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Introduction

The close relationship between the Knuth-Bendix completion procedure and Buchberger’s algo-
rithm for constructing Gröbner bases is well-known. Several people have tried to unify these two
procedures. The latest attempt that we are aware of, is the approach of Bündgen [2] who shows
that Buchberger’s algorithm can be viewed as an extension of the Knuth-Bendix completion
procedure to associative and commutative theories. In this paper we are less ambitious. Our
goal is to explain the theory underlying Buchberger’s algorithm from a rewriting point of view.
Historically this is unwarranted since the development of Buchberger’s algorithm precedes the
invention of the Knuth-Bendix completion procedure by something like five years, but by using
the rewrite machinery we are better able to indicate the similarities and the differences between
polynomial completion and Knuth-Bendix completion.

The paper is in principle self-contained; however, by its presentation it will be especially
suited for term rewriters having no prior knowledge of polynomial completion. In this paper we
do not discuss applications of Buchberger’s algorithm in polynomial ideal theory. An impressive
list of such applications can be found in [1].

The paper is organized as follows. In Section 1 we give a short introduction to rewriting
and we explain the theory behind the Knuth-Bendix completion procedure. Section 2 contains
a description of the basic notions in polynomial ideal theory. Polynomial rewriting is introduced
in Section 3. Section 4 is devoted to Buchberger’s algorithm for constructing Gröbner bases.
The construction of irreducible Gröbner bases is described in Section 5. In Section 6 we give an
account of the two critical pair criteria. We do not claim originality of the material presented in
Sections 1–6. Most of the results in Sections 2–6 are due to Buchberger. In Section 7 we show
that the construction of Gröbner bases can also be based on the abstract approach of Huet to
completion modulo some equivalence relation. To the best of our knowledge this observation is
new.

1. Preliminaries

This preliminary section consists of two parts. In the first part we present the basic notions of
rewriting in a abstract setting. We give an account of multiset orderings and we recall an early
result of Dickson which is the key to termination of the polynomial completion procedure. In
the second part we introduce term rewriting and we give a short overview of the completion
procedure of Knuth and Bendix.

1.1. Abstract Reduction Systems and Orderings

An abstract reduction system (ARS for short) is a structure A = 〈A,→〉 consisting of a set A
and a binary relation → on A, named rewrite relation or reduction. We write a ← b if b → a.
The transitive-reflexive closure of → is denoted by �. So a� b if there exists a finite, possibly
empty, sequence of reduction steps a = a1 → a2 → · · · → an = b. If a � b then we say that
a reduces to b and call b a reduct of a. We also write b � a. The transitive closure of → is
denoted by →+. The symmetric closure of → is denoted by ↔. So a ↔ b if a → b or b → a.
The transitive-reflexive-symmetric closure of → is denoted by ↔↔. So a ↔↔ b if there exists is a
finite, possibly empty, sequence of steps a = a1 ↔ a2 ↔ · · · ↔ an = b. This equivalence relation
generated by → is called convertibility or conversion. Two elements a, b ∈ A are joinable,
denoted by a ↓ b, if there exists a c ∈ A such that a � c and b � c. An element a ∈ A is a
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normal form if there is no b ∈ A such that a → b. The set of normal forms of A is denoted by
NF (A). We say that a has a normal form if there exists a normal form b ∈ A such that a� b.

We now introduce some important properties of ARS’s. An ARS A = 〈A,→〉 is strongly
normalizing if there are no infinite reduction sequences a1 → a2 → a3 → · · · of elements of A.
An ARS A = 〈A,→〉 is confluent or has the Church-Rosser property if b ↓ c whenever a � b
and a � c, for all a, b, c ∈ A. A well-known equivalent formulation of confluence states that
conversion coincides with joinability. An ARS A = 〈A,→〉 is locally confluent or weakly Church-
Rosser if b ↓ c whenever a→ b and a→ c, for all a, b, c ∈ A. A complete ARS is both confluent
and strongly normalizing. Each element is a complete ARS has a unique normal form. The
above properties specialize to elements in the obvious way. The following result of Newman [8]
forms the theoretical basis for the completion procedure of Knuth and Bendix, to be presented
shortly.

Newman’s Lemma. Every strongly normalizing and locally confluent ARS is confluent. �

Newman’s Lemma can be viewed as a special case of Lemma 1.1 below. The formulation of
that lemma requires the notion of well-founded ordering.

A partial ordering is a binary relation > on a set A that is transitive (i.e. if a > b and b > c
then a > c for all a, b, c ∈ A) and irreflexive (i.e. a 6> a for all a ∈ A. A partial ordering > on a
set A is total if for all a, b ∈ A with a 6= b we either have a > b or b > a. We call > well-founded
if there is no infinite descending sequence a1 > a2 > a3 > · · · of elements of A. Observe that
an ARS A = 〈A,→〉 is strongly normalizing if and only if the transitive closure →+ of → is a
well-founded ordering on A.

Given an ARS A = 〈A,→〉 and a well-founded ordering > on A, we say that a is connected
to b below c if there exists a conversion a = a1 ↔ · · · ↔ an = b such that c > ai for i = 1, . . . , n.
This will be denoted as a ↔↔<c b. We call A connected (with respect to >) if b and c are
connected below a whenever b ← a → c, for all a, b, c ∈ A. Observe that every connected ARS
is strongly normalizing.

Lemma 1.1 (Winkler and Buchberger [9]). Every connected ARS is confluent. �

We will present an elegant proof of this lemma using multiset orderings. A multiset over a
set A is an unordered collection of elements of A in which elements may occur more than once.
If > is a partial ordering on A then we can define a partial ordering � on finite multisets over
this set A as follows: M1 � M2 if M2 can be obtained from M1 by replacing some elements of
M1 (at least one) with a finite number of smaller (with respect to >) elements of A. We call �
the multiset extension of >.

Theorem 1.2 (Dershowitz and Manna [3]). The multiset extension of a well-founded ordering
is again a well-founded ordering. �

Proof of Lemma 1.1. Let A = 〈A,→〉 be a connected ARS with respect to some well-founded
ordering > on A. We define an ordering ≫ on conversions in A as follows:

a1 ↔ · · · ↔ an ≫ b1 ↔ · · · ↔ bm

if [ a1, . . . , an] � [ b1, . . . , bm]. According to Theorem 1.2 � is a well-founded ordering on the
finite multisets over A. Hence ≫ is a well-founded ordering on conversions in A. We will now
show that every conversion a1 ↔ · · · ↔ an that is not a ‘valley’, i.e. a conversion of the form
a1 ↓ an, can be transformed into a conversion between a1 and an which is smaller with respect
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to≫. If a1 ↔ · · · ↔ an is not valley then it contains a ‘peak’ ai−1 ← ai → ai+1. By assumption
ai−1 ↔↔<ai ai+1. If we replace the peak ai−1 ← ai → ai+1 by the conversion ai−1 ↔↔<ai ai+1, we
obtain a conversion between a1 and an which is easily seen to be smaller with respect to ≫.
Since ≫ is well-founded, repeating this process eventually results in a valley a1 ↓ an. Hence
every pair of convertible elements is joinable. Therefore A is confluent. �

Next we give an account of Dickson’s Lemma (Dickson [4]). This lemma plays a crucial role
in the termination proofs of polynomial completion procedures.

Definition 1.3. An infinite sequence n1, n2, n3, . . . of natural numbers is called increasing if
ni 6 ni+1 for all i > 1.

Proposition 1.4. Every infinite sequence of natural numbers contains an increasing subse-
quence.

Proof. Let (ni)i>1 be an infinite sequence of natural numbers. If some natural number occurs
infinitely often in this sequence then we clearly have an increasing subsequence. So suppose that
every natural number occurs a finite number of times in the sequence (ni)i>1. There are only
finitely many numbers in this sequence less than n1. Hence there exists an index N such that
all numbers in the subsequence (ni)i>N are greater than or equal to n1. We now repeat this
process with the sequence (ni)i>N and eventually we arrive at an increasing subsequence of the
original sequence (ni)i>1. �

Dickson’s Lemma. If e1, e2, e3, . . . is an infinite sequence of n-tuples of natural numbers then
there exist indices i, j with i < j such that ei = (a1, . . . , an), ej = (b1, . . . , bn) and ak 6 bk for
every k ∈ {1, . . . , n}.
Proof. Let us write (a1, . . . , an) / (b1, . . . , bn) if ak 6 bk for every k ∈ {1, . . . , n}. By induction
on n we will show the existence of an infinite subsequence ei1 / ei2 / ei3 / · · · . The case n = 1 has
been established in Proposition 1.4. Suppose e1, e2, e3, . . . is an infinite sequence of n+ 1-tuples.
Let ei = (ai1, . . . , a

i
n+1) and define e′i = (ai2, . . . , a

i
n+1). According to Proposition 1.4 the infinite

sequence (ai1)i>1 of first coordinates contains an increasing subsequence (aji1 )i>1. So the sequence
e′j1 , e

′
j2
, e′j3 , . . . of n-tuples is infinite and hence we obtain an infinite subsequence e′k1

/e′k2
/e′k3

/· · ·
from the induction hypothesis. By construction we have also ek1 / ek2 / ek3 / · · · . �

Dickson’s Lemma is a special case of Kruskal’s Tree Theorem, which forms the theoretical
foundation of several well-known methods for proving strong normalization of term rewriting
systems.

