
On computing Gröbner bases in rings of

differential operators with coefficients in a ring

September 14, 2005

Meng Zhoua, Franz Winklerb.1

aDepartment of Applied Mathmatics, Beihang University, Beijing(100083), China.
(E-mail: Zhoumeng1613@hotmail.com)
bRISC-Linz, J. Kepler University Linz, A-4040 Linz, Austria.
(E-mail: Franz.Winkler@risc.uni-linz.ac.at)

abstract. Following the definition of Gröbner bases in rings of differential
operators given by Insa and Pauer(1998), we discuss some computational prop-
erties of Gröbner bases arising when the coefficient set is a ring. First we give
examples to show that the generalization of S-polynomials is necessary for com-
putation of Gröbner bases. Then we prove that under certain conditions the
G-S-polynomials can be reduced to be simpler than the original one. Especially
for some simple case it is enough to consider S-polynomials in the computation
of Gröbner bases. The algorithm for computation of Gröbner bases can thus be
simplified. Last we discuss the elimination property of Gröbner bases in rings
of differential operators and give some examples of solving PDE by elimination
using Gröbner bases.
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1 Introduction

Let K be a field of characteristic zero, n a positive integer, K(x1, · · · , xn) the
field of rational functions in n variables over K. Let ∂

∂xi
: K(x1, · · · , xn) −→

K(x1, · · · , xn) be the partial derivative by xi, 1 ≤ i ≤ n.
Let R be a noetherian K-subalgebra of K(x1, · · · , xn) which is stable under

∂
∂xi

, 1 ≤ i ≤ n. We denote by Di the restriction of ∂
∂xi

to R, 1 ≤ i ≤ n.
Let A = R[D] = R[D1, · · · , Dn] be the R-subalgebra of EndK(R) generated
by idR = 1 and D1, · · · , Dn. R[D] is called ”a ring of differential operators
with coefficients in R”(Insa and Pauer(1998)). R[D] are non-commutative K-
algebras with fundamental relations

xixj = xjxi, DiDj = DjDi, xiDj −Djxi = −δij for 1 ≤ i, j ≤ n,

1This work has been supported by the FWF project P16357-N04.
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and rDi −Dir = −Di(r) r ∈ R (1)
where δij is the Kronecker delta.

Then, the elements of R[D] can be written uniquely as finite sums∑
(i1,··· ,in)∈Nn

ri1,··· ,inDi1
1 · · ·Din

n where ri1,··· ,in ∈ R

or shortly as
∑

i∈Nn riD
i, i = (i1, · · · , in), ri ∈ R. (2)

By a ring of (linear partial) differential operators, one usually means one of
the following three rings(cf. Björk (1979)):

(i) The Weyl algebra, or the ring of differential operators with polynomial
coefficients

An = K[x1, · · · , xn][D1, · · · , Dn], (3)

where K is a field of characteristic 0;

(ii) The ring of differential operators with rational function coefficients

Rn = K(x1, · · · , xn)[D1, · · · , Dn], (4)

(iii) The ring of differential operators with convergent power series coeffi-
cients

D0 = K{x1, · · · , xn}[D1, · · · , Dn]. (5)

We see that (3) and (4) are special examples of R[D]. And there are some
other important examples for R[D]. For instance, the ring of differential oper-
ators with coefficients in a local ring R, A = R[D1, · · · , Dn], where

R = K[x1, · · · , xn]M = {f

g
∈ K(x1, · · · , xn) | f ∈ K[x1, · · · , xn], g ∈ M}

and M is a subset of K[x1, · · · , xn]\{0} closed under multiplication.
In rings of differential operators R[D], the set of ”terms” is {Dα, α ∈ Nn}.

