Hybrid Semantics for Stochastic w-calculus

Luca Bortolussi' and Alberto Policriti?

! Dept. of Mathematics and Computer Science, University of Trieste, Italy.
luca@dmi.units.it
2 Dept. of Mathematics and Computer Science, University of Udine, and
Applied Genomics Institute, Udine Italy
policriti@dimi.uniud.it

Abstract. We put forward a method to map stochastic w-calculus pro-
cesses in chemical ground form into hybrid automata, a class of dy-
namical systems with both discrete and continuous evolution. The key
ingredient is the separation of control and molecular terms, which turns
out to be related to the conservation properties of the system.

1 Introduction

Systems biology is a fertile research area in which experimental techniques are
coupled with mathematical modeling in order to understand the complex dy-
namics within cells [16]. In this context, both mathematical and computational
tools play an important role: biological systems must be described in a precise
mathematical framework, usually ordinary differential equations or stochastic
processes, and the obtained models must then be analyzed. However, due to their
intrinsic complexity, computational techniques like simulation must be used.
The contributions of Computer Science, on the other hand, are not just restricted
to the computational analysis of models, but also related to their description by
means of suitable formal languages, offering the features of compositionality and
model reusability [19].

These languages usually belong to the domain of stochastic process algebras
(SPA), which have a semantics defined in terms of Continuous Time Markov
Chains [14,21]. Different SPA have been used in biological modeling; here we
recall stochastic m-calculus [18], PEPA [6], and stochastic Concurrent Constraint
Programming (sCCP, [5]). An important issue in using these languages is that
the resulting models are automatically interpreted as stochastic processes, hence
they can be simulated and analyzed using common techniques, like the celebrated
Gillespie’s algorithm [11]. Actually, when just biochemical reactions are involved,
the stochastic process defined by these SPA coincide with the canonical one, as
given by the chemical master equation [11,21]. In this approach, the system is
described microscopically, counting the number of molecules of each species.
Simulation of stochastic processes, however, can be computationally too demand-
ing, especially when large populations of chemical species are present in the sys-
tem. In this case, a better strategy is that of using models based on ordinary
differential equations, approximating the number of molecules as a continuous

quantity. In order to achieve this goal, PEPA, stochastic m-calculus, and sCCP
have been equipped with a semantics based on ODE’s [3, 15, 8].

This sort of approximation, however, is not appropriate for models having
small populations and for models containing inherently discrete entities like genes
(genes are usually present in a single copy in a cell, and they are neither pro-
duced nor degraded). Actually, there are several well-known examples in which
the stochastic model and its continuous approximation show a radically different
behavior [11,2]. In order to deal with some of these cases, in [4] we introduced
a hybrid approximation for sCCP, in which some entities of the system are kept
discrete, while others are approximated as continuous. Essentially, we defined a
mapping from sCCP to hybrid automata, which are mixed discrete/continuous
dynamical systems. The separation between continuous and discrete components
in sCCP is quite natural. Each sCCP program consists of a set of agents acting
on shared variables. Each agent can have different internal states, enabling dif-
ferent actions, while variables describe time-changing quantities. For instance,
proteins are described by variables, while genes are modeled as agents, with
different internal states depending on which transcription factors are bound to
them (see [5] for further details). Therefore, the discrete dynamics of the hy-
brid automata associated with an sCCP program comes from the different inner
states of agents, while the continuous dynamics describes the time evolution of
sCCP variables. In [4] it is shown that the hybrid semantics of SCCP is more
adherent to the stochastic dynamics than the continuous one.

The purpose of this paper is to extend the method of [4] to stochastic -
calculus. In this case, we do not have any a-priori distinction between discrete
agents and time-varying variables as in sCCP, hence we need to separate m-agents
into two groups, one amenable to continuous approximation and the other inher-
ently discrete. This distinction turns out to be related to conservation properties
of the system.

The paper is organized as follows: Section 2 recalls the syntax of a sub-
set of stochastic m-calculus that will be used in the following, while Section 3
briefly presents Hybrid Automata. The identification of discrete components of
m-calculus programs is tackled in Section 4, while Section 5 presents the mapping
to Hybrid Automata. Conclusions are drawn in Section 6.

2 Stochastic w-calculus

We recall briefly the syntax of stochastic w-calculus processes in Chemical Ground
Form (CGF from now on), as defined in [7]. This is a restricted subset of -
calculus (actually, of CCS), which is however sufficient to model biochemical
reactions and genetic networks. Essentially, the restriction operator is dropped
and no information is passed on channels during a communication. Parameter-
ized communication can however be introduced without substantially changing
the language, see [7] for further details.

Processes in CGF are defined by the grammar of Table 1. Essentially, a w-calculus
program in CGF consists of a set of reagents (agents/molecules) E and of the

E:=0X=M,FE
M :=0|r.P® M

P ::=0|(X|P)
ma=1"|?2"| "
CGF = (E,P)

Table 1. Syntax of stochastic m-calculus processes in Chemical Ground Form.

initial solution (network/configuration) Py.®> Each reagent is a summation M,
whose addends are guarded by actions, either silent (7") or communications on
channels (inputs 72" and outputs !2"). All actions are indexed by a parameter r,
which is the rate of an exponential distribution governing their execution time.
It is agreed that all occurrences of each channel have the same rate, so that the
function p, assigning to each distinct channel name and silent action its rate,
can be consistently defined.