1.2. Term Rewriting Systems

A signature or alphabet is a set F of function symbols. Associated with every function symbol
is a natural number denoting its arity. Function symbols of arity 0 are called constants. The
set of terms T (F ,V) built from a signature F and a countably infinite set of variables V with
F ∩ V = ∅, is the smallest set containing V such that F (t1, . . . , tn) ∈ T (F ,V) whenever F ∈ F
has arity n and t1, . . . , tn ∈ T (F ,V).

A term rewriting system (TRS for short) is a pair (F ,R) consisting of a signature F and a set
R of rewrite rules or reduction rules. Every rewrite rule has the form l→ r with l, r ∈ T (F ,V)
satisfying the following two constraints:
• the left-hand side l is not a variable,
• the variables which occur in the right-hand side r also occur in l.
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In order to define the rewrite relation associated with a given TRS, we first introduce substitu-
tions and contexts.

A substitution σ is a mapping from V to T (F ,V). Substitutions are extended to morphisms
from T (F ,V) to T (F ,V), i.e. σ(F (t1, . . . , tn)) = F (σ(t1), . . . , σ(tn)) for every n-ary function
symbol F and terms t1, . . . , tn. We call σ(t) an instance of t. We write tσ instead of σ(t). An
instance of a left-hand side of a rewrite rule is a redex (reducible expression).

A context C[ ] is a ‘term’ which contains precisely one occurrence of a special constant �.
If C[ ] is a context and t a term then C[t] denotes the result of replacing � by t. A term s is a
subterm of a term t if there exists a context C[ ] such that t = C[s].

The rewrite rules of a TRS (F ,R) define a rewrite relation →R on T (F ,V) as follows:
s →R t if there exists a rewrite rule l → r in R, a substitution σ and a context C[ ] such that
s = C[lσ] and t = C[rσ]. We say that s rewrites to t by contracting redex lσ. We call s→R t a
rewrite step or reduction step.

By associating with every TRS (F ,R) the ARS 〈T (F ,V),→R〉, all notions defined for ARS’s
carry over to TRS’s. Finite and complete TRS’s are of special interest since they have a decidable
convertibility relation. The Knuth-Bendix completion procedure attempts to transform a given
strongly normalizing TRS into a complete TRS defining the same conversion. We already
observed (Newman’s Lemma) that it suffices to aim at local confluence.

Let l1 → r1 and l2 → r2 be renamed versions of rewrite rules of a TRS R such that they
have no variables in common. Suppose l1 = C[t] with t /∈ V such that t and l2 are unifiable,
i.e. tσ = lσ2 for a most general unifier σ. The term lσ1 = C[l2]σ is subject to the reduction steps
lσ1 → rσ1 and lσ1 → C[r2]σ. The pair of reducts 〈C[r2]σ, rσ1 〉 is a critical pair of R. If l1 → r1 and
l2 → r2 are renamed versions of the same rewrite rule, we do not consider the case C[ ] = �.
A critical pair 〈s, t〉 of a TRS R is convergent if s ↓R t. The set of all critical pairs of R is
denoted by CP (R). Furthermore, if R1 and R2 are TRS’s then CP (R1,R2) denotes the set of
all critical pairs between rules of R1 and rules of R2. The following lemma of Huet [5] expresses
the significance of critical pairs.

Critical Pair Lemma. A TRS R is locally confluent if and only if all its critical pairs are
convergent. �

The basic idea underlying the Knuth-Bendix completion procedure (Knuth and Bendix [6]) is
to add a new rewrite rule whenever a non-convergent critical pair is encountered, in order to make
it convergent. This has to be repeated until all critical pairs are convergent. In Figure 1 a simple
version of the Knuth-Bendix completion procedure is presented. The algorithm presupposes a
so-called reduction ordering in order to solve the orientation problem of new rewrite rules in a
uniform way.

Definition 1.5.
• A reduction ordering � is a well-founded ordering on terms which is closed under substitu-

tions and contexts, i.e. if s � t then sσ � tσ for all substitutions σ and C[s] � C[t] for all
contexts C[ ].

• A TRS R is compatible with a reduction ordering � if l � r for every rewrite rule l→ r ∈ R.

It is not difficult to show that a TRS R is strongly normalizing if and only if there exists a
reduction ordering that is compatible with R. The program of Figure 1 has three possibilities:
• it may terminate successfully,
• it may loop infinitely,
• it may fail because a pair of terms cannot be oriented.
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Knuth-Bendix completion algorithm: simple version

Input: • a TRS R
• a reduction ordering � such that R is compatible with �

Output: • a complete TRS R′ with the same conversion as R

C := CP(R);
R′ := R;
while C 6= ∅ do

choose a pair 〈s, t〉 ∈ C;
C := C − {〈s, t〉};
reduce s and t to normal forms s′ and t′ with respect to R′;
if s′ 6= t′ then

if s′ � t′ then
α := s′; β := t′

else if t′ � s′ then
α := t′; β := s′

else
failure

fi;
R′ := R∪ {α→ β};
C := C ∪ CP(R′, {α→ β})

fi
od

Figure 1.

This is in sharp contrast with polynomial completion procedures which always terminate suc-
cessfully. In the program of Figure 1 no attempts are made to simplify rewrite rules or to remove
redundant rules. Performing such simplifications during the completion process greatly increases
efficiency. The completion algorithm of Figure 2 simplifies the rewrite rules as much as possible.
Notice that simplifications of left-hand sides and right-hand sides of rewrite rules are treated
differently. The algorithm can be made even more efficient by incorporating various critical pair
criteria which state that certain critical pairs are superfluous. Upon successful termination, the
algorithm of Figure 2 delivers a ‘fully simplified’ TRS.

Definition 1.6. A TRS R is called irreducible or reduced if every rewrite rule l → r ∈ R
satisfies the following two properties:
(1) l is a normal form with respect to R− {l→ r},
(2) r is a normal form with respect to R.
Observe that a strongly normalizing TRS R is irreducible if and only if both l and r are normal
forms with respect to R− {l→ r}, for all rewrite rules l→ r ∈ R.

According to the following theorem, the result of a successful execution of the simple com-
pletion procedure of Figure 1 can always be made irreducible.

Theorem 1.7 (Métivier [7]). Every complete TRS can be transformed into an irreducible com-
plete TRS with the same conversion. �

We conclude this preliminary section with a result that states a kind of unicity for irreducible
and complete TRS’s.
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Knuth-Bendix completion algorithm: efficient version

Input: • a TRS R
• a reduction ordering �

Output: • a complete irreducible TRS R′ with the same conversion as R

C := {〈l, r〉 | l→ r ∈ R};
R′ := ∅;
while C 6= ∅ do

choose a pair 〈s, t〉 ∈ C;
C := C − {〈s, t〉};
reduce s and t to normal forms s′ and t′ with respect to R′;
if s′ 6= t′ then

if s′ � t′ then
α := s′; β := t′

else if t′ � s′ then
α := t′; β := s′

else
failure

fi;
R′′ := R′ ∪ {α→ β};
for all l→ r ∈ R′ do

R′′ := R′′ − {l→ r};
reduce l and r to normal forms l′ and r′ with respect to R′′;
if l = l′ then

R′′ := R′′ ∪ {l′ → r′}
else

C := C ′ ∪ {〈l′, r′〉}
fi

od;
R′ := R′′;
C := C ∪ CP(R′, {α→ β})

fi
od

Figure 2.

Theorem 1.8 (Métivier [7]). Let R1 and R2 be irreducible complete TRS’s with the same
conversion. If both TRS’s are compatible with a given reduction ordering then they are identical
(modulo a renaming of variables in the rewrite rules). �

2. Polynomial Ideal Theory

In this section we describe the domain in which Buchberger’s algorithm operates. In the following
we will be working in the ring K[x1, . . . , xn] of n-variate polynomials over K. Here K is any
field and x1, . . . , xn are indeterminates. In examples we will use the ring Q [x, y, z].

