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Abstract. A specific class of ODEs has been shown to be adequate to describe the
essential features of the complex dynamics of Gene-Regulatory Networks (GRN).
But, the effective exploitation of such models to predict the dynamics of specific
GRNs by classical numerical schemes is greatly hampered by the current lack
of precise and quantitative information on regulation mechanisms and kinetic
parameters. Due to the size and complexity of large GRNs, classical qualitative
analysis could be very hard, or even impracticable, to be carried out by hand,
and conventional qualitative simulation approaches rapidly lead to an exponen-
tial growth of the generated behavior tree that, besides all possible sound behav-
iors, may also contain spurious ones. This paper discusses the work-in-progress
of a research effort aiming at the design and implementation of a computational
framework for qualitative simulation of the dynamics of a class of ODE models
of GRNs. The algorithm we propose results from a set of symbolic computation
algorithms that carry out the integration of qualitative reasoning techniques with
singular perturbation analysis methods. The former techniques allow us to cope
with uncertain and incomplete knowledge whereas the latter ones lay the math-
ematical groundwork for a sound and complete algorithm capable to deal with
regulation processes that occur at different time scales.
Key words: Gene regulatory network, qualitative simulation, singular perturba-
tion analysis.

1 Introduction

A variety of modeling formalisms, ranging from directed graphs over Boolean networks
to differential models, ordinary and partial differential equations, along with related
simulation algorithms have been applied to study gene regulatory systems as demon-
strated by a rich literature, and discussed in several monographs and survey papers. The
mathematical aspects of such approaches, and the evaluation of their relative strengths
and weaknesses are discussed in [1].

A growing number of theoretical as well as experimental papers show that gene
regulation is threshold-dependent, i.e. only effective above or below a certain threshold.
ODE models with switch-like interaction terms allow us to provide detailed descriptions
of gene regulatory mechanisms at the molecular level [2], and, in theory, they could be



used to make numerical predictions of the network behavior and its response to envi-
ronmental stimuli. But, in practice, even when the system at hand is very well studied,
their exploitation meets several obstacles: (i) models are often large, complex and above
all, nonlinear, and traditional pen and paper analysis could be inadequate or too time-
consuming; (ii) numerical simulations are seriously hampered by the current lack of
precise and quantitative information on the biochemical reaction mechanisms underly-
ing regulatory interactions, kinetic parameters and threshold concentrations.

The qualitative analysis and simulation of the dynamics of GRNs is a rather appro-
priate solution as, in the current state of knowledge, the key issue is to understand how
specific activity patterns derive from given network structures, and what different types
of dynamical behaviors are possible. However, due to the complexity of GRN models,
to carry out analytically a complete qualitative study of their dynamics might be very
hard, or even impracticable. Nor is the recourse to conventional qualitative simulation
approaches [3], developed within the Artificial Intelligence research framework to cope
with the need to represent and predict the dynamics of systems characterized by in-
complete knowledge, an appropriate solution. Such approaches can deal with generic
classes of dynamical systems, and generate, starting from an initial system state, the
whole range of system dynamics. Each qualitative behavior is generated by applying
transition rules that are grounded on mathematical tools actually too simple to compen-
sate for the lack of complete knowledge. This results in a number of drawbacks, e.g.
their inability to upscalability, the exponential growth of the generated behaviors, and
the generation of spurious behaviors, that reveal to be particularly serious in predicting
nonlinear dynamics of regulatory networks even in the case of networks with a small
number of interacting genes. Thus, the need for the development of ad hoc computa-
tional frameworks for qualitative analysis and simulation of GRN models .

A first effort in this direction is given by a qualitative simulator, called GNA [4].
It is based on the integration of Qualitative Reasoning (QR) concepts [3] and control
theory methods to cope with both incomplete knowledge and threshold-dependent reg-
ulation mechanisms. GNA assumes that threshold-regulated response functions are step
functions, discontinuous in the threshold hyperplanes. On the one hand, such an as-
sumption considerably simplifies the analysis as the model results in piecewise-linear
equations. On the other hand, it raises the problem to find a proper continuous solution
across the threshold hyperplanes, or, in other word, to seek for generalized solutions of
ODEs with discontinuous right-side terms. Among the possible definitions of general-
ized solutions, GNA adopts the Filippov one [5], that is quite popular and convenient
in a control context, but may fail when applied to approximate the limit solutions of a
continuous model. This together with a further approximation introduced in the GNA
algorithm for computational purposes might not always guarantee its soundness and
completeness [6].

