Available online at www.sciencedirect.com

ADVANCES IN
¥ SCIENCE DIRECT*® )
% @ Applied
R { s .
bl Mathematics
ELSEVIER Advances in Applied Mathematics 34 (2005) 740-767

www.elsevier.com/locate/lyaama

A new Sigma approach to multi-summation

Carsten Schneidér

Research Institute for Symbolic Computation, Johannes Kepler University Linz,
Altenberger Str. 69, A-4040 Linz, Austria

Received 14 May 2004; accepted 23 July 2004

Dedicated to the memory of David Robbins

Abstract

We present a general algorithmic framework that allows not only to deal with summation prob-
lems over summands being rational expressions in indefinite nested sums and products (Karr, 1981),
but also ovep-finite and holonomic summand expressions that are given by a linear recurrence. This
approach implies new computer algebra tools implementsgina to solve multi-summation prob-
lems efficiently. For instance, the extend&gma package has been applied successively to provide
a computer-assisted proof of Stembridge’s TSPP Theorem.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Gosper’s indefinite summation algorithm [14] and Zeilberger’s method of creative tele-
scoping [37] for hypergeometric terms can be seen as a major breakthrough in symbolic
summation [23]. These ideas have been generalized in various directions.

Based on Karr’s difference field theory éfX-fields [15,16] and ideas from [6] al-
gorithms have been developed [26-28,30,31] and implemented in the summation pack-
age Sigma [25,29] that not only can deal with telescoping and creative telescoping in
(¢-)hypergeometric terms, as shown in [32], but more generally in so-cailEdfields.
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13 -fields allow us to describe rational expressions involving indefinite nested sums and
products. The wide applicability of this approach is illustrated for instance in [10,11,21,29].

Another general approach is [8] that extends hypergeometric to general holonomic cre-
ative telescoping and, in particular, &efinite functions. A crucial observation is that the
difference field machinery [26] can be embedded in this general approach [8,9] based
on [38]. More precisely, we are able to develop a common framewogkgina in which
both, Karr's summation theory [15] and ideas of thénite algorithms [8,9] are combined.

This combined approach enables one to treat indefinite and definite summation problems
that could not be treated so far. In particular, by restricting the input class of [8], we were
able to simplify and streamline ideas in [8] which results in algorithms which are free of
any Grobner bases computations. Another new feature concerns the fact that no uncou-
pling algorithm for systems of difference equations is needed. For further remarks relating
to Chyzak’s approach see below of Example 11.

All these ideas allow us to derive a new computer assisted proof [5] of Stembridge’s
TSPP Theorem [33]. These highly non-trivial applications, together with other examples,
will illustrate our results throughout this paper.

The general structure is as follows. At the end of this section we introduce the para-
digms on which all our summation algorithms are based. In Section 2 we supplement the
discussion of the key problem (GPTRT) by various illustrative examples. In Section 3 we
present the algorithms that allow to solve our problem in general difference fields. In Sec-
tion 4 we apply these techniques by showing how a huge class of multi-sum identities can
be proven. In Section 5 we describe the usage of our extended Mathematica [&igkage
which contains implementations of all the algorithms described.

SubsequentlW denotes the non-negative integers andenotes a vector of variables
(n1,...,n,) ranging over the integers. All our summation algorithms are based on the
paradigm of

Generalized Parameterized Telescoping (GPT).

e Given fi(n,k) for0<i <d,
e find co(n), ..., cqy(n), free ofk and not all zero, angd(n, k) such that

g, k+1)—gn k)=co®)fon, k) +---+can)fan, k) 1

holds for allr andk in a certain range.

Summing (1) over alk from a to b gives

b b
com) Y fom k) + - +cam) Y fa(n k)

k=a k=a

=gn,b+1)—gn,a), b—a=0 (2)
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which specializes to indefinite and definite summation as follows. For the special case
d = 0 one obtains a representation for the indefinite sum, namely

b
_gn,b+1)—gn,a)
kgaj foln, k) = o~ : 3)

In order to arrive at definite summation, one specializés, k) := f (n+y;, k) for agiven
f(n, k) and where they; € N specify the non-negative integer shifts. This reduces GPT
to

Specialized Parameterized Telescoping (SPT).

e Given f(n, k) and{yg,...,y;} SN,
e find co(n), ..., cq(n), free ofk and not all zero, ang(n, k) such that

g k+1)—gn k)=com)f(n+yo,k)+ - +cam)f(n+yz. k)  (4)
holds for allr andk in a certain range.
We say thatr is integer linear im, if @ = )_'_; vini + yo for integersy;. Defining

B
S(n) = Zf(n, k), o andp areinteger-linear im, (5)

k=«

and summing (4) over ald from a sulfficiently large interval, one obtains a not necessarily
homogeneous recurrence relation

com)Sm+yg)+---+cam)Smn+y,;) =hn). (6)

Observe that all methods based on the SPT-paradigm, like [8,19,37], not only deliver
recurrence relations of the type (6) but provide all the information needed to verify the
computed result independently of the steps of the algorithm. Namely, given the solutions
ci(n) andg(n, k) for problem SPT, one verifies the summand equation (4). This implies
the correctness of the recurrence (6) itself.

2. Thebasic mechanism
We are interested in the following summation problégiven S(n) = Zf:a f(n, k)
as in (5) where for the summantin, k) the following properties hold: For a fixed non-

negative integes,

f,k)=ho(n, k)T (n, k) + -+ hs(n, k)T (n, k +5) + hs11(n, k); (7)
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in addition,T (n, k) satisfies a recurrence of orde# 1 of the form
T, k+s+1)=aom, )T, k)+---+asmn, k)T (n, k+s)+asr1(n, k) (8)
and recurrences of the form

T(n+ei.k)=by (. )T,k + -+ @, )T (. k+5)+b") (k) (9)

for any unit vectore;. Find a recurrence of the type (6) with given. Moreover,deliver
proof certificates that allow us to verify the derived recurrence (6).
Subsequently we try to tackle this problem by developing tools that allow us to solve

SPT with a Recurrence System (SPTRS).
e Given{yg,...,y;} SN andf(n, k) asin (7) for a fixed non-negative integewhere
T (n, k) satisfies a recurrence of the form (8) and recurrences of the form (9) for any

unit vectore;,
e find co(n), ..., cqs(n), free ofk and not all zero, angd(n, k) of the form

g(n,k)=gom, k)T (n, k) +---+ g, k)T (n, k +5) + gs11(n, k)
such that (4) holds for alt andk in a certain range.

Observe that in our specification of problem SPTRS the tEB(m k) stands for any se-
guence that satisfies (8) and (9). Therefore, solving a concrete problem of SPTRS actually
means to provide solutions for a whole class of sequences that is represerfted byin
terms ofT (n, k).