Definition 2.1. Let F ⊆ K[x1, . . . , xn] be a finite set of polynomials.
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• The ideal generated by F is defined as follows:

Ideal(F ) =

{
m∑

i=1

hifi

∣∣∣∣∣ hi ∈ K[x1, . . . , xn] and fi ∈ F
}
.

• Two polynomials f, g are congruent modulo F , notation f ≡F g, if f − g ∈ Ideal(F ).

In the next two sections we will show that congruence modulo F is decidable, for any finite
set F of polynomials.

Definition 2.2. A power product is a polynomial of the form xi11 · · ·xinn . We say that xj has
degree ij in xi11 · · ·xinn . The power product x0

1 · · ·x0
n is denoted by 1. The set of all power

products is denoted by P . A monomial is a polynomial of the form a · p with a ∈ K and p ∈ P .
The set of all monomials is denoted by M .

We adopt the usual distributive normal form representation of polynomials. This means
that every polynomial is a finite sum of monomials whose power products are pairwise distinct.
All forthcoming definitions are to be understood with regard to this representation. Only in
Section 7 we take a different viewpoint of polynomials.

In the next section we introduce a notion of polynomial reduction. This notion depends on
a suitable ordering on power products.

Definition 2.3. An admissible ordering � is any total ordering on P with the following prop-
erties:
• p � 1 for all p ∈ P − {1},
• if p1 � p2 then p · p1 � p · p2 for all p, p1, p2 ∈ P .

Examples of admissible orderings are the purely lexicographical ordering and the total degree
ordering. These are illustrated below.

Example 2.4. In the purely lexicographical ordering �l power products are first compared
according to the degree of indeterminate x. So x2z �l xy6z3. If the degree of x in two power
products is the same, then they are compared according to the degree of y. If the degree of y
in both power products is also the same, then the power products are ordered according to the
degree of z. For example

x3 �l x2y2z �l x2z
2 �l x �l y3z �l y2z2 �l z5.

In the total degree ordering �t power products are ordered according to the sum of the degrees
of the indeterminates. If these sums are equal then the purely lexicographical ordering applies.
So

z3 �t x2z �t xy2 �t xyz �t x2 �t y2 �t yz �t x �t 1.

Definition 2.5. A power product p1 is a divisor of power product p2, denoted by p1 / p2, if
there exists a power product p such that p1 · p = p2.

Lemma 2.6. If p1, p2, p3, . . . is an infinite sequence of power products then there exists indices
i, j with i < j such that pi / pj .

Proof. With every power product pi we associate the n-tuple ei = (i1, . . . , in) where ij is the
degree of the indeterminate xj in pi. Now we have an infinite sequence e1, e2, e3, . . . of n-tuples
of natural numbers. According to Dickson’s Lemma there exists indices i, j with i < j such that
ik 6 jk for k = 1, . . . , n. Hence pi / pj since pi · p = pj for p = xj1−i11 · · ·xjn−inn . �
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Theorem 2.7. Every admissible ordering � is well-founded.

Proof. Suppose there exists an infinite descending chain p1 � p2 � p3 � · · · of power products.
According to Lemma 2.6 we have pi / pj for some i < j. Notice that by transitivity pi � pj . We
distinguish two cases:
(1) If p = 1 then pi = pj which contradicts pi � pj .
(2) If p 6= 1 then p � 1 since � is admissible. Because an admissible ordering is closed under

multiplication, we obtain pj = pi · p � pi · 1 = pi which also contradicts pi � pj .
�

In the remainder of this section we introduce some useful concepts and notations.

Definition 2.8.
• The set of power products occurring in a polynomial t is denoted by P (t) and M(t) denotes

the set of monomials occurring in t.
• The coefficient of a monomial m is denoted by 〈m〉 and m denotes the remaining power

product, so m = 〈m〉 ·m
• The least common multiple of two power products p1, p2 is denoted by lcm(p1, p2), i.e.

lcm(p1, p2) is the power product p such that the degree of indeterminate xi in p equals the
maximum of the degrees of xi in p1 and p2. The least common multiple of two monomi-
als is defined as the least common multiple of their power products, i.e. lcm(m1,m2) =
lcm(m1,m2).

Definition 2.9. Let �P be an admissible ordering. The leading power product lp(t) of a poly-
nomial t 6= 0 is the maximum element in P (t) with respect to �P . The leading monomial lm(t)
of t is the unique monomial in M(t) satisfying lm(t) = lp(t). The leading coefficient lc(t) of t is
the coefficient of lm(t). So lm(t) = lc(t) · lp(t). Finally, rm(t) denotes the polynomial t− lm(t).

Example 2.10. Let t = 3x2y+2y2−x. We have P (t) = {x2y, y2, x} andM(t) = {3x2y, 2y2,−x}.
Furthermore, lp(t) = x2y, lm(t) = 3x2y, lc(t) = 3 and rm(t) = 2y2 − x, both with respect to
the purely lexicographical ordering and the total degree ordering. Let m1 = y2 and m2 = 2x3y.
We have 〈m1〉 = 1, m2 = x3y and lcm(m1,m2) = x3y2.

Proposition 2.11.
(1) P (s+ t) ⊆ P (s) ∪ P (t).
(2) If P (s) ∩ P (t) = ∅ then P (s+ t) = P (s) ∪ P (t).
Proof.
(1) Trivial.
(2) Since we already know that P (s+ t) ⊆ P (s) ∪ P (t), it suffices to show that P (s) ∪ P (t) ⊆

P (s+ t). Let p ∈ P (s) ∪ P (t). From the assumption P (s) ∩ P (t) = ∅ we learn that either
p ∈ P (s) or p ∈ P (t) and hence p ∈ P (s+ t).

�

3. Polynomial Rewriting

In this section we present a notion of reduction for polynomials and its basic properties. In the
next section this polynomial rewrite relation is subjected to a procedure similar to the Knuth-
Bendix completion procedure. The ensuing Gröbner bases provide algorithmic solutions to many
problems in polynomial ideal theory.

9



Definition 3.1. A polynomial rewrite system (PRS for short) is a pair (F,�P ) consisting of a
finite set F of polynomials not containing 0 and an admissible ordering �P . With every f ∈ F
we associate the polynomial rewrite rule

f→ : lm(f)→ −rm(f).

The set of all polynomial rewrite rules associated with F is denoted by F→. These polynomial
rewrite rules induce a rewrite relation→F as follows: s→F t if there exist a monomialm ∈M(s),
a polynomial rewrite rule l→ r ∈ F→ and a monomial m′ such that m = m′l and t = s−m+m′r.
Occasionally we write s→m

F t to indicate the contracted monomial m. When no confusion can
arise we omit the subscript F .

Given the ordering �P , F and F→ can always be constructed from each other. For that
reason we will use F and F→ indifferently. However, in certain cases the use of F is preferred as
it leads to more concise formulations. On the other hand, we employ F→ whenever a concept is
introduced that resembles a similar concept in term rewriting. In the following we assume that
�P is a fixed admissible ordering and we simply call F a PRS. In examples we will always use
the total degree ordering, unless stated otherwise.

By associating with every PRS F the ARS 〈K[x1, . . . , xn],→F 〉, all notions defined in Sec-
tion 1.1 carry over to polynomial rewriting.

Example 3.2. Consider the PRS F = {f1, f2} with f1 = 2x2y−x2− 2 and f2 = 3y2−xy+ 3x.
The corresponding polynomial rewrite rules are

F→ =
{

2x2y → x2 + 2
3y2 → xy − 3x.

Consider the polynomial t = 6x2y2−y2. Since 6x2y2 = 3y ·2x2y, t reduces to 3y · (x2 +2)−y2 =
3x2y − y2 + 6y by using the first polynomial rewrite rule. The second rule can be applied in
two different ways to t as y2 divides both x2y2 and y2. Figure 3 shows all possible reduction
sequences starting at the polynomial t.

6x2y2 − y2

3x2y − y2 + 6y 6x2y2 − 1
3xy + x 2x3y − 6x3 − y2

3
2x

2 − y2 + 6x+ 3 3x2y − 1
3xy + 6y + x 2x3y − 6x3 − 1

3xy + x −5x3 − y2 + 2x

3
2x

2 − 1
3xy + 6y + x+ 3 −5x3 − 1

3xy + 3x

f1 f2 f2

f1 f2 f1 f2 f2 f1

f2 f1 f1 f2

Figure 3.
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In the remainder of this section we give a few elementary properties of polynomial rewriting.
Our first goal is to show that congruence (≡F ) coincides with conversion (↔↔F ). This requires
a few preliminary results.