Remark 1. The same channel name z can be used several times in the defini-
tion of reagents in F, so that different agent types can communicate on it. For
instance, consider Xy =!z. X1, Xy =72.Xs, X3 =lz. X3, and Xy =7x.X,. x gives
rise to 4 possible communications (X7 with X5 or X and Xswith X3 or Xy). In
general, if there are n occurrences of !z” and m occurrences of 7x", then there
are mn possible interactions on channel z. Actually, an equivalent system can
be easily constructed where all possible communications have distinct names:
we can replace x with nm new channels z7 , fori=1,...,nand j=1,...,m,
substituting the i*" occurrence of !2". P with the sum lzf . P&...&lz},,.P, and
the j** occurrence of 72" with lz} ;. P & ... &y ;.P. Note that this can cause
a quadratic explosion in the description of CGF(E, P), although it leaves the
dynamics unchanged.

From now on, we confine ourselves to programs in which each channel appears
once as input and once as output. In addition, we index all 7 actions with a
different integer number, in such a way that 7 actions are all distinct.

Ezample 1. We present here a very simple genetic regulatory network, consist-
ing of one single gene producing a protein that represses its own production.
For simplicity, we consider a model in which the gene generates directly the pro-
teins, without the intermediate step of mRNA production. This system can be
described by the following set of reactions:

G+ P —y, Gy + P
Gb_)kuG
G—)kpG—i-P (1)
P—>kd®a

3 Each solution P can be compactly described by its “marking”, i.e. by counting the
number of copies of each agent X in parallel in P. This is sufficient to determine the
dynamics of the system.

where G is the gene, G}, is the repressed gene and P is the produced protein.
Following the conversion rules from chemical reactions prescribed in [7], the
m-calculus program in CGF associated to (1) is defined as

G =k .Gy @ 7,7 (G| P)
Gy = TQIf“.G (2)
P =" Porii0

In this encoding, each molecule is represented as a distinct process, and its
action capabilities correspond to the different reactions of which the molecule is
a reactant. A full program requires also the specification of the initial state of
the system, which in this case consists of one single copy of G.

Associating ODE’s with m-calculus programs in CGF. Given a m-calculus pro-
gram (E, Py) in CGF, we can associate with it a set of ODE’s quite straight-
forwardly. Our presentation differs slightly from [7,8], in order to simplify the
following discussion.

First, we need some preliminary definitions. The function action(X) returns
the set of actions of the reactant X; it can be extended to set of agents by
action({X1, X2}) = action(X1) Uaction(Xs). For instance, action(P) = {b, 74},
where P is defined in (2), and action({ P, Gy }) = {b, 74, 7, }. Therefore, action(E)
is the set of actions of all agents defined in E. In addition, with #(X, P)
(#(X, B)) we denote the number of occurrences of the agent X in the solu-
tion P (multiset B). Finally, with react(w) and prod(w) we indicate the multi-
sets of agents that are consumed and produced by 7, respectively. For instance,
if X =lz(X|X) and Y =?z.(Y|Y), then react(z) = [X,Y] and prod(xz) =
[X,X,Y,Y].

The basic idea in associating ODE’s with a w-program is to approximate the
number of occurrences #(X, P) of an agent X in the solution P by a contin-
uous quantity, also indicated with X (X, instead, will denote the vector of all
variables X).

Definition 1. Let (E, Py) be a mw-calculus program in CGF, A C E, and T C
action(E).

1. The stoichiometric matrix Sa 1 w.r.t. A and T is a |A| x |T| matriz, with
rows indexed by agents of A and columns indexed by actions of T, defined
by Sar[X,m] = #(X,prod(n)) — #(X, react(r)).

2. The rate vector g1 w.r.t. A and T is a |T| vector defined by

0, if react(m) N A = 0;
(m)X, if react(m) N A = [X];
ar[r)(X) Z(W)XY, if react(m)N A =[X,Y];
p(m)X(X —1), if react(mr) N A = [X, X].

4 The rate function for homodimeric reactions lacks a factor 1/2 w.r.t. the standard
definition. This happens because each homodimer X =!z.X®?x.X counts twice:
once for the input !z and once for the output ?z. This gives a factor two in the rate
function canceling out 1/2. Clearly, this must be taken into account while writing
models in 7-calculus: rates of homodimeric reactions must be halved [7].

