 + v_{16}v_7 + v_{15}v_4 - v_7v_4 - v_{16}v_3 + v_8v_3 = 0 \)
Shortest path between two sides of a regular pentagon?

Final input for Tarski (after delineraization) ⇒ output

Brown, Kovács and Vajda
Supporting inequalities in GeoGebra by using Tarski
Euler’s Inequality

Theorem (Euler 1765, Chapple 1746)

In all triangle it holds that $R \geq 2 \cdot r$ where R is the circumradius and r is the inradius of the triangle.
Euler’s Inequality in an isosceles triangle
(Semi-)algebraic translation

\[2v_{15} - v_9 - v_4 = 0 \]
\[2v_{14} - v_{10} - v_2 = 0 \]
\[v_{10} - v_4 + v_1 + 0 = 0 \]
\[v_{15} + v_{14} - v_3 - v_2 = 0 \]
Euler’s Inequality in an isosceles triangle
Output in GeoGebra Discovery

R and \(r \) are parallel (checked numerically)

It is generally true that:

- \(R \geq (2) \cdot r \)

under the condition:

- the construction is not degenerate
Euler’s Inequality

Benchmarking (outputs in seconds, timeout: 30 secs, Intel Xeon CPU X5675 @ 3.07GHz)

<table>
<thead>
<tr>
<th>Case</th>
<th>Result</th>
<th>Mathematica</th>
<th>Tarski + QEPCAD B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isosceles</td>
<td>$R \geq 2\cdot r$</td>
<td>1.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Right</td>
<td>$R \geq (\sqrt{2} + 1)\cdot r$</td>
<td>2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>General</td>
<td>$R \geq 2\cdot r$</td>
<td>timeout</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Euler’s Inequality

Benchmarking (outputs in seconds, timeout: 30 secs, Intel Xeon CPU X5675 @ 3.07GHz)

<table>
<thead>
<tr>
<th>Case</th>
<th>Result</th>
<th>Mathematica</th>
<th>Tarski + QEPCAD B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isosceles</td>
<td>$R \geq 2 \cdot r$</td>
<td>1.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Right</td>
<td>$R \geq (\sqrt{2} + 1) \cdot r$</td>
<td>2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>General</td>
<td>$R \geq 2 \cdot r$</td>
<td>timeout</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Benchmarks

- 131 simple/moderate tests
 - 117/116 can be successfully solved (Mathematica/Tarski) within 30 seconds
Benchmarks

- 131 simple/moderate tests
- 117/116 can be successfully solved (Mathematica/Tarski) within 30 seconds

Density estimate on 103 tests that work uniformly (timing in ms),

\[\mu_M = 1361, \mu_T = 2841, \sigma_M = 3379, \sigma_T = 4616 \]
Benchmarks

- 131 simple/moderate tests
 - 117/116 can be successfully solved (Mathematica/Tarski) within 30 seconds

Density estimate on 103 tests that work uniformly (timing in ms),

\[\mu_M = 1361, \mu_T = 2841, \sigma_M = 3379, \sigma_T = 4616 \]

- 46 additional tests to prove a given conjecture
 - 33/35 can be successfully proven (Mathematica/Tarski) within 40 seconds
The yellow region corresponds to a semi-algebraic set!