Note that in this case the terms do not commute with the coefficients ri ∈ R.
Let ≺ be a term order on Nn, i.e. 0 = (0, · · · , 0) ≺ s for all s ∈ Nn\{0} and

s + u ≺ t + u if s ≺ t. For a differential operator 0 6= f =
∑

i∈Nn riD
i define

degree, leading coefficient and initial term as follows:
deg(f) = max≺{i | ri 6= 0} ∈ Nn

lc(f) = rdeg(f)

in(f) = lc(f)Ddeg(f)

For a subset F of R[D] define
deg(F ) = {deg(f) | f ∈ F, f 6= 0}
in(F ) = {in(f) | f ∈ F, f 6= 0}

Insa and Pauer(1998) proved the following result about division in R[D].
Theorem 1 Let F be a finite subset of R[D]\{0} and let g ∈ R[D]. Then there
is a r ∈ R[D] and there is a family (hf )f∈F in R[D] such that

(i) g =
∑

f∈F hff + r,
(ii) for all f ∈ F, hf = 0 or deg(hff) � deg(g),
(iii) r = 0 or lc(r) /∈ R〈lc(f); deg(r) ∈ deg(f) + Nn〉.
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An r satisfying the conditions in Theorem 1 is called a remainder of f after
division by F .

An ideal in R[D] always means a left-ideal of R[D]. For an ideal J in R[D]
a Gröbner basis of J is defined as follows.
Definition 1 Let J be an ideal in R[D] and let G be a finite subset of J\{0},
then G is called a Gröbner basis (or shortly GB) of J with respect to the term
order ”≺” iff for all f ∈ J,

lc(f) ∈ R〈lc(g); g ∈ G, deg(f) ∈ deg(g) + Nn〉.

Proposition 1 Let J be an ideal in R[D], G be a Gröbner basis of J .
(i) If f ∈ J , then every remainder of f after division by G is 0.
(ii) f ∈ J iff a remainder of f after division by G is 0.
Proof: (i) Let r be a remainder of f after division by G. Then by Theorem

1, f =
∑

g∈G hgg + r and

r = 0 or lc(r) /∈ R〈lc(g); deg(r) ∈ deg(g) + Nn〉.

Because r ∈ J and G is a Gröbner basis of J , r must be 0 by Definition 1.
(ii) Let f ∈ J , r be a remainder of f after division by G. Then by (i)

we see r = 0.
If a remainder r of f after division by G is 0, then

f =
∑
g∈G

hgg + r =
∑
g∈G

hgg,

therefore f ∈ J .
Corollary Let J be an ideal in R[D] and let G be a finite subset of J\{0}, then
G is a Gröbner basis of J ( with respect to the term order ”≺” ) iff for all f ∈ J,
a remainder of f after division by G is 0.

Proof. If G is a Gröbner basis of J , then by Proposition 1 for all f ∈ J a
remainder of f after division by G is 0.

If there is a remainder of f after division by G is 0, then

f =
∑
g∈G

hgg + r =
∑
g∈G

hgg,

therefore lc(f) =
∑

cilc(gi). This means

lc(f) ∈ R〈lc(g); g ∈ G, deg(f) ∈ deg(g) + Nn〉.

So, by Definition 1, G is a Gröbner basis of J .
Insa and Pauer also describe Buchberger’s algorithm for computing Gröbner

bases in R[D]. Of course it is more complex than in An or Rn.

2 Computation of Gröbner bases in R[D] and
generalization of S-polynomials

We assume that we can solve linear equations over R, i.e. for all r ∈ R and all
finite subsets S ⊆ R, we can decide if r is an element of R〈S〉, and if yes we can
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compute a family (ds)s∈S in R such that r =
∑

s∈S dss; for all finite subsets
S ⊆ R a finite system of generators of the R-module

{(cs)s∈S ∈ RS |
∑
s∈S

css = 0}

can be computed.
Let J be the left ideal in R[D] generated by a finite set of differential oper-

ators G, for E ⊆ G let SE be a finite set of generators of the R-module

{(ce)e∈E |
∑
e∈E

celc(e) = 0} ≤ R(RE) (6)

Then for s = (ce)e∈E ∈ SE ,

fs =
∑
e∈E

ceD
m(E)−deg(e)e (7)

is called the generalized S-polynomial(G-S-polynomial) with respect to s, where

m(E) = (maxe∈Edeg(e)1, · · · ,maxe∈Edeg(e)n) ∈ Nn.