3. The ODE’s associated to (E, Py) are X = SE.action(E) * OB, action(E)(X), with
initial conditions given by X (0) = #(X, Py).5

Consider again the program of Example 1. For T' = action(E), we obtain:

@) [-100 1 ”((”)C)’g G = p(7)Gy — p(b)GP
Sea= (G [100 1) onr=| U0 p Gy = p(D)GP — p(7u) Gy
() \01-10 sicn) L =0(m)G = plr)P

In Figure 1 we compare a stochastic simulation of the 7-calculus model (2)
with the numerical solution of the associated ODE’s. As we can readily see, the
two plots are different. In particular, in the stochastic simulation, P is produced
in bursts and it follows an irregular oscillatory pattern. The ODE’s system,
instead, presents a much simpler pattern of evolution, in which the quantity
of P converges to an asymptotic value. This divergence is caused by the fact
that, approximating continuously the state of the gene, we lose any information
on the discrete dynamics of gene’s activations and deactivations. As a matter
of fact, the same loss occurs when we consider the average trajectory of the
stochastic system. In fact, the average presents a trend more similar to that
of Figure 1(b) (data not shown), not conveying an adequate description of the
dynamics. Consider, for instance, an event triggered when the concentration of
P exceeds 100: this event would be activated infinitely often in the stochastic
system, but just once in the ODE-based one (or in the average trajectory).

Remark 2. In the mapping from 7w-calculus to ODE’s of Definition 1, the rates
of the stochastic processes and of the ODE’s are the same, in contrast with the
usual praxis in biochemistry, in which rates of ODE’s are redefined in terms
of concentrations. Indeed, the ODE’s that we defined must be thought of as
an approximation of the stochastic process, in the sense that they are a first-
order approximation of the differential equation for the average of the stochastic
system, cf. [1]. This relationship is similar to the one connecting deterministic
and stochastic mass action models of chemical reactions, cf. [10].

3 Hybrid Automata

In this section we briefly recall the ideas and the definition of hybrid automa-
ton. The reader is referred to [13] for an introductory survey. Hybrid automata
are dynamical systems presenting both discrete and continuous evolution. Es-
sentially, they are defined using a set of variables evolving continuously in time,
subject to instantaneous changes induced by the happening of discrete control
events. When discrete events happen the automaton enters its next mode, where
the laws governing the flow of continuous variables change. Formally, a hybrid
automaton is a tuple H = (V, E, X, flow, init, inv, jump, reset), where:

® We could have defined the stoichiometric matrix and the rate vector just for the
sets E and action(E), instead of parameterizing them w.r.t. subsets A and T". This
parametric version, however, will turn out to be useful in Section 5.

valug
valug

%
A4 4

0 2.500 5000 7.500 10.000 12,500 15.000 0 260 60 750 1000 1250 1500 1750 2000 2260 2800
time time.

(a) m-calculus model of system (1) (b) ODE model of system (1)

Fig. 1. 1(a): simulation of the m-calculus model (2). The red line corresponds to P. Pa-
rameters of the models are the following: k, = 1, k;, = 0.0001, k, = 0.0005, k4 = 0.01.
The initial configuration consists in a single copy of G. 1(b): numerical simulation
of ODE’s associated to the m-calculus model (2), for the same parameters just given.
The evolution of P is different from the stochastic case, as it converges quickly to an
asymptotic value. Parameters have been assigned in order to correspond to a situa-
tion in which the binding/unbinding dynamics of the repressor P is very slow, when
compared to protein production and degradation. Increasing the binding and unbinding
strength smooths the behavior of the stochastic system, making it closer to Figure 1(b).
We refer the reader to [4] for a more biologically relevant example.

— X ={Xy,...,X,} is a finite set of real-valued variables (the time derivative
of X, is denoted by Xj, while the value of X; after a change of mode is
indicated by X7).

— G = (V,E) is a finite labeled graph, called control graph. Vertices v € V
are the (control) modes, while edges e € E are called (control) switches and
model the happening of a discrete event.

— Associated with each vertex v € V there is a set of ordinary differential equa-
tions® X = flow(v) (referred to as the flow conditions). Moreover, init(v)
and inv(v) are two formulae on X specifying the admissible initial conditions
and some invariant conditions that must be true during the continuous evo-
lution of variables in v (forcing a change of mode to happen when violated).

— Edges e € E of the control graph are labeled by jump(e), a formula on X
stating for what values of variables each transition is active (the so called
activation region), and by reset(e), a formula on XUX' specifying the change
of the variables’ values after the transition has taken place.

The traces of the system are defined as the time traces of the continuous
variables. Notice that the activation conditions are in general non-deterministic
(as well as resets), hence there can be different traces starting from the same

5 Other forms of flow specification are possible (differential inclusions, first order for-
mulae, etc.) but sets of differential equations are sufficient for our purposes here.

initial values. In this paper we are concerned mainly with simulation of hybrid
automata, i.e. with the generation of a set of admissible traces.

In the following, we will need a product construction for HA, which is al-
most the classical one [13], the only difference being the treatment of fluxes for
variables shared among the factors. In our case, in fact, fluxes are added. Before
giving the formal definition of this flux product, we put forward some notation.
The product G = G; x G4 of two graphs Gy = (V4, E1) and G2 = (Va, Es) has
vertex set V7 X Vo and edges of the form ((v1,w), (v, w)), where (vi,ve) € Eq,
or ((v,wy), (v,wz)), where (wy,ws) € Es. Given an edge e € E, the projection
m1(e) is defined for all edges e = ((v1,w), (ve,w)), and is the edge (v1,v2) € Ej.
Projection 7y can be defined symmetrically.