Example 1. Our methods deliver a direct proof of the double sum identity

éé(—l)nﬂﬂ (Z) (z) <n —]:k) (n :r s> <2n —ns - k) _ i‘, (2)4 )

k=0

from [23, page 33]. Namely, with the summation pack&agna, see Section 5.2, or any
implementation of Zeilberger’s algorithm [37], like [20], one can derive the recurrence

n—k)3A+k+n)2+k+n)
A+ k)2Q2+ k)% — 3n)
N L+ k)22 + k + n)(k + 2k? — 3n — 6kn + 3n?)
A+ k)22 + k) (k — 3n)

Tn,k+2) =

T (n, k)

T, k+1) (11)



744 C. Schneider / Advances in Applied Mathematics 34 (2005) 740-767

for the inner sumr (n, k) on the left-hand side of (10). Similarly, witigma, see Sec-
tion 5.2, or an extended version of Zeilberger's algorithm [18] one can compute the
recurrence

T(n+1k)
= —(L+k +n)(—5k + 12? — 10k3 + 3k* + 3n — 32%n + 42k*n — 16k3n

+ 1502 — 57kn? + 33%?n? + 210 — 30kn> + I?) /(L — k + )L+ n)?) T (n, k)

N (L+k)2(—1+ k — 3n)(6 — 8k + 3k2 + 12n — 8kn + 6n?)
1—k+n)A+n)?

T(n,k+1). (12)

Note that all these approaches [18,26,37] are based on the SPT-paradigm and therefore
allow us to verify independently the correctness of the recurrence relations (11) and (12) for
0 < k < n. Taking those recurrences as input, our algorithm compyte$ = —4(1+n) x
(3+4n)(5+4n), c1(n) = 2(3+ 2n) (7 + 9 + 3n?), c2(n) = (2 + n)® and

g(n, k) =go(n, k)T (n, k) + g1(n, k)T (n, k + 1) + g2(n, k)T (n, k +2) (13)
for some rational functiong; (n, k) in n andk such that
g, k+1) —gn, k)=com)T(n, k) +c1(m)Tn+ L k) +con)T(n+2,k) (14)

holds for all 0< k& < n. The expressiong; (n, k) can be found explicitly in Section 5.2.
Finally, summing Eq. (14) over the summation range gives the recurrence

—4(1+n)(3+4n)(5+4n)S(n) — 2(3+ 2n)(7+ 9 + 3n?)S(1+n)
+24+n352+n) =0 (15)
for the double sum on the left-hand side of (10). Applying Zeilberger's algorithm in its

standard form returns the same recurrence (15) for the right-hand side of (10). Checking
that both sides are equal far= 0, 1 proves the identity.

Verification of (14). Observe that so far our proof relies on the fact that the computed
ci(n) andg(n, k) satisfy (14) for all 0< k£ < n. For the verification of this fact we proceed
as follows. First note thafy(n, k) := T (n + 1, k) can be expressed as

f10, k) =hL 0, 0T (n, k) + B (0, T (0, k + 1)+ hP (0, T (n, k +2),  (16)

where thehl(l)(n, k) denote the coefficients in (12). Similarly, the expressfotu, k) :=
T (n + 2, k) can be expressed by a linear combinatiofin + 1,%k), T(n + 1,k + 1) and
T (n + 2, k + 2) which itself can be expressed by a linear combination in terni¥ef k),
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T(n,k+1), T(n, k+ 2) by using the “rewrite rules” (11) and (12). In other words, we can
write fo(n, k) in the form

Fo0, k) =hP (0, T (n, k) + B2 (0, YT (n, k + 1) + hL (0, )T (n, k +2)  (17)

for some rational functionﬁfz)(n,k) in n and k. Moreover, the expressiogl (n, k) :=
g(n, k + 1) can be rewritten to the expression

g'(n, k) =gon, k)T (n, k) + g1(n, k)T (n, k + 1) + go(n, k)T (n, k + 2)

by using (11). Hence, after setting(n, k) := T (n, k), (14) holds for all 0< k£ < n if and
only if

g (n, k) — g(n, k) — (co(n) fo(n, k)(n, k) + c1(n) fi(n, k) + c2 f2(n, k)) =0

holds in the same range. Finally, we are able to verify this last equation by elementary
polynomial arithmetic.

The key problem. The crucial idea in our approach is that problem SPTRS can be re-
duced to a simpler problem. Namely, as illustrated in the previous example, any expression
f(n+y;, k) given by (7) and; € N” can be equivalently written in the form (18) by using
the recurrence relations (8) and (9). Hence, in order to solve problem SPTRS, it suffices to
develop methods that can solve the problem
GPT over a Recurrence Term (GPTRT).

e Given fi(n, k) for 1 <i < d with

fim k) :==h @, OT @, k) + - +hD )T (. k+5)+h") (. k), (18)

whereT (n, k) satisfies a recurrence of orde# 1 of the form (8),
e find ¢;(n) for 1 <i < d andg(n, k) of the type

g, k) =gom, )T (n,k) +--- + gs(n, )T (n, k +5) + gsr1(n, k)  (19)
such that (1) holds.

Summarizing, any solution of SPTRS is also a solution of GPTRT, and vice versa—
under the assumption that the recurrence relations (8) and (9) are valid in the required
range. In this context it is important to mention that the way in which we will solve GPTRT,
see problem GPTHO (page 750), giaways a recipe to verify (19). Namely, as in Ex-
ample 1, represent (n, k) := g(n, k + 1) in the form

g k)y=gi(n, )T, k)+- -+ g, KT (n,k+5)+ g, (n k)
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by using (8); then verify by coefficient comparison w.r.t. th@z, k + i) that the expression

g'(n. k) —g(n, k) —[co(n. k) fo(m. k) + -+ ca(n, k) fa(n, k)]

collapses to 0.
Besides definite summation (SPTRS) also indefinite summation is covered in GPTRT:

Example 2 (TSPP) Within our computer assisted proof [5] of the TSPP Theorem [33]
there arises the following problem in Lemma 4. Given the triple Sgm = an:o T (n, k)
with

|27k |

n—s—1 n—s
T(n, k)= ;J <<2n—2s—k)+<2n—zs—k>>

(D) N (=) (), (=3n — 1),
&k 20 r!(% —2n),

: (20)

eliminate the outermost summation quantifierSgf:). To accomplish this task, we first
compute withSigma a recurrence foff (n, k) with shifts in k. Namely, by solving the
corresponding problem SPT in &> -field setting we obtain the recurrerfce

Tn,k+3)=aon,k)T(n, k) +a1(n, k)T (n, k+ 1)
+ax(n,k)T(n,k+2) (Vn,k>=0), (22)

where the coefficients; (n, k) € Q(n, k) can be found in Section 5.1; sée[ 2] . In the
next step we solve the GPTRT problem for the case0 and fo(n, k) := T (n, k), i.e., we
tryto find ag(n, k) = go(n, k)T (n, k) + g1(n, k)T (n, k + 1) + g2(n, k)T (n, k + 2) with

gn,k+1)—gn,k)=T(n,k).
Sigma returns
g(n, k)= —=2(k(L+k)(2+k) — B+ k)n — 23+ k)n?)T (n, k)

+ (kL +k)(2+ k) — 2(L+ 2k)n — AL+ 2k)n?) T (n, k + 1)
—k(A+k—20)2+k+20)T(n, k+2)/(2A+kn1+2n) (22

which allows us to verify that

2n+5
Sn) = 2n_’_lT(n,Zn—l—l)— T T(n,2n+2)
- (3T(,00—T(n, 1) (n=0; (23)

2 For the explicit creative telescoping solution and a rigorous correctness proof we refer to [4, Remark 6].
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see [5, Section 5.2]. Evaluation @f(n, k) at its bounds givei,f’;o T(n,k)=—-T(n,0).
This proves Lemma 4 in [5].