If E = {g, h} ⊆ G includes only two elements, choose c, d ∈ R such that

c · lc(g) = d · lc(h) = lcm(lc(g), lc(h)) ∈ R.

Then SE = {(c, d)} will be a set of generators of the R-module (6) and the
G-S-polynomial with respect to (c, d) will be

f(c,d) = cDm({g,h})−deg(g)g − dDm({g,h})−deg(h)h

It is called S-polynomial and denoted by S(g, h).

The following proposition generalizes Buchberger’s Theory to R[D] with
coefficients in a commutative noetherian ring R.
Proposition 2 (Insa and Pauer (1998)). Let J be an ideal in R[D]. Then G
is a Gröbner basis of J ⇐⇒ for all E ⊆ G and for all s = (ce)e∈E ∈ SE a
remainder of fs after division by G is zero.

If R is a PID, then G is a Gröbner basis of J ⇐⇒ for all {g, h} ∈ G a
remainder of S(g, h) after division by G is zero.

Therefore, the Buchberger’s algorithm is: if there is a remainder r of fs after
division by G is not zero, replace G by G

⋃
{r}.

But in the paper of Insa and Pauer, all examples for GB computation involve
S-polynomials only, even when R is not a PID. There is no example to show that
G-S-polynomials are necessary for GB computation. The next example shows,
even if R is a commutative domain, when G includes at least three elements
G-S-polynomials will be necessary for GB computation.
Example 1 Let R = Q[x1, · · ·x6] and A = R[D1, · · ·D6], J be the left ideal
of A generated by G = {f1, f2, f3}, where f1 = x1D4 + 1, f2 = x2D5, f3 =
(x1 + x2)D6. Let ≺ be the graded lexicographic order with (1, 0, · · · , 0) ≺
(0, 1, · · · , 0) ≺ (0, · · · , 0, 1).
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Now all S-polynomials S(g, h) in G reduce to 0 by G:

S(f1, f2) = x2D5f1−x1D4f2 = x2D5(x1D4+1)−x1D4x2D5 = x2D5 = 0(modG)

S(f1, f3) = (x1+x2)D6f1−x1D4f3 = (x1+x2)D6(x1D4+1)−x1D4(x1+x2)D6

= (x1 + x2)D6 = 0(modG)

S(f2, f3) = (x1 +x2)D6f2−x2D5f3 = (x1 +x2)D6x2D5−x2D5(x1 +x2)D6 = 0

But consider E = G ⊆ G,

{(ce)e∈E |
∑
e∈E

celc(e) = 0} = {(c1, c2, c3) | c1x1 + c2x2 + c3(x1 + x2) = 0}

and s = (1, 1,−1) ∈ SE . Then there is a G-S-polynomial
fs = c1D5D6f1 + c2D4D6f2 + c3D4D5f3

= D5D6(x1D4 + 1) + D4D6(x2D5)−D4D5[(x1 + x2)D6] = D5D6

Because the remainder of fs after division by G is not zero, G is not a
GB of J . In order to get a GB of J , denote fs by f4, we must replace G by
G1 = {f1, f2, f3, f4} and then compute G-S-polynomials for all E ⊆ G1 and for
all s = (ce)e∈E ∈ SE .

But as we will demonstrate afterwards, we can conclude that G1 is a GB of
J by the fact that S(fi, f4) (i = 1, 2, 3) are zero after division by G1.