Proposition 3.3. Let F be a PRS.
(1) The relation →F is closed under multiplication by monomials, i.e. if s→F t then m · s→F

m · t for all m ∈M , and hence ↔↔F is closed under multiplication by monomials.
(2) If f ∈ F then f →F 0 by application of the polynomial rewrite rule f→.

Proof. Routine. �

The main difference between term rewriting and polynomial rewriting is that the polynomial
rewrite relation is not closed under contexts, i.e. the implication s→ t ⇒ s+ u→ t+ u does
not hold. This considerably complicates the theory of Gröbner bases.

Example 3.4. Consider the PRS F = {x2 → y} and the polynomials s = 2x2 +xy, t = xy+ 2y
and u = x2 − xy. We have s→ t, s+ u = 3x2 and t+ u = x2 + 2y, but 3x2 only reduces to 3y.
Actually things are not that bad, since x2 + 2y also reduces to 3y.

The next proposition shows that the implication s→ t ⇒ s+ u ↓ t+ u—which is called
semi-compatibility in the literature—holds for all polynomials s, t and u (and all PRS’s).

Proposition 3.5. Let F be a PRS.
(1) If s→m t and m /∈ P (u) then s+ u→m t+ u.
(2) If s→ t then s+ u ↓ t+ u.
(3) If s↔↔ t then s+ u↔↔ t+ u.

Proof.
(1) Because m ∈M(s+ u) this is an immediate consequence of the definition of →.
(2) By definition there exist a polynomial rewrite rule l→ r and monomials m ∈M(s) and m′

such that m = m′l and t = s−m+m′r. The case m /∈ P (u) has been treated in part (1).
So assume m ∈ P (u). Let m1 be the (unique) monomial in u such that m1 = m. We have

m1 =
〈m1〉
〈m〉 m =

〈m1〉
〈m〉 m

′l

and therefore

u→ u−m1 +
〈m1〉
〈m〉 m

′r.

Because m1 /∈ P (t) we obtain

t+ u → t+ u−m1 +
〈m1〉
〈m〉 m

′r

= s−m+m′r + u−m1 +
〈m1〉
〈m〉 m

′r

= s+ u− (m+m1) +
[
1 +
〈m1〉
〈m〉

]
m′r

from part (1). If 〈m1〉 = −〈m〉 then m+m1 = 0 and

1 +
〈m1〉
〈m〉 = 0

11



and therefore t+ u→ s+ u. Otherwise m+m1 ∈M(s+ u) and since

m+m1 =
1 + 〈m1〉
〈m〉 m′l

we obtain

s+ u→ s+ u− (m+m1) +
[
1 +
〈m1〉
〈m〉

]
m′r.

So in this case s+ u and t+ u reduce in a single step to a common reduct.
(3) Straightforward consequence of part (2), using induction on the length of s↔↔ t.
�

Lemma 3.6. The relations ≡F and ↔↔F coincide for every PRS F .

Proof.
⊆ Let s ≡F t. By definition

s− t =
m∑

i=1

hifi

with f1, . . . , fm ∈ F . Without loss of generality we assume that h1, . . . , hm are monomials.
We will establish s↔↔F t by induction on m. If m = 0 then s = t. Suppose

s− t =
m+1∑

i=1

hifi

or, stated differently,

s− (t+ hm+1fm+1) =
m∑

i=1

hifi.

The induction hypothesis yields s ↔↔F t + hm+1fm+1. From Proposition 3.3 we obtain
hm+1fm+1 →F 0. Proposition 3.5(2) yields t+ hm+1fm+1 ↓F t and therefore s↔↔F t.

⊇ Suppose s→F t. It is easy to see that s− t = m · (l − r) for some m ∈M and polynomial
rewrite rule l→ r ∈ F→. Since l − r ∈ F we have m · (l − r) ∈ Ideal(F ). Therefore s ≡F t.
The general case follows by a routine induction argument.

�

Corollary 3.7. Let F and G be PRS’s. The following statements are equivalent:
• F and G define the same ideal,
• F and G have the same conversion.
�

Next we show that polynomial rewriting always terminates. This is a significant difference
with term rewriting.

Definition 3.8. The admissible ordering �P on power products is extended to polynomials as
follows: s � t if P (s) ��P P (t) where ��P is the multiset extension of the admissible ordering
�P on power products. According to Theorem 1.2 � is well-founded. Moreover, it is easy to
show that � is closed under multiplication by monomials.

12



Example 3.9. Consider the reduction step s = 2x3 + x2y − y2 → 2x3 + xy + 3 = t in the PRS
{x2 → xy + 3}. We have P (s) = {x3, x2y, y2} ��P {x3, xy, 1} = P (t) since x2y �P xy and
x2y �P 1. Hence s � t.

Proposition 3.10. Let F be a PRS. If s→F t then s � t.
Proof. By definition there exists a monomial m ∈M(s), a polynomial rewrite rule l→ r ∈ F→
and a monomial m′ such that m = m′l and t = s − m + m′r. We have l � r by definition
of polynomial rewrite rule. Therefore m = m′l � m′r and thus P (m) ��P P (m′r). Since
m /∈ P (s−m) we obtain P (s) = P (s−m)∪P (m) from Proposition 2.11(2). Proposition 2.11(1)
yields P (t) ⊆ P (s−m) ∪ P (m′r). Combining these statements yields P (s) ��P P (t). �

Theorem 3.11. Every PRS F is strongly normalizing.

Proof. Suppose→F is not strongly normalizing. According to Proposition 3.10 there exists an
infinite descending chain t1 � t2 � t3 � · · · of polynomials, contradicting the well-foundedness
of �. �

4. Gröbner Bases

Since PRS’s are always strongly normalizing, confluence suffices for the decidability of the con-
vertibility relation and hence for the decidability of congruence.

Definition 4.1. A confluent PRS is called a Gröbner basis.

In the literature several equivalent formulations of Gröbner bases are reported. Below we
list some of them. The easy equivalence proofs are left to the reader.

Theorem 4.2. Let F be a PRS. The following statements are equivalent:
• F is a Gröbner basis,
• every polynomial t has a unique normal form,
• every polynomial t ∈ Ideal(F ) reduces to 0,
• 0 is the only normal form in Ideal(F ).
�

In this section we will show that every PRS can be transformed into a Gröbner basis defining
the same conversion, by means of a procedure akin to the Knuth-Bendix completion procedure.
Whereas the Knuth-Bendix completion procedure is based on Newman’s Lemma, polynomial
completion will be based on Lemma 1.1. Before presenting a simple version of the polynomial
completion algorithm, we will prove a suitable Critical Pair Lemma for PRS’s (Lemma 4.7
below).

Definition 4.3. Let l1 → r1 and l2 → r2 be different polynomial rewrite rules. Consider the
power product lcm(l1, l2). Since lcm(l1, l2) = m1l1 = m2l2 for certain monomials m1 and m2,
lcm(l1, l2) can be reduced both to m1r1 and m2r2. The pair 〈m1r1,m2r2〉 is called a critical
pair. We call 〈m1r1,m2r2〉 connected if m1r1 and m2r2 are connected below lcm(l1, l2). In
the following we will identify 〈m1r1,m2r2〉 and the pair 〈m2r2,m1r1〉 originating from the rules
l2 → r2 and l1 → r1. So a PRS with n rules will have

(
n
2

)
critical pairs. The set of all critical

pairs of a PRS F is denoted by CP(F ) and if F1 and F2 are PRS’s then CP(F1, F2) denotes the
set of all critical pairs between rules of (F1)→ and (F2)→.

13



Notation. We write s < t if s � t or P (s) = P (t).

Proposition 4.4. If s1 � t1, s2 < t2 and P (s1) ∩ P (s2) = ∅ then s1 + s2 � t1 + t2.

Proof. Straightforward consequence of Proposition 2.11(2). �

The following technical proposition is used in the proof of the Critical Pair Lemma for PRS’s,
which states that a PRS is a Gröbner basis if and only if all its critical pairs are connected.

Proposition 4.5. Let F be a PRS.
(1) If s→m1 t1 and s→m2 t2 with m1 6= m2 then t1 and t2 can be connected below s.
(2) Suppose t1 and t2 are connected below s. If P (s)∩P (u) = ∅ then t1 + u and t2 + u can be

connected below s+ u.