Definition 2. Let H; = (Vi, Eq, X4, flows, inity, invy, jumpy, reset,) and Hy =
(Va, Eq, Xa, flows, inits, inve, jumps, resets). The flux product of Hy and Hy is
the hybrid automaton Hy @ Hy = (V, E, X, flow, init, inv, jump, reset) defined
by:

1. (V,E) = (V1, Ey) x (Va, E2);

2. X = X]_ @] Xz,‘

3. flow((vi,v2)) [x= flowi(v1) [x +flows(va) Ix, if X € X1 NXy. Other-
wise, if X € X, then flow((vi,v2)) [x= flow;(v;) [x;

4. init((vy,v2)) = inity (v1) Adnita(ve) and inv((vy,v2)) = invy (v1) A inve(ve);

5. jump(e) = jumpy(e1), if e € E is such that w1 (e) = eq, otherwise, if ma(e) =
es, then jump(e) = jumps(es);

6. reset(e) = reseti(e1) if mi(e) = ey, while reset(e) = reseta(ez) if ma(e) = ea.

4 Control Automata

The reactants E of a m-calculus program (F, Py) in CGF can be broadly sep-
arated into two classes, one comprising all those terms which will change in
quantity during the evolution (essentially, molecules) and the other containing
a collection of terms defining a control structure, in such a way that exactly
one term of the collection is active in every solution P reachable from F,. For
instance, consider the model of the gene of Example 1. The gene G has two mu-
tually exclusive states: the normal form G and the repressed form Gy. Obviously,
we always have a single occurrence of the gene in the system, which can be in
one of the two states G and Gj. Essentially, we can think of a gene as a kind of
“logical” entity, whose activity depends on its inner state and whose state may
change due to interactions with the system.

We want now to find suitable conditions to define collections of terms behav-
ing like the gene in the example, which will be called in the rest of the paper
control automata (CA), because they can be thought of as automata present in
a single copy and synchronizing with the rest of the system. Let R be a CA.
First, as the reagents X; € R represent different inner states of the CA, there
should not be any inner communication between two of them:

VX € R, V7 € action(X),react(n) = [X,Y] =Y &€ R. (3)

In addition, any action involving X € R (call it an R-state) can change the
state, but in any case it cannot destroy nor create more than one R-state in the
current solution. Hence R must satisfy:

VX € R, V7 € action(X),3'Y € R:Y € prod(n). (4)

A further condition that must be satisfied, is that only actions involving one
component of R may change its state:

V7 € action(E),react(r) "R =0 = prod(m) N R = 0. (5)

The final request on R is that in the initial configuration Py of CGF, exactly
one state of R is present in Py (we indicate # (X, Py) with #0(X)):

#0(R) = Y #o(X) =1. (6)

XER

Collecting all the previous conditions together, we are ready to define a con-
trol automaton:

Definition 3. Let (E, Py) be a w-calculus program in CGF. A subset R C E is
a control automaton if and only if it satisfies properties (3), (4), (5), (6).

A minimal control automaton R is a CA such that no proper subset of R is a
CA. C(E) denotes the set of all minimal CA of E.

The conditions satisfied by CA imply that the number of occurrences of
elements of R in the system remains constant during each possible computation,
in fact equal to one. Formally, we define

Definition 4. A set R C E of reagents is conserved iff #(R, P) = #(R, P'),
for every pair of solutions P, P' such that P = P’ (i.e. P can be transformed
into P’ by the action), where #(R, P) =Yy #(X, P).

Theorem 1. R C F is a CA = R is conserved.

Proof. Let P, P’ be two configurations such that P = P’. Clearly, the following
relation holds:

#(R, P') = #(R, P) — #(R,react(r)) + #(R, prod(r)). (

If react(m)NR = (), condition (5) implies that prod(m)NR = @, hence #(R, P’)
#(R, P) by equation (7). Otherwise, condition (3) implies that # (R, react(m))
1, while condition (4) states that #(R, prod(mw)) = 1, hence #(R, P’') = #(R,
again by equation (7).

EN|
~—

Hm_

Corollary 1. If R C E is a CA, then, for each configuration P reachable from
Py, #(R,P) =1. [|

The previous theorems state that control automata are indeed entities with
different states, one of which only is active at each stage of the evolution of
the system: control automata are neither produced nor degraded. This results
in a conservation law, in which the sum of the quantity of internal states of the
automata always equals one. Conservation laws allow us to use linear algebra to
characterize set of conserved states, as we will show in the following.