If G = {g, h} include only two elements and R is a commutative domain
then most examples of computing GB in R[D] show that we can get a GB by
computing S-polynomials only. But we find an example in which that is not the
case.
Example 2 Let R = Q[x1, x2, x3] and A = R[D1, D2, D3], J be the left ideal of
A generated by G = {f1, f2}, where f1 = x1D

2
3+x2D3+x2, f2 = x2D

2
3+x1D3+

x1. Let ≺ be the graded lexicographic order with (1, 0, 0) ≺ (0, 1, 0) ≺ (0, 0, 1).
Compute S-polynomials:

f3 = S(f1, f2) = (x2
2 − x2

1)D3 + (x2
2 − x2

1)

f4 = S(f1, f3) = (x2
2 − x2

1)(x2 − x1)D3 + (x2
2 − x2

1)x2

f5 = S(f2, f3) = (x2
2 − x2

1)(x1 − x2)D3 + (x2
2 − x2

1)x1

f6 = S(f4, f5) = (x2
2 − x2

1)(x1 + x2)

f7 = S(f3, f4) = (x2
2 − x2

1)x1

f8 = S(f3, f5) = (x2
2 − x2

1)x2

Let G1 = {f1, f2, f3, f7, f8}, then all S(fi, fj) in G1 is zero after division by G1:

S(f1, f2) = f3 = 0(modG1)

S(f1, f3) = f4 = (f8 − f7)D3 + f8 = 0(modG1)

S(f1, f7) = (x2
2 − x2

1)x2D3 + (x2
2 − x2

1)x2 = f8(D3 + 1) = 0(modG1)

S(f1, f8) = (x2
2 − x2

1)x
2
2D3 + (x2

2 − x2
1)x

2
2 = f8x2(D3 + 1) = 0(modG1)

S(f2, f3) = f5 = (f7 − f8)D3 + f7 = 0(modG1)
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S(f2, f7) = (x2
2 − x2

1)x
2
1D3 + (x2

2 − x2
1)x

2
1 = f7x1(D3 + 1) = 0(modG1)

S(f2, f8) = (x2
2 − x2

1)x1D3 + (x2
2 − x2

1)x1 = f7(D3 + 1) = 0(modG1)

S(f3, f7) = f7 = 0(modG1)

S(f3, f8) = f8 = 0(modG1)

S(f7, f8) = 0

But G1 is not a GB of J because there is a G-S-polynomial fs that is not reduced
to zero by G1. Choose E = {f1, f2, f3} ⊆ G1, then

{(ce)e∈E |
∑
e∈E

celc(e) = 0} = {(c1, c2, c3) | c1lc(f1) + c2lc(f2) + c3lc(f3) = 0}

= {(c1, c2, c3) | c1x1 + c2x2 + c3(x2
2 − x2

1) = 0}
and s = (c1, c2, c3) = (x1,−x2, 1) ∈ SE .
Then
fs = x1f1 − x2f2 + D3f3

= x1(x1D
2
3+x2D3+x2)−x2(x2D

2
3+x1D3+x1)+D3[((x2

2−x2
1)D3+(x2

2−x2
1)]

= (x2
2 − x2

1)D3

fs may be reduced to g = (x2
2− x2

1) by G1 because that fs = f3− (x2
2− x2

1).
Now g can’t be reduced to zero by G1.

Let G2 = {f1, f2, g}. For E = G2, the set SE of generators of the R-module
{(c1, c2, c3) | c1x1 + c2x2 + c3(x2

2 − x2
1) = 0} is (cf. F. Winkler(1996))

SE = {(x1,−x2, 1), (0, x2
2 − x2

1,−x2), (x2
2 − x2

1, 0,−x1)}

It is easy to check all G-S-polynomials fs in G2 are zero after divided by G2.
Therefore the GB of J is G2 = {f1, f2, g} but it can’t be computed with S-
polynomials only.

Generally we need to compute G-S-polynomials fs for all E ⊆ G and for
all s ∈ SE in order to get a GB of J generated by G. And in the process if
we replace G by G1 = G

⋃
{r}, we must repeat the procedure for G1. If we

can get the GB by computing S-polynomials only in some conditions then the
procedure would be simplified. Now we consider in what conditions we can do
so.