So far we have considered examples of GPTRT only for the rational case, i.e., where the
ai(n, k) andhy)(n, k) are given inQ(n, k), andc; (n) andg; (n, k) are searched if@(r)
andQ(n, k) respectively. More generally, we will be able to solve problem GPTRT in the
algebraic domain of7X'-fields [15], see Section 3.3, which means ihai, k), h(f)(n, k),
ci(n) andg; (n, k) may be represented by rational expressions involving indefinite nested
sums and products.

Example 3. Consider a sequen@&k) for k > 1 that satisfies the recurrence relation

=33+ 2k + He(2+ 3k +k?)
Tk+2 = HA+02+k) T®
4B+ 2k + H 2+ 3k +k?)

2+k) 1+ He(1+k))

T(k+1),

where H; denotes the harmonic numbeZé{f-‘=1 1/i. In this example the goal is to find
a recurrence for the sum expressi®m) = > ;_; (Z)T(k). To accomplish this task, we
compute for problem GPTRT witti = 2 and

_ _ . _i n+j (n
ﬁ(n,k)_f(n+z,k)_jl_[_17n+j_k(k)T(k)

the solutioncg(n) = 4n2(1 + n)?, c1(n) = 2n2(1 +n)(3+ 2n), c2(n) =n?(1+n)(2+n),
andg(n, k) = go(n, k)T (k) + g1(n, k)T (k + 1) where

g1(n, k)
=—(1+k)(2*A+n)? +n(2+ 81+ I? + 3n%) — k(2+ 8n + 13n* + 61°)

n

+ kn(L+n)(—2 — 6n — 3n? + 2k(1+ n)) Hy) (k

)/((—1+k —n)(1+ (1 +k)Hy))

and

| =33+ 2k + Hp(2+ 3k +42) 2, (i
go(n, k) = AT hETh gl(n,k+l)—;c,(n)< r )

Finally, with these ingredients one can derive (together with a correctness proof as in Ex-
ample 1) the recurrence

120(1 4+ n)2S(n) + 6n(L+n)(3+ 21)S(L+n) + 3n(L+ n)(2+n)S(2 + n)
=3(6+ 221 + 13?)T (1) + 2(2+ Tn + 4n%) T (2).
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Remark. Given this information, one can discover the identity

27T (1) + 6T (2
5(,1):#
1 3T (1) +2T (2 2)"| H, ; = >1 24
+E( @D+ ())(—) n—gm, nz (24)

by using the tool box oSigma described in [26,29].

3. A method for the GPTRT problem in difference fields

As motivated in the previous section, a huge class of summation problems (SPTRS) can
be handled if one knows how to solve GPTRT. In this section we will present algorithms
working in general difference fields that solve problem GPTRT under the assumption
that one can solve parameterized linear difference equations. This will result in a new
summation algorithm in the difference field setting/@% -fields by applying algorithms
developed in [6,27,28,31].

3.1. Translation to difference fields

In a first step we reformulate problem GPTRT by introducing the shift opefsataith
respect tak and denotingr; := T'(n, k + i) for 0 <i < s. Then we haveS;x; = x; 1 for
1<i < s and (8) reads as

Skxs = ao(n, k)xo+ -+ as(n, k)xs + ag11(n, k). (25)

Moreover, (18) and (19) can be expressed in the form

fim, ) =h (,k)x0 + -+ b, k)xs + 0, k), (26)
g(n’ k) = gO(”v k)xo + e + gS (n’ k)xS + gS+l(n9 k) (27)

Now the essential step consists in representing the sequences in (25), (26), (27) in terms of
a fieldF where the shift operatdf; acting on those sequences can be described by a field
automorphismy : IF — F. More precisely, we shall describe our sequences in difference
fields (F, o), i.e., a field F together with a field automorphism. The constant field of

(F, o) is defined as consF = {c € F | o (¢) = c}.

Example4 (TSPP continuedfor Example 2 this translation can be carried out as follows.

Consider the field of rational functiori®s := Q(n) (k) (xo, x1, x2) and the field automor-
phismo :F — F with o (p) =p forall p e Q(n), o (k) =k + 1, o(xg) = x1, 0 (x1) = x2

3 Throughout this paper all fields will have characteristic 0.
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ando (x2) = agxo + a1x1 + azx2 where thes; are taken from (21). Then problem GPTRT
can be stated in the difference figlfl, o) as follows. Findg = goxo + g1x1 + g2x2 with
gi € Q(n)(k) such that

o(g) — g = Xxo. (28)

With our algorithm, given below, we are able to compute the solution

g, k) =—2(k(L+k)(2+k) — 3+ k)n — 2(3+ k)n?)xo
+ (Bk@A+ )2+ k) — 21+ 2k)n — AL+ 2k)n?)xy
—k(L+k—20)2+k+2n)x2/(2(L+ k)n(1+ 2n)).

Reinterpreting this result as a sequep¢e, k) gives the solution (22).

Example 5. For Example 1 we can construct the following difference figido). Take
the field of rational function& := Q(n) (k) (xo, x1) where the automorphism is defined
aso(p)=pforall peQn),ok)=k+1,0(x0) =x1 and

(n—k)3 (1+k+n)(2+k+n)
(1+Kk)%2+k)*(k — 3n)
A+Kk2%Q2+k+n)(k+2k%— 3n—6kn+3n2)
L+ k)2 +k)2(k — 3n)

o(x1) =

Observe thaf(n) is the constant field ofF, o). In this algebraic domail we define
fo = xo, fi= h(l)xo + h(ll)xl + hél)xz, fo= h(z)xo + hgz)xl + h;z)xz,

where the coefficients”) are taken from (16) and (17). Then with our algorithms, see
below, we find constants € Q(n) and ag = goxp + g1x1 With g; € Q(n) (k) such that

o(g) —g=cofo+cifr+c2fe (29)
Reinterpreting:; andg as sequences gives the solution®) andg(n, k) from (13).

Example 6. For Example 3 consider the field of rational functidhs= Q(n)(k)(B)(H),
and define the difference fiem‘ o) with constant fielc@(n) whereo (k) =k+1,0(B) =
1% B ando (H) = H + 1. Note that the shifS; (}) = 4= (}) and Sy Hy = Hi + 2 is
reflected by the action @f on H and B. Now consider the rational function field extension
E =TF(xo, x1, x2) of F and extend to a field automorphisra : E — E which acts or¥ as

in (F, o) and where we have (xg) = x1, o (x1) = x2 ando (x2) = agxo + a1x1 with

—3@+2A+HR+3k+kY) 4G+ + HR+3k+k%)
HI+ 02 +h) A+ HA+ )

ag = (30)
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In this difference field extensiof, o) of (F, o) we definef; = 1"[; -1 n+] on for0<
i < 2. Then we compute with our algorithms, see belgw Q(r) andg = goxo + g1x1,
gi €eFsuchthab(g) —g= Zi2=0 ¢; f; holds. The found solution, translated back in terms