These problems are avoided if the response functions are sigmoidal and vary con-
tinuously from zero to one with a steep rise around the threshold. The ensuing dynamics
is both linear and nonlinear with different time scales, but has been analysed using sin-
gular perturbation theory [7]. Here we present a qualitative simulation algorithm for
models with steep sigmoid response functions based on this work. Despite an incom-
plete knowledge of parameter values, we construct all possible trajectories and their
associated parameter space domains, starting from an initial state and parameter space



domain, by using QR key concepts suitably revised, and by iteratively exploiting sym-
bolic computation procedures.

2 A Modeling Framework for the Study of GRN Dynamics

Recent experimental findings as well as theoretical justifications (see [8] for references)
seem to support the following generic and phenomenological dynamic model for a GRN:

ẋi = fi(Z)− γixi , (1)

where the dot denotes time derivative, xi is the concentration of gene product number
i, i = 1, . . . , n, γi is the relative decay rate of xi, Z is a vector with Zjk as components,
and Zjk = S(xj , θjk, q) is a sigmoid or binary (i.e. Heaviside or step) response function
with threshold θjk and steepness parameter q. The thresholds associated with each xi

are ordered according to θij < θik if j < k. Finally, x(t,x0, q) is the solution satisfying
the initial condition x(0,x0, q) = x0.

The differentiable functions fi are regulatory production functions, frequently com-
posed by algebraic equivalents of Boolean functions [9]. Eq. (1) is assumed to catch the
essential features of a wide range of regulatory systems, where the regulatory control
may be at the level of transcription, mRNA stability, translation, or post-translation. The
state variables may be concentrations of proteins, hormones, mRNA, and intracellular
ions [10]. The framework has been applied to model real world networks: the initiation
of sporulation in B. subtilis [11], and the response to nutritional stress and carbon star-
vation in E. coli [12, 13], using Heaviside response functions. We assume the sigmoid
functions are very steep Hill functions, viz. S(x, θ, q) = x1/q/(x1/q + θ1/q), where
0 < q � 1. Under a number of reasonable assumptions a solution x(t,x0, q) of Eq. (1)
starting in an arbitrary initial point x0 at t = 0 can be uniformly approximated by the
zero order solution x(t,x0, 0). The derivation is based on singular perturbation theory.

Eq. (1) could be applied to GRNs of any size and complexity, and the generic
analysis developed in [7, 14] is fully applicable to networks of any size. However, as the
network becomes large, there is a combinatorial explosion of phase-space domains and
parameter combinations that need to be investigated, and a computerized, algorithmic
approach becomes a necessity. That is the first motivation for the present work. Our
second motivation is that sigmoidal response functions in many cases are more realistic
than step functions, and could be preferred for modeling real systems.

Regular and Singular Stationary Points. The threshold hyperplanes xi = θij divide
phase-space into regular and switching domains. A regular domain DR (also called a
box) is an open rectangular domain between threshold planes in which the values of all
sigmoids are close to 0 or 1. In a box we put Zij = Bij . In a switching domain DS the
xi are divided into two disjoint sets: the switching variables xs and the regular variables
xr, s ∈ S, r ∈ R, where S ∪ R = N = {1, 2, . . . , n}. A xs is very close to one of its
thresholds, while a xr lies in the open domain between two adjacent thresholds. Thus, a
switching domain is a narrow boundary layer surrounding a section of a threshold plane
or an intersection of threshold planes. The union of all the regular domains is denoted
∆R, while ∆S is the union of all the switching domains, and ∆ = ∆R ∪∆S .



A stationary point P(q) is called a regular stationary point (RSP) if it is located
in a box, and a singular stationary point (SSP) if it is located in a switching domain.
The zero order approximation P0 of a RSP P(q) is a solution of fi(B) − γixi = 0,
i ∈ N , where B represent the Boolean values of the Z-variables. This is trivial to solve
for each B. A RSP is always asymptotically stable.

If a SSP exists in a DS , it is in lowest order found as the solution P∗ = (x∗r , θs) of

fr(Br, Zs)− γrxr = 0, r ∈ R ,

fs(Br, Zs)− γsθs = 0, s ∈ S .
(2)

In the following we make the apparently realistic and simplifying

Assumption A. Every xi only regulates one gene at each of its thresholds.