Let R be a commutative domain(not necessarily a PID), A = R[D1, · · · , Dn],
J the ideal in A generated by G which is a finite subset of J\{0}. For E =
{f1, · · · , fk} ⊆ G,

{(ce)e∈E |
∑
e∈E

celc(e) = 0} = {(c1, · · · , ck) |
k∑

j=1

cj lc(fj) = 0}

is the set of solutions of the equation

c1lc(f1) + · · ·+ cklc(fk) = 0.

Denote sj = lc(fj), so the equation becomes

c1s1 + · · ·+ cksk = 0. (8)
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LetSE be the finite set of generators of the solutions of (8).
Lemma 1 For E = {f1, · · · , fk} ⊆ G, if some sj = lc(fj) is invertible in R, then
all G-S-polynomials corresponding to SE can be simplified to S-polynomials.

Proof: If some sj is invertible in R, say sk is invertible, then the equation
(8) will be

ck = −
k−1∑
i=1

ci · (
si

sk
)

Then ξi = (0, · · · , 1︸ ︷︷ ︸
i

, 0, · · · ,− si

sk
), i = 1, · · · , k−1, will be generators of the

solutions. The corresponding G-S-polynomials are:

fξi
=

∑
e∈E

ceD
m(E)−deg(e)e = Dm(E)−deg(fi)fi + (−si)Dm(E)−deg(fk)fk

Note that for S-polynomials

S(fi, fk) = Dm({fi,fk})−deg(fi)fi + (−si)Dm(({fi,fk})−deg(fk)fk

we have
fξi

= DαS(fi, fk) + hifk

for some α ∈ Nn, hi ∈ R[D]. If S(fi, fk) is zero after divided by G, then fξi
is

zero after divided by G.
Definition 2 Let E1 = {f1, · · · , fs} ⊆ G, E2 = {g1, · · · , gt} ⊆ G. Then G-S-
polynomials corresponding to SE1 (or SE2) are said to be of grade s (or t). If
s < t, then G-S-polynomials corresponding to SE1 are said to be of lower grade
than G-S-polynomials corresponding to SE2 .
Lemma 2 For E = {f1, · · · , fk} ⊆ G, if some si can be divided exactly by sj

(j 6= i) in R, then all G-S-polynomials corresponding to SE can be simplified to
G-S-polynomials of lower grade.

Proof: If some si can be divided exactly by sj (j 6= i) in R, say sk = hksk−1,
then the equation (8) will be

c1s1 + · · ·+ (ck−1 + ckhk)sk−1 = 0 (9)

Denote c′k−1 = ck−1 + ckhk, the equation (9) will be

c1s1 + · · ·+ c′k−1sk−1 = 0 (10)

If βi = (c(i)
1 , · · · , c

(i)
k−1) are the generators of solutions of (10), then

ξi = (c(i)
1 , · · · , c

(i)
k−1, 0) and α = (0, · · · , 0,−hk, 1)

will be the generators of solutions of (9).
In fact, if c = (c1, · · · , ck) is a solution of (9), put c′k−1 = ck−1 + ckhk, then

(c1, · · · , ck−2, c
′
k−1) is a solution of (10). So (c1, · · · , ck−2, c

′
k−1) =

∑
kiβi and

(c1, · · · , ck−2, c
′
k−1, 0) =

∑
kiξi. Because

(c1, · · · , ck−2, c
′
k−1, 0)+ckα = (c1, · · · , ck−2, ck−1+ckhk, 0)+(0, · · · , 0,−ckhk, ck)

= c, we get that c =
∑

kiξi − ckα. This means {ξi, α} are the generators of
solutions of (9).