of H, and(}), gives the solution in Example 3.
More generally, suppose that for a problem of the type GPTRT we managed to construct
a difference fieldF, o) in which the sequenceasg (n, k) andh] (n, k) can be described
with a;, h'Y € F. Then we try to solve GPTRT in so-call&ibher order linear extensions
in shorth.o.l. extensionNamely, in the rational function field extensiin= F(x, .. ., x;)
of F with the field automorphism : E — E that is canonically defined as follows: acts
onT like in the difference fieldF, o), o (x;) = x;41 for0<i < s and
o (xg) =aoxo+ -+ agxy +asy1, a; €F. (31)
Then, given such an h.o.l. extensi@i, o) of (F, o), we represenf; (r, k) in the form
fi=h$xo+ - +hDx +h" eFxo® - @Fx, FCE (32)
and we try to solve problem
GPT in higher order extensions (GPTHO).
e Given a h.o.l. extensionF(xo, ..., xs), o) of (F, o) with (31) whereK := constF,
=Fxo®---®Fx;dF)andfo,..., fz eV,
e find co,...,cqs € K, notall zero,and g € Vsuchthav (g) —g=cofo+---+cafi-

3.2. Our method in general difference fields

Finally, we develop an algorithm that allows us to solve problem GPTHO under the
assumption that one knows how to solve

Parameterized Linear Difference Equations (PLDE).
e Given a difference field(F, o) with constant fieldK, ao,...,a, € F, and fo, ...,
fa €T,
e find all g e Fandall co, ..., cs € Kwith a,,6™(g) +---+aog =cofo+ -+ cafa-

For simplicity let us consider first the special case 0 of problem GPTHO, i.e., given
f eV, find ag € V such that

o(g—g=1r. (33)

Example 7 (TSPP continued)Consider the TSPP problem (28) from Example 4. Then
by taking g = goxo + g1x1 + g2x2 € Q) (k)(x0, x1, x2) and matching coefficients one
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obtains the equations

aoo(g2) —go=1, o(g0) +aio(g2) —g1=0,
0(g1) +azo(g2) — g2=0. (34)
Note that anygo, g1, g2 with (34) will produce a solutiory = goxo + g1x1 + g2x2 with

o(g) — g = xo. Now applyingo to the second equation of (34) givesg1) = 02(go) +
o (a1)o%(g2) which allows us to transform the third equation of (34) to

o2(g0) + 0 (a1)0%(g2) + azo (g2) — g2 =0. (35)

Finally, applyingo? to the first equation of (34) gives?(go) = o2(ag)o3(g2) — 1 which
turns Eq. (35) into

o2(a0)o3(g2) + 0 (a1)0?(g2) +azo(g2) — g2 = 1.

The crucial point is that we derived a linear difference equatiogyitwith known co-
efficientso2(ag), o (a1) andas in Q(n)(k) with o (k) = k + 1. Hence we can apply a
refined version of the algorithm [1], which is a sub-algorithmSigma, and derive the
solution

_k2n—k—D2n+k+2)
2 T okt D2+ 1)

€ Q) (k).

Now observe that the first equation in (34) tells us how to compgtérom the al-
ready computed». Moreover, the second equation of (34) allows us to computieom
the already computegdy. Furthermore observe thgp, g2 € F satisfy the first equation
of (34). Summarizing, the derivegd = goxo + g1x1 + g2x2, given in (22), is a solution
of (28).

The following two lemmas give us a general recipe how the above problem (33) can be
solved.

Lemma 1. Let (F(xo, ..., x;),o0) be a h.o.l. extension aff, o) with (32) and let f, g €

Fxo®---®Fx; ®F with f = hoxo+ -+ hgxs +hgr1andg = goxo+ - -+ + gsXs + gs+1-
Theno (g) — g = f if and only if

0(gs+1) — &s+1=hs11 —as110(gy), (36)
g0 = aoo (gs) — ho, (37)

and forl <i < s we have

gi =0(gi—1) +ajo(gs) — h;. (38)
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Proof. DefineL :=0o(g) —g— f. Then

@
|
-

N

L= [o(gi)xit1— gixi]+0(g) |: Zaixi + as+1:| — 8sXs +0(8s+1) — &s+1
i i=0

and thereford. = d; 1 + doxo + - - - + dsx; With dg = ago (gg) — go — ho, di = o0 (gi_1) +
aio(gs) — g —hi for 1<i <5, anddy 11 = 0(gs+1) — 8s+1 + as+10(gs) — hyy1. Since
thex; are transcendental ovEf the lemma is immediate.

The crucial observation is that this system of first order linear difference equations (37)
and (38) can be brought in amcoupledtriangulated) form by the following

Lemma 2. Let (F, o) be a difference fieldy; e Ffor 1 <i <eandg, € F. Then

Y o ape I g —ge =Y 0" (h)) (39)

j=0 j=0
if and only if there arego, ..., gs—1 € F with (37) and(38) for 0 < i <.

Proof. Let ho,...,hy; € F and g € F. We show by induction ot for 1 < k < s with
gr € I the following: there exisgo, ..., gri—1 € IF with (37) and (38) for < i < k if and
only if

k k
ge= oot gy =Y I h). (40)

j=0 j=0

Then for the particular choide= s the lemma is proven. First note that foe= 0 Eq. (37)

is equivalent to (40), which proves the base case. In particular=iD, we are already
done. Now suppose thatQk < s, let g, € F and assume that we have shown already that
Eq. (40) holds if and only if there amg), . .., gx € F with (37) and (38) for 6< i < k. First
suppose that there ape, . .., gr+1 € F with (37) and (38) for G<i < k + 1. Then by the
induction assumption we may assume that (40) holds. Then plugging in the right-hand side
of (40) intoo (gk) + ax+10(8s) — gk+1 = hk+1 gives

k k

Y ot M apot IR (g) = Y o* T ) + arga0(g) — grra =1 (A1)
j=0 j=0
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which is equivalent to

k+1 . ' k+1 .
giri=Y o T a)ot T2 (g) = Y o ). (42)
Jj=0 j=0

Contrary suppose that we are givegia 1 € F with (42) or equivalently (41). We can con-
structgo, ..., gx € F such that Egs. (37) and (38) for<li < k hold. Hence by the induc-
tion assumption (40) follows. (40) and (41) imphgy) + ax+10(gs) — gk+1 = hgy1. O

Example 8 (TSPP continued)Essential use of Lemma 2 has been made in [5] to prove
hypergeometric multi-sum identities.

Consequently the telescoping equation (33)gfet goxo+ - - - + gsxs + gs+1 € V holds
if and only if we have (39), (36), (37), and (38) for<0i < s. This fact produces imme-
diately an algorithm to find suchg@e V with (39) if an algorithm is given that can solve
linear difference equations.

Algorithm 1 [Indefinite summation (telescoping)elescoping(F (xo, ..., x5),5), f).

Input A h.o.l. extension(F(xo, ..., x;),0) of (F,o) and f = hoxg+ - - - + hyxs + X541
eVwhereV=Fxg® ---dFx;DF.
Output A solutiong € V with o (g) — g = f if it exists.

(1) Decide constructivefyif there is a solutiong; € F for (39). If no, RETURN “No
solution”.

(2) Otherwise, take such g and decide constructivelyif there is a solutiorg,,1 € F
for (36). If no, RETURN “No solution”.