Because each Zij then only occurs in a single rate function, the second of Eqs. (2),
which would otherwise represent a set of polynomial equations that could be very hard
to solve, is reduced to a set of linear equations. Then, there is at most a single stationary
point P∗ in each DS . A necessary condition for a solution of the second equation is
that there is precisely one Z-term in each equation and that these terms produce a non-
singular Jacobian matrix Js = ∂fs/∂Zs. These Jacobian elements form a loop L with
loop product L. A suitable renumbering leads to a block-diagonal Js, where each block
is a permutation matrix associated with a sub-loop Lj of L. Then the characteristic
equation |Js − λI| = 0 is

m∏
j=1

(
(−λ)l(j) + Lj

)
= 0 (3)

where m is the number of sub-loops of Js, l(j) is the length of Lj and Lj is the loop
product of Lj . It follows that P∗ has no eigenvalues with positive real part and is stable
iff (i) l(j) = 1 or l(j) = 2 for all j, (ii) Lj < 0 for j = 1, (iii) Lj > 0 for j = 2, the
latter case occuring if there is a negative loop among the two variables, giving a pair of
imaginary eigenvalues. All other cases will give an eigenvalue with a positive real part.

Thus, when the SSP is stable, we only encounter all eigenvalues with negative real
part in the very special case when Js is diagonal with only negative diagonal elements.
If some l(j) = 2, we get a pair of purely imaginary eigenvalues. This causes a problem,
because the standard proof of the validity of the singular perturbation approximation
requires eigenvalues with negative real parts. This remains to be investigated. However,
numerical simulations indicate that singular perturbation should work also in this case.

Dynamical Behavior. In a box all xi are regular, and in the step function limit the
solutions approach the solutions of

ẋr = fr(B)− γrxr . (4)

In a switching domain DS where xs = θs,sj , the rapid motion of the switching variables
is described by

Z ′
s,sj

= Ds,sj [fs(Br, Zs,sj )− γsθs,sj ] , (5)



where Ds,sj
= Zs,sj

(1 − Zs,sj
)/θs,sj

stems from the derivative of the Hill function,
and the prime denotes differentiation with respect to τ = t/q.

If Eq. (5) has no stationary and asymptotically stable solution Z∗
s,sj

∈ (0, 1)σ ,
where σ = |S|, the system just passes through DS and leaves (0, 1)σ in an exit point at
the boundary, with no change in the regular variables. Otherwise, the Z-variables come
to rest in the exit point Z∗

s,sj
, and the slow motion of the regular variables xr in this DS

is described by the linear and independent equations

ẋr = fr(Br, Z
∗
s,sj

)− γrxr ,

Zs,sj
= Z∗

s,sj
,

(6)

until a stable state is reached or the solution leaves DS and passes into an adjacent
switching domain. In the singular perturbation language, Eq. (5) is called the boundary
layer equation and Eq. (6) the reduced equation.

The phase space of Eq. (5) is confined to the so-called Z-cube Z(DS) = [0, 1]σ

associated with DS . In the limit q → 0, the interior of the Z-cube describes the motion
of the singular Z-variables, while the faces describe the switching variables in the adja-
cent switching domains, and the vertices represent the adjacent boxes [14]. Each Z-cube
has a set of entrance and exit points where trajectories can enter, respectively exit from,
the interior of the Z-cube. An entrance point is also an exit point of an adjacent domain,
so we will only need exit points. An exit point can be located on the boundary of the
cube or be an internal point.

According to singular perturbation theory [15], the solutions of Eqs. (5,6) taken
together approximate the exact solution in DS for q close to zero, i.e. for steep sigmoids
[7]. One just has to express xs by the solution Zs,sj

(τ) and replace τ by t/q. For
each switching domain DS there is essentially only one problem: to determine the exit
point Z∗

s where the trajectory leaves DS or the system comes to rest. The details of the
motion of the Z-variables are not important as they only occur in a narrow part of phase
space and in a negligible time span. Using this approach, we can construct a solution
starting in an arbitrary initial point x0 at t = 0 through any finite sequence of regular
and switching domains by supplying Eqs. (4-6), solved for each domain encountered,
with initial conditions which ensure a continuous trajectory. This zero order solution
x(t,x0, 0) is then a uniform approximation to x(t,x0, q) for 0 < q � 1. This is the
theoretical basis for the algorithm to be described below.