The G-S-polynomials corresponding to α can be simplified to S-polynomials
S(fk−1, fk), and the G-S-polynomials corresponding to ξi can be simplified to
G-S-polynomials of lower grade.
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With Lemma 1 and Lemma 2 we get the following proposition.
Proposition 3 Let G = {f1, · · · , fm} and J be the left ideal of R[D] generated
by G.

(a) If all S-polynomials S(fi, fj) are reduced to zero by G, then for E =
{g1, · · · , gk} ⊆ G with some lc(gj) invertible, all of G-S-polynomials corre-
sponding to E will be reduced to zero by G.

(b) If all G-S-polynomials with grade k are reduced to zero by G, then for
E = {g1, · · · , gk, gk+1} ⊆ G with some lc(gj) divided exactly by another lc(gi),
all of G-S-polynomials corresponding to E will be reduced to zero by G.

The following corollary improves the result of Insa and Pauer (see Proposi-
tion 1).
Corollary Let G = {f1, · · · , fm} ⊆ R[D] and J be the left ideal of R[D]
generated by G. Then G is a Gröbner basis of J ⇐⇒ any G-S-polynomials with
lower grade than k (k ≤ m) are reduced to zero by G and in any k elements of
G there is an lc(f) divided exactly by another lc(f).

Especially, if in G = {f1, · · · , fm} all S(fi, fj) are reduced to zero by G,
and for any three elements {fi, fj , fk} ⊆ G there is an lc(f) divided exactly by
another lc(f), then G is a Gröbner basis of J .

The algorithm to compute GB of J in R[D] will be simplified. The following
proposition improves the result of Insa and Pauer (Prop. 4 of [5]).
Proposition 4 Let J be an ideal in R[D] given by a finite set G of generators.
In the following way we compute in finitely many steps a Gröbner basis of J :
While there are a subset E ⊆ G and a family s = (ce)e∈E ∈ SE such that
the remainder r of G-S-polynomials fs after divided by G is zero, replace G by
G

⋃
{r}. And in the procedure we ignore those subsets E in which there is an

lc(f) divided exactly by another lc(f).
Example 3 Let R = { f

g ∈ K(x1, x2) | f, g ∈ K[x1, x2], g(0, 0) 6= 0} and
A = R[D1, D2], J be the left ideal of A generated by G = {x1D2, x2D1}. Let
≺ be the graded lexicographic order with (1, 0) ≺ (0, 1). Example 5 in Insa and
Pauer(1998) compute the GB of J with S-polynomials only and get

G′ = {x1D2, x2D1, x2D2 − x1D1, x
2
1D1, x1D

2
1 + 2D1}

in which all S-polynomials S(fi, fj) are reduced to zero by G′.
Now for any three elements {fi, fj , fk} in G′, there is an lc(f) divided exactly
by another lc(f). So by the Corollary of Proposition 3 or Proposition 4, we
ignore all G-S-polynomials with higher grade than 2 and then G′ is a Gröbner
basis of J .
Example 4 In Example 1 we get

G1 = {f1, f2, f3, f4} = {x1D4 + 1, x2D5, (x1 + x2)D6, D5D6}

with all S(fi, fj) are zero after divided by G1. Because lc(f4) = 1 is invertible
we ignore any E ⊆ G1 which include f4 when we compute G-S-polynomials.
So the only G-S-polynomial fs we need to consider is that corresponding to
E = {f1, f2, f3}. But we already compute fs = f4 in Example 1. This means
fs is reduced to zero by G1. By Proposition 2 G1 is a Gröbner basis of J .

Note that in Example 2, we get

G1 = {f1, f2, f3, f7, f8} = {x1D
2
3 + x2D3 + x2, x2D

2
3 + x1D3 + x1,
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(x2
2 − x2

1)D3 + (x2
2 − x2

1), (x2
2 − x2

1)x1, (x2
2 − x2

1)x2}

with all S(fi, fj) are zero after divided by G1. But G1 is not a Gröbner basis
of J .