Before that, we observe that the previous theorem cannot be reversed. Consider
this simple system:

X=nYelzX Y=nXa?Y,

where X can change state into Y and viceversa, due to a silent action. Moreover,
X and Y can synchronize on channel x, a condition violating property (3). Note
that all actions 71, 72, z maintain constant the quantity # (X, P)+#(Y, P). If no
other action of the system can create or destroy copies of X and Y, clearly R =
{X,Y} is conserved. R, however, is not a CA, as it fails to satisfy properties (3)
and (4). If the starting configuration of the system is such that #¢(R) = 1, then
no communication on x will ever be possible, as we will never have a pair of XY
agents ready to communicate. In this case, we may remove the branch !z.X from
X and the branch 7z.Y on Y without altering the behavior of the system. The
resulting agents X’ and Y’ are now CA. This justifies the following definition:

Definition 5. Let R C E. The reduced form R of R is obtained by removing all
occurrences of channels x such that react(z) N R = {X,Y}.

We can now prove the following:

Theorem 2. If R C E is conserved and #o(R) = 1, then the reduced form R
of R is a control automaton.

Proof. If R is conserved, then for every action m € A

#(R, react(m)) = #(R, prod(r)) (8)

From this equation, property (5) follows immediately. In addition, property (4)
holds for all 7 such that #(R,react(mw)) = 1. If no m € action(FE) is such that
#(R,react(m)) = 2, then the set R is a CA. Otherwise, it becomes a CA after
removing all 7 € action(E) is such that #(R,react(w)) = 2, i.e. all inner com-
munications in R. The resulting set is exactly the reduced form R of R. |

Theorems 1 and 2 give us a criterion to separate terms belonging to Control

Automata (i.e. agents exerting a control activity in the system) from agents
whose number changes over time. In fact, we need to identify collections R of
reagents that are conserved in the evolution of the system, whose initial quantity
is #0 (R) =1.
Remark 3. The characterization of CA as conserved sets has been suggested to
us by the study of conservation properties of Petri Nets [21]. As a matter of
fact, it is possible to define a mapping of stochastic m-calculus in CGF to Petri
Nets and reason on the latter. However, working directly with 7-calculus is more
intuitive in this context.

Theorem 3. Let (E, Py) be a m-calculus program in CGF. A set R is conserved
iff the vector yr on E, equal to 1 for X € R and to 0 otherwise, belongs to the
null space of the matrix A = SE action(E)"

Proof. Let r be a non-negative vector indexed by action(E). If r represents
the set of actions happening in a solution P with multiplicity of each term
given by a vector x on E (i.e. z; = #(X;, P)), then the configuration after
the happening of r has multiplicity X’ = x + Sg 4ction(z)r (remember that the
stoichiometric matrix Sg qetion(m) gives the net variation of each reagent in £
after the happening of each action of action(FE)). Suppose now Aypr = 0, and x,
x’ are such that x' = x+ SE actwn(%r for some r. The number of reagents of R
in x is given by ZyR X]=1 x[X rX. The net variation of R after r is
Y§X - yﬁx/ - yR(X - X) yE(SE,action(E)r) = (AYR)TI' =0,

hence R is conserved. Viceversa, if R is conserved, then (Ayg)Tr = 0 for all r,
hence Aygr = 0. |

The previous property gives a clear way to identify Control Automata. All

we have to do is find all conserved sets R, i.e. vector of the null space of A
whose entries are either zero or one, whose initial value in P is one. Essentially,
we have to solve a zero-one integer programming problem under the constraints
Ay =0 and Yo #0(X)y[X] = 1.
Suppose now we have solved this problem and collected the set of solutions. In
this way, we have identified all the candidates to be control automata. Some
of them satisfy Definition 4 only after removing inner communications that
cannot fire, hence they are CA contingent on the initial conditions. Accept-
ing them as proper CA would make the construction of the next section de-
pendent on initial conditions. To avoid this, we simply remove these pseudo-
CA from the solution set. Formally, let yr be the 0-1 E-vector that is equal
to 1 for agents in R and 0 elsewhere; we consider the set R(E) = {R C
E|]A-yr = 0AY xcp#o(X) = 1} and remove the pseudo-CA obtaining
R™(E) ={R € R(E) | Vr € action(FE),#(R,react(r)) < 1}. This new set has
some nice closure properties:

Proposition 1. Let R, Ry, Ry € R™(E) such that Ry C R and Ry C R. Then
RlﬂRQ;«é(Z)andeﬁRgeR_(E). |

This allows to define consistently the minimal representative pg(R) of a CA
R € R (E) as the intersection of all subsets contained in R:

pe(R) = N R
R'eR—(E),R'CR

Proposition 1 implies that pgp(R) € R™(E), hence the set of minimal CA
Ru(E) = {ug(R) | R € R™(E)} is a subset of R™(E). Actually, Ry (FE) is
precisely the set we are interested in, according to the following theorem.

Theorem 4. Let (E, Py) be in CGF. Then, C(E) = Ry (E). |

Let’s go back to our running example. In this case, the stoichiometric matrix
is equal to
(G) [-100 1
SE,action(E) = (Gb) 100 -1
(P) \-11-10

and the initial state of the system consists only of one copy of G. It is immediate
to verify that the only solution to S% ,.0npy = 0 and y[G] = 1isy = (1,1,0),
corresponding to the CA R = {G, G }. This is exactly the set of inner states of
the gene, in agreement with the intuitions at the beginning of this section.