3 Qualitative Simulation of GRN Models

Our work aims at the development of a qualitative simulation algorithm based on so-
phisticated mathematical tools, and specifically tailored to capture network dynamical
properties that are invariant for ranges of values of kinetic parameters. To this end, in the
following we revise and ad hoc tailor the key concepts underlying qualitative simulation
algorithms to our specific class of models.

Qualitative Value.The partition of the whole system domain, induced by the ordered
sets, Θi, of the ni symbolic threshold values θij associated with each xi, identifies



qualitatively distinct n-dimensional hyper-rectangles D that define the system qualita-
tive values. Let us observe that, to characterize switching domains, instead of the sharp
value θij , we consider a range of values around it, whose width, δ > 0, is a monotonic
function of the steepness parameter q with δ(q) → 0 for q → 0. Let us denote by θij and
θij the values θij−δ/2 and θij +δ/2, respectively. Then, each D results from the prod-
uct of intervals, either all open, (θij , θi(j+1)), or at least one closed, [θi(j+1), θi(j+1)].

Qualitative State. Let A(D) be the set of domains adjacent to D ∈ ∆. The qualitative
state of D, QS(D) = {Dk | Dk ∈ A(D), D → Dk}, is defined by all of its adjacent
domains Dk towards which a transition from it is possible. Each transition from D
identifies a domain next traversed by a system trajectory. More precisely, if we number
by i the domain D traversed at time ti, each of its successors Dk ∈ QS(D) will be
traversed by different trajectories at time ti+1.

State Transitions. The possible transitions from D are determined by different strate-
gies according to whether D ∈ ∆R or D ∈ ∆S . In the former case, like in traditional
QR methods and in GNA [4], transitions are determined by the signs of ẋi. As ẋi are
defined by linear expressions, such signs are easily determined by exploiting the in-
equalities that define the parameter space domain, and constrain the RSPs to belong
to specific domains. In the case, D ∈ ∆S , a sign-based strategy is not practicable as
the expressions for ẋi are nonlinear. A convenient way to proceed is given by singular
perturbation analysis: transitions from D towards adjacent Dk are determined by the
locations of its exit points that can be either on (i) the boundary of D or in (ii) its inte-
rior. Except in the case (ii), the number of exit points may be greater than one. Then, in
general, the successors of D are not uniquely determined. But, through symbolic com-
putation procedures, it is possible to calculate the set of inequalities, Ii

j , on parameters
that hold when a transition from Di to Dj occurs. Then, each path from Di to Dj is
clearly identified by the 3-tuple 〈Di, Dj , I

i
j〉.

Qualitative Behavior. A finite sequence of paths, where each path is clearly both linked
and consistent with its predecessor and successor, defines a qualitative behavior:
QB = 〈D0, I0〉, 〈D0, D1, I

0
1 〉, . . . , 〈Dk, Di, I

k
i 〉, . . . , 〈DF , IF 〉, where D0 is the initial

domain, and DF either contains a stable fixed point or identifies a cycle, i.e it is an
already visited domain. I0 is the initial set of inequalities that defines the parameter
space domain, and IF the set of inequalities on parameter values associated with DF .

3.1 The Simulation Algorithm

Given as input, (i) n symbolic state equations of the form (1); (ii) n ordered sets
Θi = {θij}; (iii) an initial domain D0 ∈ ∆; (iv) a set of symbolic inequalities I0 on
parameter values defining a parameter space domain PSD0, the simulation algorithm
generates all possible state transitions, and represents them by a directed tree rooted
in D0, BT(D0). In such a tree the vertices correspond to Di, and the arcs, labeled by
the inequalities Ii

j , to the transitions from Di to Dj . Each branch in BT(D0) defines a
qualitative trajectory from D0, that occurs when the values of parameters satisfy its re-
lated inequalities. Such a trajectory is characterized by the traverse of specific domains,
and abstracts all those numeric solutions of the ODE, obtained with different values of



either the initial condition x0 ∈ D0 or parameters, that cross the same domains. The
main steps of the algorithm, sketched in Fig. 1, are summarized below:
1. Partition the phase space into regular and switching domains.
2. Calculate the qualitative state QS(Di) of the current domain Di.
3. Determine constraints Ii

k on parameters for each path eik = Di → Dk, where
Dk ∈ QS(Di).

4. Append 〈Di, Dk, Ii
k〉 to BT(D0) if Ii

k are consistent with the initial constraints I0,
and mark Di as visited domain.

5. Repeat from step 2 for each Dk.

In the following we detail step 2, that is the core of the algorithm.