Proof.
(1) Let u = s−m1−m2. We have t1 = n1 +m2 +u and t2 = m1 +n2 +u for some polynomials

n1, n2 with m1 → n1 and m2 → n2. Let t3 = n1 + n2 + u. According to Proposition 3.5(2)
we have t1 ↓ t3 and t3 ↓ t2. Proposition 3.10 yields m1 � n1 and m2 � n2. Since
P (m1), P (m2) and P (m) are pairwise disjoint, two applications of Proposition 4.4 yields
s = m1 +m2 + u � n1 + n2 + u = t3. Hence, using Proposition 3.10, all polynomials in the
conversion t1 ↓ t3 ↓ t2 are smaller than s. Therefore t1 ↔↔≺s t2.

(2) By induction on the length of the conversion t1 ↔↔≺s t2 we will show that t1+u↔↔≺s+u t2+u.
The case of zero length follows immediately from Proposition 4.4. Suppose t1 → t′1 ↔↔≺s t2.
(The case t1 ← t′1 ↔↔≺s t2 is similar.) Applying the induction hypothesis to t′1 ↔↔≺s t2
yields t′1 + u↔↔≺s+u t2 + u. From Proposition 3.5(2) we obtain t1 + u ↓ t′1 + u. We already
know that s + u � t′1 + u and s + u � t1 + u follows from Proposition 4.4. Hence, as a
consequence of Proposition 3.10, t1 + u ↔↔≺s+u t′1 + u. Combining this conversion with
t′1 + u↔↔≺s+u t2 + u yields the desired result.

�

The next example shows the necessity of the conditions m1 6= m2 and P (s) ∩ P (u) = ∅ in
Proposition 4.5.

Example 4.6.
(1) Consider the PRS

F =
{
xy → x
x → 1.

The monomial xy reduces both to x and y. If x and y are connected below xy then,
according to Lemma 4.7 below, F is a Gröbner basis. However, this contradicts the fact
that xy has distinct normal forms y and 1.

(2) Consider the PRS {xy → y2} and the polynomials s = xy + 1, t1 = y2, t2 = xy and
u = −xy + x. We have s � t1, s � t2 and t1 ← t2. Thus t1 and t2 are connected below s.
Notice that t1 + u = −xy + x + y2 and t2 + u = x are not connected below s + u = x + 1
as t1 + u � s+ u. And indeed P (s) ∩ P (u) = {xy} 6= ∅.

Lemma 4.7. A PRS is a Gröbner basis if and only if all its critical pairs are connected.

Proof.
⇒ Trivial.
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⇐ Consider a PRS F with the property that all its critical pairs are connected. According
to Lemma 1.1 it is sufficient to show that F is connected. Let s →m1 t1 and s →m2 t2.
by application of the polynomial rewrite rules l1 → r1 and l2 → r2. If m1 6= m2 then
the result follows from Proposition 4.5(1). Suppose m1 and m2 are the same monomial
m. If the applied rules are the same then clearly t1 = t2. Suppose l1 → r1 and l2 → r2

are different polynomial rewrite rules and let 〈c1, c2〉 be the corresponding critical pair.
We have c1 ← lcm(l1, l2) → c2 and hence m′c1 ← m → m′c2 where m′ is the monomial
such that m = m′ · lcm(l1, l2). By assumption c1 and c2 are connected below lcm(l1, l2).
Proposition 3.3(1) yields m′c1 ↔↔≺m m′c2. It is not difficult to show that the premises of
Proposition 4.5(2) are fulfilled and hence we obtain t1 ↔↔≺s t2.

�

Figure 4 shows a simple polynomial completion algorithm. Unlike Knuth-Bendix completion,
it always terminates successfully.

Buchberger’s algorithm: simple version

Input: • a PRS F
Output: • a Gröbner basis G with the same conversion as F

C := CP(F );
G := F ;
while C 6= ∅ do

choose a pair 〈s, t〉 ∈ C;
C := C − {〈s, t〉};
reduce s and t to normal forms s′ and t′ with respect to G;
if s′ 6= t′ then

C := C ∪ CP(G, {s′ − t′});
G := G ∪ {s′ − t′}

fi
od

Figure 4.

Example 4.8. Consider the PRS

F =
{
x3y → x2 + xy
xy2 → y2.

Figure 5 gives a graphical representation of the completion algorithm of Figure 4 applied to F .
The resulting PRS

G =





x3y → x2 + xy
xy2 → y2

x2y → 0
x2 → −xy
y2 → 0

is a Gröbner basis with the same ideal as F .
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f1 : x3y → x2 + xy
f2 : xy2 → y2

x3y2

x2y + xy2 x2y2

x2y + y2 y2

f1 f2

f1 : x3y → x2 + xy
f2 : xy2 → y2

f3 : x2y → 0

x3y

x2 + xy 0

f1 f3

f1 : x3y → x2 + xy
f2 : xy2 → y2

f3 : x2y → 0
f4 : x2 → −xy

x2y2

xy2 0

y2

f2 f3

f1 : x3y → x2 + xy
f2 : xy2 → y2

f3 : x2y → 0
f4 : x2 → −xy
f5 : y2 → 0

x3y

x2 + xy −x2y2

0

f1 f4

x3y

xy2 −xy3

0

f2 f4

x2y

0 −xy2

f3 f4

x3y2

x2y + xy2 0

f1 f5

xy2

y2 0

f2 f5

x2y2

0 0=

f3 f5

x2y2

−xy3 0

f4 f5

Figure 5.

The correctness proof of the simple polynomial completion algorithm of Figure 4 employs
the following proposition.
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Proposition 4.9. Let F be a PRS and f 6= 0 a polynomial.
(1) If f ↔↔F g and g 6= 0 then ↔↔F∪{f} =↔↔F∪{g}.
(2) If f ↔↔F 0 then ↔↔F∪{f} =↔↔F .

Proof.
(1) It suffices to show that →{f} ⊆ ↔↔F∪{g} and →{g} ⊆ ↔↔F∪{f}. Suppose s →{f} t. There

exists a monomial m such that t = s−m · f . Proposition 3.3(1) yields −m · f ↔↔F −m · g
and thus t↔↔F s−m · g by Proposition 3.5(3). Applications of Propositions 3.3(2), 3.3(1)
and 3.5(3) yield s−m · g ↔↔{g} s. Therefore s↔↔F∪{g} t. The inclusion →{g} ⊆ ↔↔F∪{f} is
almost identical.

(2) Slightly easier than part (1).
�

Theorem 4.10. The algorithm of Figure 4 is correct.

Proof. We first show the termination of the algorithm. Let fi be the i-th added polynomial and
define pi = lp(fi) for i > 1. If the algorithm doesn’t terminate then the sequence p1, p2, p3, . . .
must be infinite. Lemma 2.6 yields pi / pj for some i < j. Since pi is the leading power product
of fi this implies that fj is reducible by means of the rule (fi)→. However, by construction
fj is the difference of two normal forms with respect to all preceding rules. An application of
Proposition 2.11(2) shows that fj is also a normal form with respect to the preceding rules,
including (fi)→. Thus we obtained a contradiction.

Let Ci and Gi denote the respective values of C and G after the i-th iteration of the while-
loop. By induction on i we will show that
(1) ↔↔Gi =↔↔F ,
(2) if 〈c1, c2〉 ∈ CP(Gi)− Ci then c1 ↓Gi c2.
The basis of the induction is trivial since G0 = F and C0 = CP(G0). Suppose the statement
holds after i iterations of the while-loop and consider iteration i+ 1. We consider two cases:
s′ = t′ We have Gi+1 = Gi and Ci+1 = Ci − {〈s, t〉}. Property (1) is trivially satisfied. Let

〈c1, c2〉 ∈ CP(Gi+1)−Ci+1. The case 〈c1, c2〉 ∈ CP(Gi)−Ci follows from the induction
hypothesis. Otherwise, 〈c1, c2〉 = 〈s, t〉 and s′ = t′ implies that s ↓Gi t and therefore
c1 ↓Gi+1 c2.

s′ 6= t′ We haveGi+1 = Gi∪{s′−t′} and Ci+1 = Ci−{〈s, t〉}∪CP(Gi, {s′−t′}). By construction,
s′ ↔↔Gi t

′. Proposition 3.5(3) yields s′−t′ ↔↔Gi 0 and hence, according to Proposition 4.9,
the addition of s′−t′ doesn’t change conversion. It remains to shows that every 〈c1, c2〉 ∈
CP(Gi+1)−Ci+1 satisfies c1 ↓Gi+1 c2. The only interesting case is 〈c1, c2〉 = 〈s, t〉. Since
s′ − t′ ∈ Gi+1, we obtain s′ − t′ →Gi+1 0 from Proposition 3.3. Proposition 3.5(2) yields
s′ ↓Gi+1 t

′ and hence also c1 ↓Gi+1 c2.
Suppose the algorithm terminates after N iterations of the while-loop. Since CN = ∅ we obtain
the convergence of all critical pairs of GN from (2). Lemma 4.7 reveals that GN is a Gröbner
basis and property (1) shows that GN and F have the same conversion. �

5. Irreducible Gröbner Bases

The algorithm of Figure 4 can be optimized by simplifying polynomial rewrite rules during
the completion process, similar to the Knuth-Bendix completion procedure. But first we show
that these simplifications can also be performed after termination of the simple polynomial
completion algorithm.