Consider now the following m-program: X = 7.(X;|X3), X; =la.Y;, X5 =
?.T.Y’Q, Yl = Tl.Xl, Y2 = TQ.XQ. It holds that RM = {Rl,RQ}, with R1 =
{X,X1,Y1} and Ry = {X, X5, Y2}. However, these sets are not disjoint, in con-
trast with the intuition of control automata as distinct objects. Actually, Ry
and Rs can be “separated” simply replacing X with XJ|X2, X} =!2.X; and
X2 =72.Xs, where p(z) = p(7), an operation not altering the dynamics. Al-
though now Ry = {X}, X1,Y1} and Ry = {X2, Xo, Y2} are disjoint, their evo-
lution is still entangled, as they need to synchronize on z to evolve. In order to
keep the mapping to HA simple, we suppose in the following that the set C(E)
of minimal CA of FE satisfy the following two conditions:

Definition 6. Let (E, Py) be a m-calculus program in CGF with control au-
tomata C(E).

1. C(E) is independent iff for all Ry, Ry € C(E), R N Ry = 0.

2. C(E) is non-interacting iff no two CA of C(E) can synchronize on an action
7 € action(E), i.e. there does not exist Ry, Re € C(E), w € action(E) such
that react(r) N Ry # O A react(r) N Ry # 0.

Remark 4. The problem of finding if a 0-1 integer programming problem has
a feasible solution is known to be N'P-complete [9]. This makes the use of the
method defined above potentially troublesome in terms of computational cost.
In addition, there is no a-priori bound on the size of the set of solutions R(E)
that needs to be processed to obtain Ry (E). Therefore, we need to study the
complexity of the problem of determining the set of minimal CA, giving, if
possible, more refined algorithms. We leave further investigation of these issues
for the future.

5 From m-calculus to Hybrid Automata

In order to map a w-calculus program (F, Py) into CGF to a Hybrid Automaton
(HA), we process independently each minimal Control Automaton R of (E, Pp),
associating a HA to R. Then, these HA are combined together using the flux
product construction of Definition 2. In the following, we suppose that (F, Py)
has independent and non-interacting CA (cf. Definition 6).

Before giving the details of the mapping, we need to fix some preliminary
notation. Let R € C(E) be a CA of E. The set of discrete actions of R is
Ta(R) = {m € action(E) | react(r)NR # O Areact(w) Nprod(m)NR = 0}, i.e. the
set of actions changing the state of R. Similarly, the set of continuous actions of
RisT.(R) = {m € action(E) | react(r) Nprod(w) N R # 0}, i.e. the set of actions
looping on a state of R. Given an action m € T;(R) UT.(R), its starting state is
start(m, R) = X iff react(m)NR = {X}. Similarly, if prod(m)NR = {Y'}, then the
ending state of 7 is end(m, R) =Y. With T4(R, X) = {m € T4(R) | start(m, R) =
X} we indicate the subset of discrete transitions of R starting at X; a similar
definition applies to T.(R, X). The set T of uncontrolled continuous actions
is Te = action(E) \ Uger,, (p)(Ta(R) UTe(R)). Finally, the continuous terms
of (E,Py) are those not belonging to a CA, i.e. Cont(E) = {X € E | X ¢
UReC(E) R}~

Consider now a CA R € C(E). The HA associated to R will be H(R) =
(V(R), E(R),X, flow,init,inv, jump, reset). We discuss how to define its com-
ponents separately.

Control Graph. The discrete modes V(R) of the HA are simply the different
elements of the CA R, i.e. V(R) = {ox | X € R} . The edges of the control
graph are those implied by the discrete transitions T;(R): for m € Ty(R), we add
the edge (start(m, R),end(rm, R)).

Continuous Flow. The (continuous) variables X of the system are one for each
term in Cont(E). These variables, in a state ox € V(R), are subject only to the
effect of continuous transitions 7T, (R, X). The idea to define their continuous flow
is simply to restrict the method of Definition 1 to transitions T.(R, X) for each
X in R. Essentially, we define the local stoichiometric matrix Scont(g),1. (R, X)
and the local rate vector ¢cont(E)1.(r,x) according to Definition 1, and we
set flow(ox) = Scont(B),T.(R.X) * PCont(E).T.(r,x)(X). Note that, according to
Definition 1, ¢cont(g),7.(r,x) depends only on the variables in Cont(E).