Fig. 1. Main steps of the simulation algorithm.

3.2 Calculation of the Qualitative State
The calculation of the qualitative state requires two separate algorithms to implement
the different strategies adopted according to whether Di ∈ ∆R or Di ∈ ∆S . Both



algorithms calculate the conditions on parameters Ii
k that are consistent with I0, ∀Dk ∈

QS(Di). Let us define Ii
k consistent with I0 when it defines a not empty parameter

space domain PSDi
k such that PSDi

k ⊆ PSD0. Furthermore, we define the relative
position of D1 with respect to D2, indicated by V (D1, D2) = {vj}n

j=1 where vj ∈
{−1, 0, 1}, by the comparison of the intervals defining D1 and D2.

Transition from a Regular Domain (Algorithm 1). The algorithm that constructs the
possible paths from regular domains is, in principle, similar to that one proposed by
GNA, but it is more informative as it calculates the Ii

ks. From now on, for the sake of
simplicity, we indicate the two consecutive thresholds θji, θj(i+1) by θj , θ

′
j . Then, let

Di be defined by Di =
∏n

j=1(θj , θ
′
j). In outline, the algorithm performs the following

steps:
1- Calculate A(Di) and state equations in Di. The algorithm calculates the set A(Di),
the symbolic state equations in Di, and the focal point x∗ towards which all trajectories
head when t →∞.
2- Calculate Ii

k and possible transitions. ∀Dk ∈ A(Di), the algorithm calculates the
set of inequalities on parameters Ii

k that need to be fulfilled to have a transition from
Di to Dk. As all the equations are linear in Di, such inequalities are calculated by
imposing that the signs of state variable rates match the relative position of Dk with
Di. Let V (Dk, Di) = {vj}n

j=1 be the relative position of Dk with respect to Di. Ii
k

is given, ∀j ∈ {1, . . . , n}, by either the inequality x∗j > θ
′
j if vj = 1 or x∗j < θj if

vj = −1. Thus, if the calculated inequality set defines a not empty parameter space
domain PSDi

k ⊆ PSD0, then a transition towards Dk is possible and the qualitative
state QS(Di) is updated accordingly.
3- Check the existence of a RSP in Di. A stable point RSP exists in Di, i.e. Di ∈
QS(Di), if P̃SD ⊆ PSD0 and P̃SD 6= ∅, where P̃SD is a parameter space domain
defined by the set of inequalities θj < x∗j < θ′j , ∀j ∈ {1, . . . , n}.

Algorithm 1 Calculate QS(Di) for Regular Domain
1: Set Ii

k ← I0

2: for all Dk ∈ A(Di) do
3: Calculate V (Dk, Di) = {vj}nj=1

4: for j = 1 to n do
5: Calculate the symbolic state equation in Di and its stationary solution x∗j ;
6: Update:

Ii
k ← Ii

k ∧

(
(x∗j > θ

′
j) if vj = 1

(x∗j < θj) if vj = −1

7: if PSDi
k 6= ∅ then

8: Append Dk to QS(Di) and label the path Di → Dk by Ii
k.

9: Append Di to QS(Di) if P̃SD ⊆ PSD0 and P̃SD 6= ∅, where P̃SD is a parameter space
domain defined by the set of inequalities {(θj < x∗j < θ′j) ∀j ∈ {1, . . . , n}



Transition from a Switching Domain (Algorithm 2). The nonlinear dynamics in a
switching domain Di is characterized by fast and slow motions, respectively associated
with xs and xr that are independently calculated.

The study of the fast dynamics is performed in Z(Di) in the scaled time τ , and
aims at localizing the set of exit points in Z(Di) rather than at detailing the dynam-
ics within it. Such points clearly identify the next domains the trajectories are moving
towards from Di along the xs directions. To this end, the algorithm proceeds as follows:
1- Calculate the boundary layer equations in Di. The algorithm symbolically calculates
the boundary layer equations in the Z variables, and defines the mapping ΣDi