(3) Otherwise, take suchg 1 and computez by (37) and derive successively the re-
mainingg; by (38).

(4) RETURNg = goxo + - - - + gsXs + gs+1-

Remark. A special case of Algorithm 1 can be related to [3].

Next, we generallze this algorithm to solve problem GPTHO for the homogeneous case,
i.e., 511 =0 andh, W 41 =0for 0< j <d. The main idea is to take indeterminaigs
replaceco fo + - + cdfd with f, and to look simultaneously for solutiorgse V and
¢i € K. More precisely, there is the following algorithm.

(1) Write f; € V as in (32) Wlthh(') e F. Then computkall solutions(co, ..., cq, &) €
K4+l x F sit.

s d K
Zo‘v_j (aj)as_j+1(g) —g= Zci Zos_j (hy)) (43)

j=0 i=0 j=0

4 By assumption this is possible by solving a specific instance of problem PLDE in the differena@ field
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(2) If there are only solutions where a}l =0, there is no solution for problem GPTHO.

(3) Otherwise we take such a solution, s@y, ..., cs, gs), With somec; #0 and set
f = Z?:o cifi € Fxo® --- ® Fxg. Now we compute & € V with (33) by apply-
ing® Algorithm 1.

Example 9. Take the difference fieldF (xg, x1, x2), o) with F := Q(n) (k) (B)(H) and the
fi= hﬁo)xo + h;l)xl € Fxo @ Fxq from Example 6, i.e.,

In order to obtairt; € Q(n) andg € Fxo @ Fxg with o (g) — g = Zi2=o ¢i fi, we compute
the solutionco(n) = 4n2(1 + n)?, c1(n) = 2n2(L+n)(3+ 2n), c2(n) = n?(L+n)(2+n),
and

g1=—(1+ k) (k2L +n)? +n(2+8n + 9n? + 3n%) — k(2+ 8n + 13¢% + 6n°)
+kn(L+n)(—2—6n—3n?+2k(1+n))H)B/((-1+k —n)(1+ 1 +kH)) eF

for o (ag)o?(g1) + a10(g1) — g1 = Z?:o cia(hfo)) where theg; are given in (30). Now
define

2 2
0
f= Zcifi :xchihf ).
i=0 i=0

Then by Lemmas 1 and 2 it follows thait= goxo + g1x1 With go = apo (g1) — Ziz:o cihgo)
is a solution fofo (g) — g = f = Ziz:ocif,-; see Example 3.

Remark 1. If «,4+1 and h§’+)1 are not 0, we can extend these ideas by using reduction
techniques from [15] based on linear algebra. More precisely, by following the ideas from
above one first computes all= goxo+- - -+ gsxs With g; e Fand alle; e Ks.t.o (h) —h —

Z?:o ¢ f; € F; all those solutiongco, ..., cg, h) form a finite dimensional vector space
overK. After computing a basis, sdyc;o, . . ., cia, hi)}1<i<u, One looks for all constants
ki,...,k, e Kandallgs,1 € F s.t.

o(kith1+---+kyhy + gey1) — (kaha + - - + kyhy + g541)

d d
Zklzcl]fj++kuzcu]fj

Jj=0 Jj=0

5 The solution is guaranteed: we can skip step (1) in Algorithm 1, since the already congpuieil satis-
fies (39). Withg,,1 = 0 in step (1) the computed outpgit= goxg + - - - + gs x5 gives the desired solution.
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d
& 0(gs+1) _gs+1:k1|:zcljfj —0(h1)+h1} +---
j=0

d
+ku[2cu,-fj —a(hu)+hu} (44)

j=0

holds. More precisely, one solves a certain instance of problem PLDEmtHL. Then
any solutionk; € K andg,+1 € I of (44) gives a solutiomr; := Z?:l kjcji e Kandg :=
kih1+---+kyh, + gs11 € V for GPTRT. Note that with linear algebra arguments one can
show that this approach gives ai$ solutions for GPTRT.

Summarizing, we obtain the following

Theorem 1. There is an algorithm that solves probleeBPTHOIf one can solve problem
PLDE

Observe that this theorem is contained in [8] if one restricts to h.o.l. extensions of the
form (32) witha,;,1 = 0. The improvement in our result is that we can avoid uncoupling
algorithms; see [13]. Instead, in Lemma 2 we provide a generic formula for an uncoupled
system that is equivalent to the given one.

3.3. A new algorithm for special difference fields

So far we have shown that one can handle problem GPTHO for any difference field in
which problem PLDE can be solved. As worked out in [8] this can be achieved for the
rational cas€lF, o) with F = K(k) ando (k) = k + 1 or theg-case withF = K(g)(x) and
o (x) = gx by extended versions of the algorithms [1,2].

More generally, due to recent algorithmic results [6,27,28,31] one can®salublem
PLDE and therefore problem GPTHO faX -fields. With this algorithmic difference field
machinery, implemented iBigma, one has new algorithms in hand that allow us to solve
problem GPTRT and SPTRS over rational expressions involving indefinite nested sums
and products.

Remark 2. Informally, a I1X-field is nothing else than a difference fiefdl, o) with
constant fieldK whereF := K(#1)...(¢.) is a rational function field and the applica-
tion of o on they’s is recursively defined over &£ i < e with o(#;) = a;1; + B; for
a;, Bi € K(t1) ... (t;—1); we omitted some technical conditions given, e.g., in [15,26,32].
For instance, all difference field®, o) in the Examples 4, 5 and 6 ford1X'-fields.
This means that sums like, = Y%, ll products like(}) = e, %*1 or expressions
like the summand in (20) can be expressedlliB-fields. Observe that all such expressions
represented in @&/X-field have the following property: their sums and products shifted

6 More precisely, with the techniques introduced in [28], one eventually finds all solutions of parameterized
linear difference equations by increasing incrementally the search space.
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in k can be expressed by their unshifted sums and productsSjike = Hy + k—}rl or
Sk(e) = 11 ()

We emphasize that Karr's original summation algorithm [15] solves problem PLDE for
the casen = 1 in a givenI1X -field, and hence implements problem GPT in fii& -field
setting; see (47). Since our algorithm can solve problem GPTRT over siitfi-éeld,
it completely covers Karr's algorithm—actuallgjgma contains a simplified version of
Karr's summation algorithm; see [30]. On the other side, our algorithm restricted to the
homogeneous case, see above, can be embedded in the general setting of [8]. In some
sense, we have introduced a common framework that combines both, Karr’s algorithm and
big parts of Chyzak'9-finite tool box [8].

4. Therecurrence method for multi-summation

Consider the following multi-summation problefiven S(n) = Zf:a fn, k)T (n,k)
wherea and 8 are integer-linear im and where for the summanfl(n, k)T (n, k) the
following properties holdT (n, k) might be a multi-sum of the form

T, k)= hi(n,k k)Y ho(n k ki, k2)--- Y hu(m k ka, ... k),

k1 ko ky

where we assume that the summation bounds in all the Jdmsare integer-linear im
andk, k1, ..., ki_1;, moreover, we suppose th#tn, k) and theh; (n, k, k1, ..., k;) can be
represented in &X' -field, i.e., in rational expressions involving indefinite nested sums and
productsFind a recurrence of the type (6) for givetie N".