This is because, if we choose 3 elements {f1, f2, f3} ⊆ G1, then

{lc(f1), lc(f2), lc(f3)} = {x1, x2, (x2
2 − x2

1)}.

None of the three is divided exactly by another and we need to compute the
corresponding G-S-polynomials.

3 Elimination properties of Gröbner bases in
rings of differential operators R[D]

Let R[Y ] be a ring of differential operators, Y = {y1, · · · , ym} and {y1, · · · , ym}
denotes {x1, · · · , xn, D1, · · · , Dn} or {D1, · · · , Dn}. Denote by Yk the first k
elements of Y . If I is an ideal in R[Y ], then it is known that Ik = I

⋂
R[Yk] is

an ideal of R[Yk], which is called the k-th elimination ideal of I.
In commutative polynomial algebras, the elimination ideal Ik of I can be

easily obtained if one has a Gröbner basis of I with respect to a term ordering
having the ”elimination” property.
Definition 3 Let R[Y ] be a ring of differential operators and ”≺” be a term
order on 〈Y 〉 = {Y α | α ∈ Nm} (this is equivalent to a term order on Nm). If
for every s, t ∈ 〈Y 〉, s < t and t ∈ 〈Yk〉 implies s ∈ 〈Yk〉, then the term order is
called an elimination term order at the position k. (This is equivalent to: If for
every α = (α1, · · · , αm), β = (β1, · · · , βm) ∈ Nm, α < β and βi = 0 for all i > k
implies αi = 0 for all i > k, then the term order is called an elimination term
order at the position k.)

It is well known (cf.[1]), a term order is an elimination term order on 〈Y 〉 at
the position k iff for all s ∈ 〈Yk〉, s < yj when j > k.

In commutative polynomial algebras, lexicographic order is an elimination
order, but degree-lexicographic order is not an elimination order. It is easy to
see this is also true for rings of differential operators.
Definition 4 Let G be a Gröbner basis of an ideal I in R[Y ]. If for each gi ∈ G,

lc(gi) /∈ R〈lc(gj) | gj ∈ G, j 6= i, deg(gi) ∈ deg(gj) + Nm〉,

then G is called a reduced Gröbner basis of I.
The following proposition discribes the elimination property of Gröbner

bases in R[Y ].
Proposition 5 Let I be an ideal in a ring of differential operators R[Y ], G
be a Gröbner basis of I with respect to an elimination term order ”≺” at the
position k. Then the following holds:

(i) For each f ∈ R[Yk] and g ∈ R[Y ], if

deg(f) ∈ deg(g) + Nm,

then g ∈ R[Yk].
(ii) Gk = G

⋂
R[Yk] is a Gröbner basis of Ik = I

⋂
R[Yk] with respect to the

restriction of ”≺” onto 〈Yk〉.
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(iii) If G is reduced, then Gk is reduced.
Proof: (i) Since deg(f) ∈ deg(g) + Nm, we have that the leading term if g is

in 〈Yk〉. But ≺ is an elimination ordering, so g ∈ R[Yk].
(ii) Let f ∈ Ik = I

⋂
R[Yk]. Then f ∈ I and since G is a Gröbner basis for

I there exist g1, · · · , gs ∈ G such that

lc(f) ∈ R〈lc(gj) | 1 ≤ j ≤ s〉

and deg(f) ∈ deg(gj) + Nm, 1 ≤ j ≤ s.
By (i) this means that gj ∈ R[Yk] for all 1 ≤ j ≤ s, so

lc(f) ∈ R〈lc(g) | g ∈ Gk, deg(f) ∈ deg(g) + Nm〉.

By Definition 1, Gk = G
⋂

R[Yk] is a Gröbner basis for Ik.
(iii) The conclusion is obvious.
Note that the definition of Gröbner bases in A = R[D1, · · · , Dn] is a gener-

alization of the definition of Gröbner bases in the Weyl algebra

An = K[x1, · · · , xn][D1, · · · , Dn]

and also of the definition of Gröbner bases in

Rn = K(x1, · · · , xn)[D1, · · · , Dn].