: Di →
Z(Di), where Di = Di ∪ A(Di), that states a correspondence between Di and its
adjacent domains Dk with the interior and the elements on the boundary of Z(Di).
Let F be the set of both the faces and the interior of Z(Di): its generic element F =
ΣDi(D), D ∈ ∆s is either a face of Z(Di) when D ∈ A(Di) or its interior when
D = Di.
2- Search for stationary points. Let us denote by EP the set of stationary points, initially
made up of the vertices ofZ(Di). The set of the candidate exit points EP is updated by
the possible stationary point on each element of F . To this end, the algorithm symboli-
cally calculates, ∀F ∈ F , the Jacobian matrix JF . As the presence of a non-zero loop is
a necessary condition for the existence of a stationary point, the algorithm first searches
for a non-zero loop involving all variables in JF : in case, it symbolically calculates the
stationary point on F , and updates accordingly the set of candidate exit points EP .
3- Calculate Ii

k and possible transitions by checking stability of stationary points. The
inequality set Ii

k is calculated for each candidate exit point Z̃k = {Z̃k
s } ∈ EP by

requiring that each point fulfills stability conditions. In addition, for those Z̃k located
on elements ofF , Ii

k is further constrained by the inequalities on parameters that impose
0 < Z̃k

s < 1 for each Z̃k
s /∈ {0, 1}. The stable points located on Z(Di) clearly identify

the set of all possible exit domains, i.e. those domains towards which a transition from
Di is possible. Such domains are easily calculated by applying the map Σ−1 to each
element of Z(Di) that contains an exit point.

The slow dynamics of regular variables xr is studied in the normal time in the usual
frame of reference, and it is reconstructed from the reduced system through the same
symbolic procedure given for regular domains.

3.3 Remarks about Symbolic Computations

Most of the calculations are performed symbolically. In additon to plain symbolic alge-
braic manipulation like arithmetic and derivative operations, the algorithms are required
to tackle more complex tasks, such as: (i) refine an inequality set with an another one;
(ii) check the consistency of two sets of inequalities I1 and I2; (iii) solve systems of
equations; (iv) find loops in the Jacobian matrix.

Assumption A leads to major simplifications. As for (iii), Eq. (1) are generally
multilinear in Z, but now assume a linear form in each DS , and can be straightfor-
wardly solved and analyzed for stability. Also, the solution of problems (i) and (ii) are
simplified as the inequalities are always linear. Thanks to algorithms proposed both by
the literature and common symbolic computation package, such as Mathematica [16],



Algorithm 2 Calculate QS(Di) for a Switching Domain
1: Initialize EP ← ∅
2: Calculate symbolically the boundary layer system in Z(Di)
3: Update EP by adding all the vertices of Z(Di)
4: Calculate symbolically the Jacobian matrix J
5: for all F ∈ F do
6: Calculate JF

7: if there is a complete loop in JF then
8: Calculate the stationary point in F by solving symbolically Z′

s = 0
9: Update EP by adding the point calculated at the previous step

10: for all Z̃k = {Z̃k
s } ∈ EP do

11: Initialize Ii
k ← I0

12: for s = 1 to σ(Di) do
13: if Z̃k ∈ F, F ∈ F then Build Ii

k ← Ii
k ∧ (0 < Z̃k

s < 1)
14: for j = 1 to m do
15: if lenght(lj) > 2 then Remove Z̃k from EP
16: if length(lj) = 1 then
17: if Lj < 0 then Build Ii

k ← Ii
k ∧ (Lj < 0) else Remove Z̃k from EP

18: else
19: if length(lj) = 2 then
20: if Lj > 0 then Build Ii

k ← Ii
k ∧ (Lj > 0) else Remove Z̃k from EP

21: for all l ∈ LF = {l : l ∈ {1, . . . , σ(Di)}, Z̃k
l ∈ {0, 1}} do

22: Build

Ii
k ← Ii

k ∧

(
(Z′

l(Z̃
k) > 0) if Z̃k

l = 1

(Z′
l(Z̃

k) < 0) if Z̃k
l = 0

23: Calculate the Exit Domain Set: ED = {Dk : Dk = Σ−1
Di

(Z̃k), Z̃k ∈ EP}
24: Calculate symbolically in Z̃k the reduced system and its stationary solution x∗

25: for all Dk ∈ ED do
26: Calculate V (Dk, Di) = {vj}nj=1

27: for r = σ(Di) + 1 to n do
28: Build

Ii
k ← Ii

k ∧

(
(x∗r > θ′r) if vr = 1

(x∗r < θr) if vr = −1

29: if PSDi
k 6= ∅ then Append Dk to QS(Di) and label the path Di → Dk with Ii

k

30: Append Di to QS(Di) if ∃EP ∈ int(Z(Di)) and P̃SD ⊆ PSD0 and P̃SD 6= ∅ where
P̃SD is defined by the set of inequalities θj < x∗j < θ′j ∀j ∈ {σ(Di) + 1, . . . , n}



the tasks (i)-(iii) are simplified and feasible. As for the task (iv), it is performed by using
cycle–detection algorithms and tools of matrix graph theory [17].