Example 10 (TSPP continued)All our summation problems in [5] fit into this problem
class; see for instance (62). The following ideas were crucial to handle all these problems.

In this section we discuss how such a problem could be attacked using the tools de-
scribed in the previous sections. First one tries to derive recurrences of the types (8)
and (9) for the summanB(n, k), then, if necessary, reduces problem SPTRS to the simpler
problem GPTRT, and afterwards applies our algorithms from Section 3 to solve prob-
lem GPTRT.

Hence, in order to follow this strategy with our methods, we only have to explain
how we can derive recurrences of the types (8) and (9). For the sake of simplicity we
suppress additional parameters and focus on the following prolgwen S(m,n) =
Yok fm,n, k)T (m,n, k) with

T(m,n, k)= hi(m,n,k.k1) Yy holm,n,k, ki ko) D hy(m,n k ka, ... k),
k1 ko ku

where f (m, n, k) and theh; can be expressed infax -field. Find recurrences of the type

Sm,n+d+1) =ag(m,n)S(m,n) +---+ag(m,n)S(m,n +d) + ag+1(m,n) (45)
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or
S(m+ 1,n)=bo(m,n)S(m,n)+---+by(m,n)Sm,n+d) +bgr1(m,n). (46)

To accomplish this task, we propose the followiegurrence methottased on recur-
sion.

e Base caseT (m,n) = 1. In this case, the summantm, n, k) of S(m,n) can be
expressed in d7X-field, say(F, o) with K := constF. Hence we try to find (45),
respectively (46), with SPT in ou7 X -field; i.e., we try to findc; € K andg € F such
that

o(g) —g=c_1f-1+cofo+ - +cafa (47)

where f; € F stands forf (m,n +i,k), 0<i <d, and f_1 € IF stands forf (m + 1,
n, k), oris 0, respectively. More precisely, starting frdma= 0 for our problem (47) one
increments the ordet until a non-trivial solution is found, i.e., some are non-zero.
In this case, RETURN the resulting recurrence (45) or (46j.déts too large without
any solution, STOP with the comment “Failure”. Wigigma we can accomplish this
task by using the function call (61).

e RecursionT (m, n, k) # 0. Before we can proceed to find (45), respectively (46), with
SPTRS, we have to derive recurrenceskom, n, k). For the case (45) we need recur-
rences of the form

T(m,n k+8+1) =aym,n, k)T (m,n,k)+---+ag(m,n, k)T (m,n, k+§)
+a§+1(m,n,k) (48)

and

T(m,n+1,k)=by(m,n, k)T (m,n, k) + -+ bs(m,n, k)T (m,n, k + 8)
+bj, 1 (m, n, k). (49)

For the case (46) we need, besides (48) and (49), a recurrence of the form

T(m+21n,k)=by(m,n, k)T (m,n, k) +---+bsm,n, k)T (m,n, k+35)
+ b§+l(ma l’l, k) (50)

In order to accomplish this task, we apply again mourrence methoan the sub-
problems (48), (49) or (48), (49), (50), respectively. If we fail, STOP with the comment
“Failure”. Otherwise we proceed as follows.
e Solving the probleme try to solve the corresponding problem SPTRS, namely, find
ci(m,n) andg(m, n, k) such that
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gm,n, k+1)—g(m,n, k)
=c_1m,n)fm+1L,n,k)T(m+1,n,k)+colm,n) f(m,n, k)T (m,n, k) +---
+cqgm,n)f(m,n+d, k)T (m,n+d, k) (52)

or

gim,n, k+1)—g@m,n, k) (52)
=com,n) f(m,n, k)T(m,n, k) +---+cq(m,n) f(m,n+d, k)T (m,n+d, k),

respectively. Now we go on as proposed in Section 2: We reduce problem SPTRS to
GPTRT and try to solve problem GPTHO—if possible—in an approptiaiafield.
Namely, given such d7X-field (F, o), we increasel > 0 in our GPTHO problem

step by step until a non-trivial solution for (51), respectively (52), is found. In this case
RETURN the resulting recurrence (45) or (46). Otherwisd, gfets too large without

any solution, STOP with the comment “Failure”. Wigigma we can accomplish this

task by using the function call (60).

Observe that the basic idea of tlecurrence methottas been applied already in Ex-
amples 1 and 2. In particular, looking at Example 1, our method can be specialized to
hypergeometric multi-summation, i.e.,

Smy=Y -y hm ki ... . k), (53)
k1 ky
wher€ h(n, k1, ..., k) is hypergeometric in all parameters, as follows.

o If we run into the base case, we try to compute homogeneous recurrences for the inner
most sum by applying [18,37] @igma.

e Otherwise, we have to solve problem SPTRS of the type (51) or (52). Namely, as-
suming that the: (m, n, k), b} (m, n, k) andb}(m, n, k) from (48), (49) and (50) are
rational functions inm, n andk, we have to solve problem GPTHO in a difference
field of the type(K(m, n)(k), o) with constant fieldK(m, n) ando (k) =k + 1. This
can be achieved with our algorithm in Section 3.2 by using a variation of algorithm [1],
that is contained isigma. In [22] these ideas are analysed in further details.

The non-trivial examples in [5] illustrate the successful application of our method. In
particular, we want to emphasize that we managed to find straightforward alternative proofs
for all double sum identities in [35], like identity (10) from Example 1.

7 For the sake of simplicity we restrict ourselves to sums where all summations are taken over finite summand
supports. With this restrictiohomogeneousum recurrences are guaranteed.
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Example 11. Following our strategy in Example 1, the recurrence (15) for the double
sum given in (10) can be computed in 12 seconds by uSigga (Mathematica 5); see
Section 5.2.

In comparison, the Wegschaider/Riese packisigéiSum [17,35F needs about 510
seconds to compute the same recurrence (15) on the same computer platform using Math-
ematica 5. Moreover the intermediate result of the summand recurrence fills several pages,
see [35, Section 5.7.6], whereas our result is rather compadDuddel 2] .

In [8] three strategies for tackling hypergeometric multi-summation have been indi-
cated. From these strategies only the following‘has been implemented so far: Fix
d € N and look for all linear recurrences with shifts f(n + y, k + §) wherey € N',
s eNandy1 +---+ y + 8 <d. Concerning such strategies the following remarks are in
place.

(1) Looking for each recurrence (8) or (9) separately, like in our approach, amounts to
keeping the underlying linear algebra problems as small as possible. But, looking in
one stroke for a whole system of recurrences results in a drastic increase of complexity.

(2) Moreover, one usually does not have any control over the structure of the derived
recurrence system. In particular those systems usually do not allow to repféasent
v,k +§8) in anormalized form. Hence Grébner basis algorithms [7,9] must be used in
order to transform such recurrence systems into an appropriate shape; see [8].

Besides this, in [8] an extension of the FGLM algorithm [12] is proposed which allows
to compute the recurrences iteratively. Following these ideas and using a lexicographical
monomial ordering on the shifts, one essentially ends up with a strategy which reduces to
our recurrence method for hypergeometric multi-sums of the form (53). Summarizing, our
surprisingly simple instantiation of Chyzak’s method [8] enables us to tackle a huge class
of multi-sum problems in a very efficient manner.