Definition 5.1. A PRS F is called irreducible or reduced if every f ∈ F is a normal form with
respect to F − {f} and lc(f) = 1.
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Notation. If f 6= 0 then f̂ denotes the polynomial f/lc(f).

The following result states that an arbitrary PRS can be transformed into an irreducible
PRS with the same conversion. So confluence is not essential for this transformation.

Theorem 5.2. Every PRS can be transformed into an irreducible PRS with the same conver-
sion.

Proof. We will show that repeatedly applying the transition rules of Figure 6 results in an
irreducible PRS with the same conversion al as the initial PRS. (The symbol ] denotes disjoint
union.) We first show that the transition rules preserve convertibility. This is obvious for the

F ] {f}
F ∪ {g} if f →F g and g 6= 0

F ] {f}
F

if f →F 0

F ] {f}
F ∪ {f̂} if lc(f) 6= 1

Figure 6.

third rule. For the first and second rule this is a consequence of Proposition 4.9. Termination of
the algorithm is a straightforward consequence of Proposition 3.10. Clearly a PRS is irreducible
if and only if none of the transition rules applies. �

Before we can show that the transition rules of Figure 6 preserve confluence, we have to show
that the rules do not increase the set of normal forms.

Notation. If F is a PRS then FO denotes an irreducible PRS such that ↔↔FO = ↔↔F and
NF (FO) ⊆ NF (F ).

Lemma 5.3. Every PRS F can be transformed into a PRS FO.

Proof. It remains to show that the transition rules of Figure 6 do not increase the set of normal
forms. If the third rule is applied then the set of normal forms remains the same. Suppose the
first rule is applied. We have to show that NF (F ∪{g}) ⊆ NF (F ∪{f}). Suppose to the contrary
that there exists a t ∈ NF (F ∪ {g}) − NF (F ∪ {f}). This is only possible if t is reducible by
means of f→. Let f→ be the rule l → r. So there exist monomials m ∈ M(t) and m′ such that
m = m′l. We have l − r →F g. From t ∈ NF (F ) we infer that l ∈ NF (F ) and hence g = l − r′
for some r′ with r →F r′. So g→ is the rule l → r′. But this is in conflict with the assumption
t ∈ NF ({g}). We conclude that NF (F ∪ {g}) ⊆ NF (F ∪ {f}). An application of the second
transition rule gives rise to a similar but slightly easier reasoning. �

The next theorem is the analogon of Theorem 1.7 for PRS’s. The proof however is much
simpler.

Theorem 5.4. If F is a Gröbner basis then FO is also a Gröbner basis.
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Proof. According to Theorem 4.2 it suffices to show that every polynomial has a unique normal
form with respect to FO. Suppose t has normal forms n1, n2 with respect to FO. Because F
and FO have the same conversion, we obtain n1 ↔↔F n2 from n1 �FO t�FO n2. By definition
NF (FO) ⊆ NF (F ). Hence n1, n2 ∈ NF (F ). Since F is a Gröbner basis we conclude that
n1 = n2. �

Example 5.5. Applying the transformation of Theorem 5.2 to the Gröbner basis G of the
previous example yields the irreducible Gröbner basis

{
x2 → −xy
y2 → 0.

One might think that every irreducible PRS with the same conversion as a Gröbner basis, is a
Gröbner basis. This is not the case. For instance, the irreducible non-confluent PRS

{
x2y → x
xy2 → x

and the reducible Gröbner basis



x2y → x
xy2 → x
x2 → xy

have the same conversion.

In Figure 7 a more efficient polynomial completion algorithm is presented. The simplification
of the polynomial rewrite rules takes place in the statements “G := FO” and “G := (G∪{n})O”.
The assignment “C := CP(G)” in the if-statement is a bit unrealistic since many critical pairs

Buchberger’s algorithm: efficient version

Input: • a PRS F
Output: • an irreducible Gröbner basis G with the same conversion as F

G := FO;
C := CP(G);
while C 6= ∅ do

choose a pair 〈s, t〉 ∈ C;
reduce s− t to normal form n with respect to G;
if n 6= 0 then

G := (G ∪ {n})O;
C := CP(G)

else
C := C − {〈s, t〉}

fi
od

Figure 7.

of G are already known to be connected. The reason for adopting this simple-minded approach
is that the precise bookkeeping of the critical pairs that can be relegated to oblivion and those
that have to be computed is rather tedious, see Buchberger [1] (Algorithm 6.3) for details.
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Example 5.6. Consider again the PRS F of Example 4.8. The application of the completion
algorithm of Figure 7 to F is illustrated in Figure 9. In this figure a dotted arrow denotes
an application of one of the transition rules of Figure 8. These rules clearly implement the

F ] {f}
F ∪ {g} if f →+

F g, g 6= 0 and g ∈ NF (F )

F ] {f}
F

if f →+
F 0

F ] {f}
F ∪ {f̂} if lc(f) 6= 1

Figure 8.

O-operation. Observe that only two critical pairs are computed compared to the ten pairs in
Example 4.8. In the next section we will see that the second pair actually is superfluous.

f1 : x3y → x2 + xy
f2 : xy2 → y2

x3y2

x2y + xy2 x2y2

x2y + y2 y2

f1 f2

f1 : x3y → x2 + xy
f2 : xy2 → y2

f3 : x2y → 0

f ′1 : −x2 → xy
f2 : xy2 → y2

f3 : x2y → 0

f ′1 : −x2 → xy
f2 : xy2 → y2

f ′3 : −y2 → 0

f ′1 : −x2 → xy
f ′3 : −y2 → 0

f ′′1 : x2 → −xy
f ′3 : −y2 → 0

f ′′1 : x2 → −xy
f ′′3 : y2 → 0

x2y2

−xy3 0

f ′′1 f ′′3

Figure 9.

Proposition 5.7. Let F be a PRS. Suppose t1 and t2 are connected below a monomial s. If
s � u then t1 + u and t2 + u are also connected below s.

Proof. The proof is similar to that of Proposition 4.5(2). The restriction to monomials s
ensures that s � t and s � u imply s � t+ u, for all polynomials t. �

Theorem 5.8. The algorithm of Figure 7 is correct.

20



Proof. We first show the termination of the algorithm. Let fi be the i-th added polynomial
and define pi = lp(fi) for i > 1. Suppose the algorithm doesn’t terminate. It is easy to see
that the sequence f1, f2, . . . is infinite. Define PRS’s Gi for i > 0 as follows: G0 = FO and
Gi+1 = (Gi ∪ {f i+1})O. Using the definition of O, a straightforward induction argument shows
that

NF (Gi) ⊆ NF ({f1, . . . , fi})
for all i > 0. Lemma 2.6 yields pi / pj for some i < j. Since pi is the leading power product
of fi this implies that fj is reducible by means of the rule (fi)→. However, by construction
fj ∈ NF (Gj−1). The above inclusion shows that fj ∈ NF ({f1, . . . , fj−1}). In particular fj is a
normal form with respect to (fi)→. Thus we obtained a contradiction.

Let Ci and Gi denote the respective values of C and G after the i-th iteration of the while-
loop. By induction on i we will show that
(1) ↔↔Gi =↔↔F ,
(2) every critical pair in CP(Gi)− Ci is connected (with respect to Gi).
The basis of the induction is trivial since G0 = F and C0 = CP(G0). Suppose the statement
holds after i iterations of the while-loop and consider iteration i+ 1. We consider two cases:
n = 0 We have Gi+1 = Gi and Ci+1 = Ci − {〈s, t〉}. Property (1) is trivially satisfied. Let

〈c1, c2〉 ∈ CP(Gi+1)−Ci+1. The case 〈c1, c2〉 ∈ CP(Gi)−Ci follows from the induction
hypothesis. Otherwise, 〈c1, c2〉 = 〈s, t〉. Let l1 → r1 and l2 → r2 be the polynomial
rewrite rules that gave rise to the pair 〈c1, c2〉. We have c1 − c2 �Gi 0 and lcm(l1, l2) �
c1, c2. Since lcm(l1, l2) � c1− c2, c1− c2 and 0 are connected below lcm(l1, l2) in Gi. An
application of Proposition 5.7 shows that c1 and c2 can be connected below lcm(l1, l2)
in Gi = Gi+1.

n 6= 0 We have Gi+1 = (Gi ∪ {n})O and Ci+1 = CP(Gi+1). By construction, s ↔↔Gi t and
s− t�Gi n. Proposition 3.5(3) yields n↔↔Gi 0 and hence, as a consequence of Propo-
sition 4.9, the addition of n doesn’t change conversion. Since CP(Gi+1) − Ci+1 = ∅,
property (2) is trivially satisfied.