In a more general modeling framework where Assumption A is removed, it could
be really very hard to solve symbolically both the inequalities and equations as they
might result in polynomials with very high order even for low dimensional systems.

4 An Example of the Algorithm at Work

To illustrate the algorithm at work, let us consider as an example the ODE system:

ẋ1 = κ1(1− Z11)(1− Z22) + κ2(1− Z21)− γ1x1 ,

ẋ2 = κ3(1− Z12)− γ2x2 ,
(7)

where the Zjk are expressed by Hill functions, parameters are all strictly positive and
the quantity spaces Θ1 = {0 < θ11 < θ12 < x1}, Θ2 = {0 < θ21 < θ22 < x2}
partition the phase space into domains as showed in Fig. 3(a).

Fig. 2. Behavior tree rooted in D1.

The simulation starts from D1 with I0 defined as follows:

I0 : (
κ1 + κ2

γ1
> θ11) ∧ (θ21 <

κ3

γ2
< θ22) . (8)

The algorithm builds the behavior tree showed in Fig. 2, and calculates the inequalities
on parameters, listed in Fig. 3(b), that are associated with each path in BT(D1). Three
reachable stable states, located in D11, D12 and D5, are identified by the final leaf of
each branch in BT. As D12 ∈ ∆s, one of them is a SSP whereas the others are RSPs.
These stable states are reached by different predicted qualitative behaviors, each of
them occurring under specific constraints on parameters. For example, the trajectory
QB16 starting from D1, crossing D6, and reaching a RSP in D11 is allowed when the
inequalities I1

6 , I6
11 and I11 = (0 < κ1/γ1 < θ11) ∧ (θ21 < κ3/γ2 < θ22) hold.

Let us observe, that at present, as we have not yet tackled the problem of identify-
ing the admissible connections between entrance points and exit points, the algorithm
may generate spurious behaviors, that is trajectories that can never occur for any set
of numerical values of parameters. The behavior QB2, e.g., is spurious as I7

12 is not
consistent with I12

11 . Similarly, QB7 and QB14 are spurious. However, by checking the



consistency of all inequalities that belong to a branch in a BT, we can identify and filter
out possible spurious behaviors. As n = 2, a representation in the phase plane of the
trajectories described by the possibly filtered tree is also given (Fig. 3(a)).

(a) (b)

Fig. 3. (a) Phase space representation of trajectories described by BT after filtering; • denotes a
stable state. (b) Inequalities calculated by the algorithm. I1

2 , I1
6 , I1

7 , I3
8 , I6

11, I8
7 , I8

13, I13
12 , I9

13 are
equal to I0.

The simulation outcomes are numerically confirmed, and in Fig. 4 we report some
of the numerical simulations performed under different conditions. In the following, we
give a sketch of the algorithms at work when it calculates QS(D1), QS(D7).

Calculation of QS(D1). First, the algorithm calculates the set A(D1) = {D6, D7, D2}
and the relative positions V (D6, D1) = (0, 1), V (D7, D1) = (1, 1), V (D2, D1) =
(1, 0). In D1 the model (7) reduces to the linear ODEs:

ẋ1 = µ1 − γ1x1 ,

ẋ2 = µ2 − γ2x2 ,
(9)

where µ1 = κ1+κ2 and µ2 = κ3 . Transitions from D1 are possible under the following
conditions on parameters:

Î1
2 : ẋ1 > 0 ⇒ (κ1+κ2

γ1
> θ11) to go to D2 ,

Î1
6 : ẋ2 > 0 ⇒ (κ3

γ2
> θ21) to go to D6 ,

Î1
7 : ẋ1 > 0, ẋ2 > 0 ⇒ Î1

2 ∧ Î1
6 to go to D7 .

(10)

As the parameter space domains defined by I1
2 : I0 ∧ Î1

2 , I1
6 : I0 ∧ Î1

6 and I1
7 : I0 ∧ Î1

7

belong to PSD0, QS(D1) = {D2, D6, D7}, and the simulation spawns through three
different paths. Let us follow the path related to condition I1

7 and calculate QS(D7).