We also remark that ouecurrence methodbased on problem SPTRS can be easily
carried over from the shift/difference field case to the differential field case; this aspect
might also contribute to the multi-integration approach.

5. Theimplementation within our summation package Sigma

In this section we will describe the usage of our extended Mathematica pasigage
that not only solves GPT for rational expressions involving indefinite nested sums and
products, see [10,11,21,29], but the more general problems SPTRS and GPTRT. Subse-
quently, we will illustrate all these new featuresSigma.

8 This approach is based on ideas of Sister Celine and Wilf/Zeilberger [36] and supplemented by [34] and
random parameter substitution [24].

9 Following this strategy we managed to derive recurrence (15) for the double sum given in (10) in more than
2300 seconds by using the packaggfun in Maple 8.
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First we load our package into the Mathematica system by typing
In[1] :=<<Sigm'
Sigma — A summation package by Carsten Schneider © RISC-Linz
Sigma splits into two main parts, namely indefinite and definite summation.
5.1. Indefinite summation

As a first introductory example we consider the TSPP problem from Example 2.
Namely, eliminate the outermost summation quantifie$ (m) = Z,f’;o T (n, k) where the
double sunt (n, k) = T[k] given in (20) satisfies the recurrence:

In[2] :=recDS=22 +k)?>(k —2 n)(1 +k +2n)T[K]
+(—12 — 46k — 58k? — 29k® — 5k* 4 12n + 20kn
+6k?n +24n? + 40kn? + 12k? n?)T[1 + k]
+ (18 + 55k + 59k? + 26k3 + 4k* — 6n — 14kn — 6k*n
—12n? — 28kn? — 12k?n?)T[2 + K]
—24+k-=2n)@+k+2nT[B3+k]==0;

We set up our summation problem as follo¥s.

I n[ 3] :=mySum=Si gmaSuniT[k], {k, 0, 2n}];

2n
Qut[3] =) Tik]
k=0

Remark 3. Generally, the functionSi gmaSumandSi gmaPr oduct are used to define
rational expressions involving indefinite nested sums and products that can be represented
in I1X -fields. We also provide several other functions, BiegmaHNunber , Si gmaBi -

nom al or Si gnmaPower , to define harmonic numbers, binomials or powers. Internally,
these objects are also represented in terms of sums and products that can be converted
into 17X -fields. For instanceSi gnmaHNunber [k] produces théth harmonic numbeH;

which alternatively could be described BygnmaSuni 1/i,{i, 1, k}].

10 Note that the initial valueg'[0], T[1] andT[2] are not specified further. Nevertheless we can evalligke

with (T[0], (1], T[2], 37(2] — S5t B@=B (1) 4 B1BLEL7(0), .. ) by linear combinations oF (0], 7[1]
andT[2].
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Next, our indefinite summation algorithm is applied using the function call

I n[ 4] :=Si gmaReduce[mySum {r ecDS, T[k]}];

—(1 +2n)@3T[0] — T[1]) — 2T[2L + N)] + (5 +2n)T[1 + 2n]
1+42n

Qut[4] =

which gives the identity (23). Internally, we solve the corresponding telescoping problem,
see Example 2, by first translating it into the underlying difference field, see Example 4,
and afterwards solving it in this setting with our algorithms, see Example 7.

In the next example we derive a closed form evaluation of the sum

n
_ N\ HEIKI(—2x+(2+3K+2K2 —2X) H—k (14+K) 3+2k—2x)HD)
I n[5] :=nySum=") F(—1+KHO (1+F ko) :
k=2

where HEk] stands for the Hermite polynomials that can be defined as follows.
I n[ 6] :=recHE=HE[K + 2] == 2xHE[k + 1] — 2(k + 1)HE[K];
HE[O] = 1; HE[1] = 2X;

After inserting our summation problem we eliminate the summation quantifier by execut-
ing:

I n[ 7] :=Si gmaReduce[mySum {r ecHE, HE[k]}];

HE[1 +n]  2(1 4 n)?HEn]
Hn 1+ Hy + nHy

Qut [ 7] =—§(—3—8x+6x2)+

Remark 4. In general, suppose that we are given a recurreeeeof the form

aoT[k]+ - +asTlk+sl+as41=0 (54)
and a sum
B
nySum= > (foT k1 + -+ f;Tlk+ 51+ fi11) (55)
= = (k)

where they; and f; are rational expressions involving indefinite nested sums and products.

In order to insert such a summation problem, we provide various functions; see Remark 3.
Note that thes; and f; may also depend on extra parameters. Then, after defining such a

summation problem, with the function call

Si gmaReduce[nySum {r ec, T[k]}] (56)
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one tries to eliminate the outermost summation quantifier by following the strategy as
in problem GPTRT withd = 0; more precisely, one tries to solve problem GPTHO for
the underlyingl7X -field. If the summandf (k) of (55) is free ofT[k], i.e., f; =0 for

0<i <s,onecanskigrec, T[ k] } in (56). In this case our algorithm reduces to the
former version oSigma [26,29].

5.2. Definite summation

In our first example we will prove identity (10) by following the strategy described in
Example 1. Namely, we first compute a recurrence for the double sum on the left-hand side
of (10) by following our recurrence method; see Section 4. More precisely, we insert the
inner sumT (n, k) of our double sum

o\ /n\ kN /—k+2n—s\ /n+s\
|n[8] =suml = ()()( )( >< >(_1)k+n+s’
sg(:) k S k n S

and compute the recurrence (11) with the function call:
I n[ 9] :=rec =Cener at eRecurrence[sunt, k, RecOr der — 2]/.SUM— T,

Qut[9] =k —n)3A+Kk+n)2+k+n)Tk]
— (1 +k)?@2+k+n)(k +2k? —3n —6kn +3n?)T[1 +k]
+(1+K?R+K)?(Kk—3mT[2+k]==0
This means thaf'[k] = T (n, k) = sunl satisfies the output recurrenCat [ 9] . Note
that this result could be also obtained by any implementation of Zeilberger's algo-
rithm, like for instance [20]. Similarly, we derive recurrence (12) either with a vari-

ation of Zeilberger's algorithm [18], or witlSigma by setting in addition the option
OneShiftlin—n:

I n[ 10] :=recl nN=Gener at eRecurrence[suni,k,OneShi ftin—n,

RecOrder — 1]/.SUM— T,;

Qut[10] = —(1+k +n)(=5k +12k? — 10k® + 3k* + 3n — 32kn + 42k?n
—16k3n +15n2 — 57kn? + 33k2n? + 21n% — 30kn® + 9n*) T[k]
+ (1 +Kk)?(—1+k —3n)(6 — 8k + 3k* + 12n — 8kn + 6n°) T[1 + K]
+(-1+k-n2@ +n)?T[1+n,k]==0

Given all these ingredients we finally compute the creative telescoping solution for the
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double sum

n
I n[11] :=nySum= > TIK];
k=0

by typing in:

I n[ 12] :=creaSol =CreativeTel escopi ng[nySumn, {r ec, T[k]},
recl nN,RecOrder — 2];