Suppose the algorithm terminates after N iterations of the while-loop. Since CN = ∅ we infer
from property (2) that all critical pairs of GN are connected. Lemma 4.7 reveals that GN is a
Gröbner basis and property (1) shows that GN and F have the same conversion. �

This section is concluded with a uniqueness result for irreducible Gröbner bases. The proof
is similar to that of the analogous result for TRS’s (Theorem 1.8).

Theorem 5.9. Irreducible Gröbner bases with respect to the same underlying ordering and
with the same conversion are identical.

Proof. Let F and G be irreducible Gröbner bases such that ↔↔F = ↔↔G. Before proving
F = G, we show that F and G define the same normal forms. Suppose to the contrary that
there exists a t ∈ NF (F ) − NF (G). So t →G t′ for some polynomial t′. Since ↔↔F = ↔↔G we
have t ↔↔F t′. Because F is a Gröbner basis and t ∈ NF (F ), this implies t′ →+

F t. But now
we both have t � t′ (since t →G t′) and t′ � t (since t′ →+

F t), which is impossible. Therefore
NF (F ) ⊆ NF (G) and, by symmetry, NF (F ) = NF (G). In order to show that F = G it suffices
to show that F→ ⊆ G→. Let l→ r ∈ F→. Since F is irreducible we know that r is a normal form.
Using ↔↔F =↔↔G and the fact that G is a Gröbner basis, we infer l→+

G r. Let l′ → r′ ∈ G→ be
the rule that is applied first in this sequence. Because 〈l〉 = 〈l′〉 = 1 we obtain l = l′ from the
irreducibility of F . Notice that r′ is a normal form. Confluence of G yields r = r′. Therefore
l→ r ∈ G→. �
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6. Critical Pair Criteria

In this section we present two criteria which show that certain critical pairs do not need to be
considered during the completion process. The first one states that the critical pair between
rules whose left-hand sides have no common indeterminates is superfluous. The correctness of
this criterion relies on the following proposition.

Proposition 6.1. Let s1 be a monomial and s2, t polynomials. If s1 → s2 then s1t� s2 t.

Proof. If t = 0 then we have nothing to prove. If t 6= 0 then there exist monomials m1 � m2 �
· · · � mn (n > 1) such that

t =
n∑

i=1

mi.

Define

uj =
j−1∑

i=1

s2mi +
n∑

i=j

s1mi

for j = 1, . . . , n + 1. Notice that u1 = s1t and un+1 = s2 t. By induction on j we will show
that s1t � uj . The case j = 1 is trivial. Suppose s1t � uj for some j ∈ {1, . . . , n}. We will
prove that uj → uj+1. The important observation is that s1mj ∈M(uj). This is an immediate
consequence of the following two facts, which can be easily proved:

if m ∈M(
j−1∑

i=1

s2mi) then s1mj � m,

if m ∈M(
n∑

i=j

s1mi) then m � s1mj .

Proposition 3.3(1) yields s1mj → s2mj and from Proposition 3.5(1) we infer that

uj =
j−1∑

i=1

s2mi + s1mj +
n∑

i=j+1

s1mi →
j−1∑

i=1

s2mi + s2mj +
n∑

i=j+1

s1mi = uj+1.

�

Example 6.2. Consider the polynomial rewrite rule s1 = x → 1 = s2 and the polynomial
t = x+ 1. We have s1t = x2 + x→ x2 + 1→ x+ 1 = s2 t. It is essential that we start reducing
the least monomial in s1t, otherwise we do not reach s2 t: x2 + x→ x+ x = 2x→ 2 6= x+ 1.

Lemma 6.3. If l1 → r1 and l2 → r2 are polynomial rewrite rules such that lcm(l1, l2) = l1l2
then their critical pair is convergent.

Proof. The critical pair involved is
〈
r1

〈l1〉 l2, l1
r2

〈l2〉
〉
.

Proposition 6.1 shows that
r1

〈l1〉 l2 �
r1

〈l1〉
r2

〈l2〉 � l1
r2

〈l2〉 . �
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Example 6.4. The criterion of Lemma 6.3 reveals that the critical pair between f ′′1 : x2 → −xy
and f ′′3 : y2 → 0 in the completion process of Figure 9 is superfluous.

The second critical pair criterion requires a more complicated formulation. Moreover, it is
difficult to implement. The optimized version of the completion algorithm in Buchberger [1]
(Algorithm 6.3) only detects the case n = 3. Fortunately, the correctness proof is straightfor-
ward.

Lemma 6.5. Suppose we have polynomial rewrite rules li → ri for i = 1, . . . , n such that the
critical pair between li → ri and li+1 → ri+1 is connected for i = 1, . . . , n− 1. If li / lcm(l1, ln)
for all i ∈ {2, . . . , n− 1} then the critical pair between l1 → r1 and ln → rn is connected.

Proof. Clearly l1 / lcm(l1, ln) and ln / lcm(l1, ln). Hence for every i ∈ {1, . . . , n} there exists a
monomial mi such that mili = lcm(l1, ln). Let i ∈ {1, . . . , n − 1}. We will show that miri and
mi+1ri+1 are connected below lcm(l1, ln). By assumption m′ri and m′′ri+1 are connected below
lcm(li, li+1). Here m′ and m′′ are the monomials that satisfy m′li = m′′li+1 = lcm(li, li+1). From
li / lcm(l1, ln) and li+1 / lcm(l1, ln) we infer that lcm(li, li+1) / lcm(l1, ln). Hence there exists a
power product p such that p · lcm(li, li+1) = lcm(l1, ln). We have m′p = mi and m′′p = mi+1.
Repeated application of Proposition 3.3(1) shows that miri and mi+1ri+1 are connected below
lcm(l1, ln). Therefore m1r1 and mnrn are connected (via m2r2, . . . ,mn−1rn−1) below lcm(l1, ln).
Since 〈m1r1,mnrn〉 is the critical pair between l1 → r1 and ln → rn, we are done. �

Example 6.6. Consider the PRS

F =





x2 → xy
y2 → y
xy2 → x2.

The critical pair between the first two rules is convergent according to Lemma 6.3. The critical
pair between the last two rules is also convergent: xy ← x2. Since y2 / x2y2 = lcm(x2, xy2),
Lemma 6.5 shows that the critical pair between the first and the last rule is connected. Hence
F is a Gröbner basis.

The next example shows why we required li / lcm(l1, ln) in Lemma 6.5.

Example 6.7. Consider the PRS

F =





x → 1
y2 → y
xy → x.

The critical pair between x → 1 and y2 → y is convergent according to Lemma 6.3. The
critical pair between y2 → y and xy → x is trivially convergent: xy = xy. We do not have
y2 / xy = lcm(x, xy) and indeed the critical pair 〈y, x〉 between x → 1 and xy → x is not
connected because otherwise F would be a Gröbner basis by Lemma 4.7, which is not the case
as y and 1 are different normal forms of xy.

7. Efficiency versus Simplicity

In the preceding sections we have seen that the lack of “closure under contexts” of the polynomial
rewrite relation is quite an annoyance in the development of the theory of Gröbner bases. In this
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section we propose a possible remedy. The basic idea is very simple. We abandon the distributive
normal form representation and we ‘define’ a polynomial as a finite sum of monomials instead.
So x− x+ y, 2y− y and y are viewed as different polynomials. Every polynomial t corresponds
to a unique polynomial in distributive normal form, which we will denote by t̃.

Definition 7.1. Two polynomials t1, t2 are equivalent, denoted by t1 ∼ t2, if t̃1 = t̃2.

It is easy to see that ∼ is an equivalence relation. Moreover, every equivalence class of
polynomials contains precisely one distributive normal form.

The concept of PRS remains unchanged: we allow only polynomial rewrite rules stemming
from distributive normal forms. However, the induced rewrite relation does change since the
resulting polynomials are no longer put into distributive normal form.

Example 7.2. Consider the Gröbner basis

F =





x2 → 0
x → y − 1
y → 1.

The following normalizing reduction sequences show that the new polynomial rewrite relation
is not confluent:

x2 − xy → xy − x− xy
→ y2 − y − x− xy
→ y2 − y − y + 1− xy
→ y2 − y − y + 1− y2 + y

→ y − y − y + 1− y2 + y

→ y − y − y + 1− y + y

� 1− 1− 1 + 1− 1 + 1,

x2 − xy → −xy
→ −x
→ −y + 1

→ −1 + 1.