Therefore, if Proposition 5 hold for A = R[D1, · · · , Dn], then the elimination
property holds in rings of differential operators An, Rn and R[D], if we choose
some elimination term order and get a Gröbner basis of an ideal I.

Now we give some simple examples for applying the elimination property of
Gröbner bases to systems of linear differential equations.

Example 5
{

2xy′′ = 0
y′′′ + x2y′ − xy = 0

This system of linear ordinary differential equations can be written as{
(2xD2)y = 0
(D3 + x2D − x)y = 0

where D is the differential operator ∂
∂x . Put f1 = 2xD2, f2 = D3 +x2D−x,

then f1, f2 ∈ K[x][D], the Weyl algebra with one variable. Note that K[x] is a
PID, we compute a Gröbner basis of I = 〈f1, f2〉 by S-polynomials with respect
to lexicographic order:

S(f1, f2) =
1
2
Df1 − xf2 = D2 − x3D + x2 = f3,

then f2 = (D − x3)f3 + (x4 + 3)(x2D − x).
So we can reduce f2 to f̄2 = (x4 + 3)(x2D − x).

S(f1, f3) =
1
2
f1 − xf3 = x4D − x3 = x2(x2D − x) = f4.
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Now f̄2 = (x4 + 3)(x2D − x) = x2f4 + 3(x2D − x), we can reduce f̄2 to ¯̄f2 =
x2D − x, then f3 = −x ¯̄f2 + D2, so we can reduce f3 to f̄3 = D2.

S( ¯̄f2, f̄3) = D ¯̄f2 − x2f̄3 = x2D2 + 2xD − xD − 1− x2D2 = xD − 1 = f5.

Note that f4 = x3f5, ¯̄f2 = xf5, f1 = 2xf̄3, and S(f̄3, f5) = 0, we see that
{D2, xD−1} is a Gröbner basis of I = 〈f1, f2〉. The system of linear differential
equations can be reduced to: {

y′′ = 0
xy′ − y = 0

Then it is easy to see that y = cx, c ∈ C, is the general solution of the system.

Möller and Mora(1986) have shown how to generalize the theory of Gröbner
bases to commutative polynomial modules. In fact, this generalization also
works in R[Y ] modules. Here we just show an example.

Example 6
{

xy′′1 + y′′2 = 0
x2y′1 + xy′2 = 0

where y1 and y2 are the two unknown functions in x.

Put f1 = (xD2, D2) = xD2e1 + D2e2, f2 = (x2D,xD) = x2De1 + xDe2,
where D = ∂x, f1, f2 ∈ [R[D]]2, the free R[D]-module with dimension 2 and
e1 = (1, 0), e2 = (0, 1) is the standard basis of the module. The order will be
POT extension of lexicographic order:

(i, ej) ≺ (k, el) ⇐⇒ j ≺ l or [j = l and i ≺ k].

Then

S(f1, f2) = xf1 −Df2 = x(xD2, D2)−D(x2D,xD) = (−2xD,−D) = f3

S(f1, f3) = f1 +
1
2
Df3 = (xD2, D2) +

1
2
D(−2xD,−D) = (−D,

1
2
D2) = f4

S(f2, f3) = f2 +
1
2
xf3 = (x2D,xD) + (−x2D,−1

2
xD) = (0,

1
2
xD) = f5

Note that f3 = 2xf4 − 2Df5, f2 = −x2f4 + (xD + 1)f5. Now it is easy to verify
that {f1, f4, f5} is a Gröbner basis of N = 〈f1, f2〉. The system can be reduced
to:  xy′′1 + y′′2 = 0

2y′1 − y′′2 = 0
xy′2 = 0

Then y1 = c1, y2 = c2 is the solution of the system.
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