(a) (b) (c)

Fig. 4. Phase space plots of the numerical simulations performed with different parameter sets
and initial conditions taken on an uniform grid of points in D1. Common parameter values are:
θ11 = θ21 = 1, θ12 = θ22 = 2, q = 0.01, κ3 = 1.5, γ2 = 1. Other parameters are: (a)
κ1 = 2.5, κ2 = 2.5, γ1 = 1; (b) κ1 = 25, κ2 = 2.5, γ1 = 10; (c) κ1 = 0.7, κ2 = 0.7, γ1 = 1.
QB4 and QB11 abstract the trajectories in (a), QB9 in (b), and QB1 and QB16 in (c).

Calculation of QS(D7). In the switching domain D7 the Boundary Layer System is:

Z ′
11 =

Z11(1− Z11)
θ11

(κ1(1− Z11) + κ2(1− Z21)− γ1θ11) ,

Z ′
21 =

Z21(1− Z21)
θ21

(κ3 − γ2θ21) .

(11)

The set F(Z(D7)) has five elements, the four faces Fk corresponding to D2, D6, D8,
D12, and the interior of Z(D7). The associated Jacobian matrices are:

Jint(Z(D7)) =
(
−κ1 −κ2

0 0

)
, J2 = (−κ1) , J6 = (0) , J8 = (0) , J12 = (−κ2) .

Only J2 and J12 have a complete loop. Then, the algorithm looks for the stationary
state on F2 and F12: Z̃2 = (1 + κ2/κ1 − γ1θ11/κ1, 0) and Z̃12 = (1 − γ1θ11/κ1, 1).
The exit point candidate set is built by adding the vertices to these points. Then, the
algorithm imposes that both Z̃2

1 and Z̃12
1 are in (0,1) (line 13 of algorithm 2):

0 < Z̃2
1 < 1 ⇒ (κ1 + κ2 > γ1θ11) ∧ (κ2 < γ1θ11) , (12)

0 < Z̃12
1 < 1 ⇒ (κ1 > γ1θ11) ∧ (γ1θ11 > 0) . (13)

Stability conditions for Z̃2 and Z̃12 are both fulfilled as −κ1 < 0 and −κ2 < 0,
whereas stability conditions on variable Zl, l = 2 requires that:

Z ′
2(Z̃

2) < 0 ⇒ κ3 − γ2θ21 < 0 , (14)
Z ′

2(Z̃
12) > 0 ⇒ κ3 − γ2θ21 > 0 . (15)

Condition I defined by (15) is compatible with (8), but condition (14) is not. Then, Z̃2

is removed from the exit point set, whereas Z̃12 is an exit point if I7
12 : I0 ∧ I holds.

Stability conditions on vertices are fulfilled only on vertex Z̃11 = (0, 1). Then, the exit
domains are D12, D11, and QS(D7) = {D12, D11}.

5 Discussion and Future Work

The work described above is the first step towards the realization of a qualitative sim-
ulation algorithm that aims at (i) generating, from a given initial state, all and none



but the trajectories of a class of nonlinear ODE models of GRNs, and (ii) providing the
constraints on parameters that should be satisfied so that a specific behavior occurs. At
the current stage, the algorithm guarantees that, for 0 < q < q � 1, the behavior
tree captures all of the sound behaviors. However, as we have not yet performed a thor-
ough analysis with respect to entrance-exit transition, or in other words, we have not yet
solved the problem (i) of identifying the only admissible connections between entrance
and exit points, the behavior tree may also contains spurious behaviors. Moreover, sin-
gular perturbation analysis is a “local” procedure that works quite well in a quantitative
context but that needs, in a qualitative context, to be supported by a “global” criterion
when local paths are combined to produce a specific trajectory. We are quite confident
that when the solution of (i) together with (ii) has been automatized, the consistency of
the whole sequence of inequalities that characterizes a behavior will allow us to filter
out all spurious solutions, and to prove the soundness and completeness of our algo-
rithm. The tasks (i) and (ii) raise feasible but non-trivial algorithmic and computational
issues and require proper symbolic calculation procedures.

Another important methodological issue that needs to be further studied deals with
the stability of stationary points. More precisely, this poses two different problems: one
related to the validity of the singular perturbation analysis in the presence of zero real
part eigenvalues, and the other one to the determination of an upper bound, q, of q that
guarantees the Jacobian matrix stability. Although not a matter of discussion in this
paper, we have already solved the latter problem, but a formal proof that stability but
not asymptotic stability in the step function limit does not affect the main conclusions
from the singular perturbation analysis is still lacking.
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