Notice that 1− 1− 1 + 1− 1 + 1 and −1 + 1 are equivalent normal forms.

The above example shows that the new polynomial rewrite relation is very inefficient. The
example makes also clear that we have to redefine the concept of Gröbner basis since we can
only hope for confluence modulo ∼. As far as theory is concerned, these drawbacks do not
counterbalance the profit we obtain from the property of “closure under contexts”, which holds
by definition so to say. The new completion process will be based on the abstract approach to
completion modulo some equivalence as developed in Huet [5].

Definition 7.3. Let A = 〈A,→〉 be an ARS and ∼ an equivalence relation on A.
• Two elements a, b ∈ A are joinable modulo ∼, denoted by a ↓∼ b, if there exist c, d ∈ A

such that a� c ∼ d� d.
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• We say that A (or →) is confluent modulo ∼ if c ↓∼ d whenever c � a ∼ b � d, for all
a, b, c, d ∈ A.

• We call A is locally confluent modulo ∼ if b ↓∼ c whenever b← a→ c, for all a, b, c ∈ A.
• We call A is locally coherent with ∼ if b ↓∼ c whenever b← a ∼ c, for all a, b, c ∈ A.

a b∼

c d

e f∼

a

b c

d e∼

a b∼

c

d e∼

confluence modulo ∼ local confluence modulo ∼ local coherence with ∼

Figure 10.

Lemma 7.4 (Huet [5]). Let A = 〈A,→〉 be an ARS and ∼ an equivalence relation on A. If
• A is strongly normalizing,
• A is locally confluent modulo ∼, and
• A is locally coherent with ∼
then A is confluent modulo ∼. �

The proof given in [5] is highly combinatorial. We will give a multiset argument. The idea
is to associate with every conversion (consisting of →, ← and ∼-steps) a multiset such that
an application of one of the local properties results in a conversion whose associated multiset
is smaller with respect to the multiset extension of →+. We have to be careful though, since
the mapping from conversions to multisets used in Lemma 1.1 doesn’t work here. Consider for
example the ARS {a → b, b → c, d → e} with equivalences a ∼ d and c ∼ e. Local coherence
transforms the conversion b← a ∼ d into b→ c ∼ e← d. But the multiset [ b, a, d ] is not greater
than [ b, c, e, d ] as a 6→+ e. The trick is to use a slightly different translation from conversions
to multisets:

step in conversion contribution to multiset

a→ b a

a← b b

a ∼ b a, a, b, b

In our example this gives rise to the multisets [ a, a, a, d, d ] and [ b, c, c, e, e, d ]. Now the former
is greater than the latter since a→+ b, a→+ c and d→+ e.

Proof of Lemma 7.4. The proof has the same structure as that of Lemma 1.1. Conversions
consisting of →, ← and ∼-steps are mapped to multisets according to the above translation
scheme. If a conversion is not a ‘valley modulo ∼’, i.e. of the form a ↓∼ b, then one of the
following situations must occur.
• a← b→ c

An application of local confluence modulo ∼ results in a smaller conversion since all new
elements are reducts of b.
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• a← b ∼ c or a ∼ b→ c
Local coherence of → with ∼ results in a multiset which is easily shown to be smaller in
the multiset extension of →+.

• a ∼ b ∼ c
Since ∼ is transitive, we may replace this situation by a ∼ c.

Repeating these transformations eventually results in a conversion of the form a ↓∼ b. Hence A
is confluent modulo ∼. �

Now we redefine the concept of Gröbner basis. A PRS F is called a Gröbner basis if →F is
confluent modulo ∼. Whereas the previous completion procedures were based on Lemma 1.1, the
new representation calls for Lemma 7.4. Two of the three conditions in Lemma 7.4 are always
satisfied. Strong normalization remains valid in the new setting. The proof (of Proposition 3.10
that is) even becomes simpler because Proposition 2.11 is no longer needed. The following result
shows that local coherence is never a problem.

Lemma 7.5. Every PRS F is locally coherent with ∼.

Proof. Let s →m t and s ∼ u. Decompose s into s1 + s2 such that the following equivalence
holds for all m′ ∈ M(s): m′ = m if and only if m′ ∈ M(s1). Likewise we decompose u into
u1 + u2. It is not difficult to see that s1 ∼ u1 and s2 ∼ u2. From s1 ∼ u1 we infer that

∑

m′∈M(s1)

〈m′〉 =
∑

m′∈M(u1)

〈m′〉.

Let us denote this coefficient by c. We may write s1 = m+ s3. By definition m = m1l for some
monomial m1 and polynomial rewrite rule l→ r. Therefore

t =
∑

m2∈M(r)

m1m2 + s3 + s2.

If m′ ∈M(s3) then m′ = 〈m′〉
〈m〉m1l. So all monomials in s3 can be reduced by means of the rule

l→ r. Hence

t �
∑

m2∈M(r)

m1m2 +
∑

m′∈M(s3)

∑

m2∈M(r)

〈m′〉
〈m〉m1m2 + s2

=
∑

m′∈M(s1)

∑

m2∈M(r)

〈m′〉
〈m〉m1m2

︸ ︷︷ ︸
t′

+s2.

Similarly, the reduction of all monomials in u1 gives rise to the sequence

u �
∑

m′∈M(u1)

∑

m2∈M(r)

〈m′〉
〈m〉m1m2

︸ ︷︷ ︸
u′

+u2.

We have t′ ∼ u′ since

t̂′ =
∑

m2∈M(r)

c

〈m〉m1m2 = û′

Combining this with s2 ∼ u2 yields the desired t′ + s2 ∼ u′ + u2. �
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Example 7.6. Let s = x2y+2x+2x2y, t = 3x2−2x+2x+2x2y and u = 9x2+x+3x2y−9x2+x.
We have s ∼ u and s → t by an application of the polynomial rewrite rule xy → 3x − 2.
Reduction of the monomials 2x2y in t and 3x2y in u yields t → 3x2 − 2x + 2x + 6x2 − 4x and
u→ 9x2 + x+ 9x2 − 6x− 9x2 + x. The resulting polynomials are clearly equivalent.

So in order to complete a given PRS into a Gröbner basis, it suffices to fulfill the second re-
quirement of Lemma 7.4: local confluence modulo ∼. This property is enforced by the joinability
modulo ∼ of critical pairs.

Definition 7.7. A pair 〈s, t〉 is convergent modulo ∼ if s and t are joinable modulo ∼.

Lemma 7.8. A PRS is locally confluent modulo ∼ if and only if all its critical pairs are conver-
gent modulo ∼.

Proof.
⇒ Trivial.
⇐ Due to “closure under contexts” of the polynomial rewrite relation, the proof is much simpler

than that of Lemma 4.7. Consider a PRS with the property that all its critical pairs are
convergent modulo ∼. Let s→m1 t1 and s→m2 t2. by application of the polynomial rewrite
rules l1 → r1 and l2 → r2. We distinguish two cases.

(1) If m1 and m2 are different monomial occurrences in s then we clearly have t1 →m2

t3 ←m1 t2 for some polynomial t3.
(2) Suppose m1 and m2 are the same monomial occurrence m in s. If the applied rules

are the same then t1 = t2. So assume that l1 → r1 and l2 → r2 are different
polynomial rewrite rules and let 〈c1, c2〉 be the corresponding critical pair. We have
c1 ← lcm(l1, l2) → c2 and hence m′c1 ← m → m′c2 where m′ is the monomial such
that m = m′ · lcm(l1, l2). By assumption c1 ↓∼ c2. Clearly m′c1 ↓∼ m′c2. Since → and
∼ are closed under contexts, we obtain t1 = m′c1 + u ↓∼ m′c2 + u = t2. Here u is the
polynomial defined by the equation s = m+ u.

�

Buchberger’s algorithm: inefficient version

Input: • a PRS F
Output: • a Gröbner basis G with the same conversion as F

C := CP(F );
G := F ;
while C 6= ∅ do

choose a pair 〈s, t〉 ∈ C;
C := C − {〈s, t〉};
reduce s− t to normal form n with respect to G;
if ñ 6= 0 then

C := C ∪ CP(G, {ñ});
G := G ∪ {ñ}

fi
od

Figure 11.

Figure 11 shows a simple completion procedure based on the new representation of polyno-
mials. The correctness proof is a straightforward adaptation of the proof of Theorem 4.10.
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The reader is invited to check that the developments presented in Sections 5 and 6 can also
be performed in the new setting.
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