Qut[12] ={{0,0,0,1}, {41 +n)3@3 +4n)(5 +4n),
—2(1+n?@3+2n)(7+9n +3n?), (L +n)?(2 +n)3,
+ (k?(960 — 3192k + 3680k? — 2042k + 1248k* — 1112k>
+582k® — 134k’ + 10k® + 7536n — 21720kn + 21304k?n
—10982k3n 4 6404k*n — 4095k°n +1421k®n — 199k "n + 7k®n
+25804n2 — 63504kn? + 52698k?n? — 24334k>3n? + 12025k*n?
—5292k°n? +1123k®n? — 74k"n? +50716n° — 104481kn3
+71985k?n® — 28139k3n® + 10608k*n3 — 2905k°n® + 290k®n3
+63175n* — 106032kn* + 58545k ?n* — 17878k>n* + 4469k*n*
—578k°n* +51793n% — 68088kn°® + 28333k?n® — 5928k3n°
+727k*n® +27970n% — 27054kn® + 7556k?n® — 804k>3n®
+9598n’ —6087kn’ +857k?n’ +1899n® — 594kn® + 165n°)T[k]
— k21 +k)?(—=1 +k —3n)(—200 + 952k — 1182k? + 610k
— 136k* +10k® — 836n + 3260kn — 3183k?n + 1220k>n
—182k“*n +7k°n — 1426n? + 4386kn? — 3174k?n? + 808k>n?
—61k*n? —1271n% +2901kn® — 1389k?n3 + 177k3n® — 625n*
+944kn* — 225k?n* — 161n° +121kn° — 17n°)T[1 +Kk])

/(=2 +k-=m3=1+k—n?)}}

This means that each entfyg, c1, c2, g} in Qut [ 12] gives one particular solution
of (14). Afterwards we sum this telescoping equation (14) é@&fom 0 ton and obtain
the following result.

I n[ 13] :=Transf or niToRecur r ence[cr eaSol ,nySumn, {r ec, T[Kk]},

recl nNJ;
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Qut [13] ={—4(1 +n)(3+4n)(5+4n)SUMn]
—2(3+2n)(7+9n+3n?)SUM1 + n] + (2 + n)*SUM2 + n] == 0}

If we are not interested in the proof certificate givenCmt [ 12] , see Example 1, one
could immediately derive this recurrence by replactxgeat i veTel escopi ng with
Gener at eRecurrence in | n[ 12] . To complete our proof of identity (10) we verify
that also the right-hand side of (10) satisfies the recurren@atij 13] for n > 0; more
precisely we compute this recurrence with the function Galher at eRecur r ence

[Si gmaSun{Si gnaBi nomi al [n, k1%, {k, 0, n}]]. Since both sides of (10) are equal for
n =0, 1, they represent the same sequence far0.

Remark 5. In general, our recurrence method from Section 4 can be applied Sigjing
as follows. Suppose that we are given a recurranee of the form (54), recurrences
recl nNandr ecl nMof the forms
Tln+1,kl=0boT[k]l+---+bsTlk + 5]+ bs+1, (57)
Tlm+ 1kl =bgT[k]l+ -+ b; Tk +s]4 b} 4, (58)

respectively, and a definite sum

yim-+yan+a
nysum= Y (foTlkl+ -+ fiTlk+sl+ fi1), vi€Z  (59)

k=0 = fm,n, k)

wherea is an integer that may depend on other parametersailbg, b}, f; can be ratio-

nal expressions involving indefinite nested sums and products; to insert such objects see
Remark 3. Moreover, the;, b;, b}, f; can depend besides, n, k on any parameter. Then

by calling

Creati veTel escopi ng[mySumn, {r ec, T[k]}, r ecl nN, (60)
OneShiftln— {reclnMn}, RecOrder — dJ;

one searches for all creative telescoping soluti¢ns; (m, n), co(m,n), ..., cqs(m,n),
g(m,n, k)} such that (51) holds. Note thgtmay depend on any parameter whereas the
¢; are free ofk. Similarly, with Gener at eRecur r ence one computes the correspond-
ing recurrence of the form

SUM[m + 1, n] = eoSUM[n] + - - - + ¢4SUM[n + d] + e4+1,
where thee; can be usually represented i -field.

If the optionOneShi ft I n— {recl nM nt is skipped in (60), the additional shift in
m is not considered; see for instarice] 12] . Moreover, if we have the trivial recurrence
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relationT[n + 1,k] = T[n, k] in (57), also the input ecl nN can be omitted in (60);
typical examples are given im[ 15] andl n[ 18] .

If the summandf (m, n, k) of (59) is free of T[k + i], i.e., f; =0 for 0<i < s, the
function call (60) reduces to

CreativeTel escopi ng[mySumn,OneShi ftl n— mRecO der — d]; (61)

the same holds fdBener at eRecur r ence; seel n[ 10] . Similarly as above, removing
the optionOne Shi f t | n — mgives only a recurrence im; seel n[ 9] . Note that in this
case our algorithm reduces to the former versio8igfa described in [26,29].

One of the key steps in our computer algebra proof [5] of the TSPP Theorem [33] is the
derivation of a recurrence infor the definite triple sum

2n .
S(n,i)=2(’+k_3)T(n,k), (62)

| — 2
= \ !

where the double surfi(n, k) defined in (20) satisfies the recurrenad 2] . With Sigma
this can be easily achieved by setting up the summation problem

2n .
—-3+i +kY-
I n[ 14] :=nySum= . Tik];
n[14] :=nmySum kE:O( o ) (k]

and calling thesigma-function:

I n[ 15] :=Cener at eRecurrence[nmySumi , {r ecDS, T[k]},
Fi ni t eSupport — True];

Qut [15] ={—(2+i +i?)(=1+i +2n)(i —2(1+n))SUMi ]
+@+i)(-2+2i —i24i%+2n+4n?)SUM1L +i |
+(=3+i)(2+2i +i2+i%—-2n—-4n?)SUM2 +1i ]
—(2-i +i?)A+i —2nM@+i +2n)SUM3 +i ] ==0}

With the underlying creative telescoping solution a rigorous correctness proof is given
in [4, Remark 7] which is similar to the proof in [5, Section 5.3].
Finally we illustrate Example 3 by deriving a recurrence for the sum

n .
I n[ 16] :=nySum= > (E) TIk];

k=1

whereT [k] is defined by the recurrence relation
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In[17] :=recT=3(1 + (L +K)Hc)(3 + 2K + (2 + 3k + k?)H() T[K]
+4(1+K)H(3 + 2K + (2 + 3k + k?)H ) T[1 + k]
+ 1 +K@+KH(1+ @A +kH)T2 +k]==0;

and its initial valuesT[1] and T[2]. More precisely, we apply our creative telescoping
algorithm, see Example 3, with respect to the underlying difference field, see Example 9,
and obtain the recurrence relation:

I n[ 18] :=CGener at eRecurrence[nmySumn, {recT, T[k]}];

Qut [ 18] = {12n(1 +n)*SUMn] +6n(L + n)(3 + 2nMSUM1 + n]
+3n(1 +n)(2 +n)SUM2 + n]
==3(6 +22n + 13n%)T[1] + 2(2 + 7n + 4n*)T[2]}

This finally allows us to discover identity (24) by using the tool boxSafma described
in [29].
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