The invariant conditions are not needed in our mapping, hence inv(ox) = true,
while initial conditions are defined according to the initial configuration Py of
(E, Py): if #o(X) = 0, then init(ocx) := false , while if #¢(X) = 1 then

Z’I’LZt(O'X) = /\YECont(E) (Y = #O(Y)) :

Discrete Transitions. The most delicate part of the mapping is the definition
of the activation conditions and of the resets of discrete transitions. The point
is that in the stochastic process associated to (E, Py), transitions of Ty(R) are
stochastic, with execution time exponentially distributed according to their rate.
This stochastic duration needs to be removed taking into account the timing of
the corresponding event. The simplest possibility is that of firing the transition at
its expected time. There is however a complication given by the fact that the rate
of the transition can depend on some terms that are approximated as continu-
ous. The associated stochastic process is, therefore, a non-homogeneous Poisson
process [20] with time-dependent rate @cont(E),action(E) [T](X(t)) = ¢ (X(1)). In

this case, given the cumulative rate at time t, A(t) = fg o-(X(s))ds, the proba-
bility of firing within time t is F(t) = 1 — e~4(®). The expected value of A(T) at
the time T of firing is E[A(T")] = 1 (cf. [4,20]). Hence, we can fire the transition
whenever A(t) > 1. In order to describe this condition within HA framework, we
introduce a new (clock) variable Z., with initial value 0, evolving according to
the equation Z; = ¢,(X). When the transition fires, we reset all variables Z,
to zero, due to memoryless property of CTMCs.
The jump predicate can thus be defined as follows. If 7 € Ty (R, X) is such that
react(r) = {X}, then jump(w) :== Z, > 1. Else, if react(w) = {X,Y}, then
Jjump(w) := Z > 1 AY > 1. The fact that CA are non-interacting guarantees
that Y € Cont(FE). Moreover, each discrete transition will be urgent, meaning
that it will fire as soon as its guard becomes true.
Resets of discrete transitions need to take into account the modifications induced
on continuous variables. Moreover, they need to set to zero variables Z,. Hence,
for m € Ty(R, X), we set reset(m) = Aycoonm (Y =Y + #(Y,prod(m)) —
#(Y,react(m))) A Nryery(r)(Zr, = 0)-

We collect now the previous discussion into a formal definition.

Definition 7. Let R € C(E) be a CA of a w-calculus program (E, Py) in CGF.
H(R) = (V(R),E(R), W, flow,init,inv, jump, reset), the Hybrid Automaton
associated to R, is defined by:

1. V(R) ={ox | X € R} and E(R) = {(start(m, R),end(m, R)) | m € T4(R)};

2. W = X UZ, where X is the vector of variables on Cont(E) and Z =
{Zx | meTa(R)};

3. for each ox € V(R), flow(ox)[Y] := Scont(r)1.(r,x)[Y; |@cont(B),1.(R,X)
forY € X and flow(ox)[Zx] := ¢cont(B),action(r) 7] for Zr € Z;

4. for each ox € V(R), inv(ox) := true;

5. for each ox € V(R), init(ox) := false if #o(X) = 0 and init(ox) =
/\YECont(E)(Y =#o(Y)) A /\wer(R)(Zﬂ =0) if #o(X) =1;

6. for each 7 € Ta(R), Jump(m) = (Za 2 1) A Ay ereacsimpcontisy Y = 1);

7. for each m € Ty(R), reset(m) = Nyecconm (Y =Y + #(Y,prod(r)) —
(Y, react(m)) A Ay ey (Zon = 0)-

The previous definition gives us the recipe to associate an hybrid automaton
to each control automaton of a m-calculus program. However, there are some
actions that are not taken into account up to now, namely those belonging to
the set of uncontrolled continuous actions T¢. In order to take into account their
effect, we define a special hybrid automaton with one single state.

Definition 8. Let (E, Py) be a w-calculus program in CGF and Tc the set of
uncontrolled continuous transitions. The Hybrid Automaton H(T¢) associated to
Te is H(Te) = (V, E, X, flow, init, inv, jump, reset), where V.= {o}, E = (),
jump = false, reset := false, inv(o) = true, init(c) = Nxccon(m X =
#0(X), and flow(o) := Scont(E)1ec Pcont(B), 10 (X), where X is the vector of
variables on Cont(E).

We are finally ready to define the HA associated to the whole m-program: we
simply need to take the flux product of the HA coming from the different CA of
C(E) and of the HA coming from uncontrolled actions.

Definition 9. Let (E, Py) be a w-calculus program in CGF with a non-interacting
and independent C(E) of CA. The Hybrid Automaton H(E) associated to (E, Po)
18
HE)=H(Tc)® K H(R).
ReC(E)

Fig. 2. Hybrid Automata obtained for the m-calculus process of Example 1.

Consider again the simple autoregulatory gene network of Example 1. Ac-
cording to the computation at the end of Section 4, the system has one control
automata, namely R = {G, Gy}, and one continuous term P. The Hybrid Au-
tomata H(R) and H(T¢) are shown in Figure 2, together with their product
H(E). We can see that the final HA has three continuous variables, one cor-
responding to P and the other two, Z;, Z,,, associated to the discrete edges
Ty(R) = {b,7u}. We can also see how the final vector field for P is the sum
of the vector fields for P of the two factors. In Figure 3, we show a simulation
of H(FE) for the same parameters as in Figure 1. As we can see, the dynamics
of the hybrid automaton resembles very closely the behavior of the stochastic
system rather than the one of the ODE’s, preserving alternating spikes. Hence,
keeping part of the discreteness of the original system was enough to maintain
qualitatively the oscillatory pattern of Figure 1(a). We stress the fact that the
correspondence between the plots of Figures 1(a) and 3 is only partially quantita-
tive. For instance, in both the stochastic and the hybrid model P overcomes the
threshold of 100 infinitely often. As a matter of fact, the noise of the stochastic
systems perturbs dramatically the period of oscillations, which is highly regular
in the hybrid system, due to the urgent policy for transitions. In [4] we suggested
the use of non-determinism to reintroduce a certain degree of variability.

097000 2000 2000 4000 5000 6000 7000 8000 9000 10000

Fig. 3. Simulation of the Hybrid Automaton of Figure 2, for the same parameters as
in Figure 1.

Remark 5. In the definition of the mapping, we assumed that C(E) is indepen-
dent and non-interacting. The choice of independence, i.e. of having disjoint
minimal CA, is fundamental in order to use the flux product construction. Non-
interactivity, instead, can be dropped by introducing a product of HA that allows
synchronization of discrete transitions. However, we did not follow this direction
here, to keep the presentation simpler.

6 Conclusions

In this paper we provided a restricted form of stochastic 7-calculus, the so called
Chemical Ground Form [7], with a semantics based on hybrid automata. The
most difficult aspect is the identification, without the availability of external
knowledge, of portions of a w-calculus program acting as discrete controlling
components. This is necessary to define the discrete skeleton of the HA and it is
related to conservation laws of the system.

We argued that the hybrid semantics is more appropriate to reproduce qualita-
tively the stochastic behavior of the simple genetic network of Example 1. The
same observation seems to apply to a broad class of genetic circuits, cf. [4] for
further details.

Comparing qualitatively the dynamical evolution of systems described with dif-
ferent mathematical formalisms is itself an intriguing problem. We believe that
a reasonable choice can be based on a temporal logic to describe dynamical
properties, thus equating behavioral equivalence with equi-satisfiability.

As a matter of fact, Hybrid Automata may be used also to tackle the dis-
creteness given by molecules present in small quantities in the system. The idea
is roughly that of separating actions into two groups, those amenable of continu-
ous approximation and those to be kept discrete. Different partitions correspond
to different HA, de facto associating to each m-calculus model a lattice of HA,
differing in the degree of discreteness. Dynamic partition schemes can be con-
sidered as well. This approach will result in a flexible hybrid semantics, capable
of dealing effectively with size effects and multi-scale systems.

Another important issue consists in stating a clear connection between our hy-
brid semantics and standard models of biochemical networks, like the chemical

master equation (CME) or mass action ODEs. A possibility in this sense is to
manipulate the CME similarly to [12], where authors formally justify hybrid
simulation schemes mixing stochastic differential equations with discrete jump
Markov processes. However, the advantage of our hybrid semantics with respect
to hybrid simulation strategies like [17,12] is that HA offer a powerful and flex-
ible framework both for simulation and for verification, computationally more
efficient than stochastic processes.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20

21.

L. Bortolussi. A master equation approach to differential approximations of
stochastic concurrent constraint programming. In Proceedings of QAPL’08., 2008.
L. Bortolussi and A. Policriti. Dynamical systems and stochastic programming I -
ordinary differential equations. Submitted to Trans. of Comp. Sys. Bio., 2008.

L. Bortolussi and A. Policriti. Stochastic concurrent constraint programming and
differential equations. In Proceedings of QAPL’07, ENTCS volume 16713, 2007.
L. Bortolussi and A. Policriti. Hybrid approximation of stochastic concurrent
constraint programming. In proceedings of IFAC’08., 2008.

L. Bortolussi and A. Policriti. Modeling biological systems in concurrent constraint
programming. Constraints, 13(1), 2008.

M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP on the
ERK signalling pathway using the stochastic process algebra PEPA. Trans. of
Comp. Sys. Bio., 4230:1-23, 2006.

L. Cardelli. From processes to ODEs by chemistry. downloadable from http:
// lucacardelld. name/, 2006.

L. Cardelli. On process rate semantics. T'CS, 2007.

M.R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the
Therory of NP-Completeness. Freeman, 1979.

D. Gillespie. The Chemical Langevin Equation. Jo. of Chem. Phys., 113(1):297—
306, 2000.

D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. of
Phys. Chem., 81(25), 1977.

E.L. Haseltine and J.B. Rawlings. On the origins of approximations for stochastic
chemical kinetics. J. Chem. Phys., 123, 2005.

T. A. Henzinger. The theory of hybrid automata. In proceedings of LICS’96, 1996.
J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

J. Hillston. Fluid flow approximation of PEPA models. In proceedings of QEST 05,
2005.

H. Kitano. Computational systems biology. Nature, 420:206-210, 2002.

N. A. Neogi. Dynamic partitioning of large discrete event biological systems for
hybrid simulation and analysis. In proceedings of HSCC’04, volume 2993 of LNCS,
pages 463-476, 2004.

C. Priami and P. Quaglia. Modelling the dynamics of biosystems. Briefings in
Bioinformatics, 5(3):259-269, 2004.

A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature,
419, 2002.

S. M. Ross. Stochastic Processes. Wiley, New York, 1996.

D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall, 2006.

