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Abstract

Many problems in digital signal processing can be converted to algebraic problems over
polynomial and Laurent polynomial rings, and can be solved using the existing methods of algebraic
and symbolic computation. This paper aims to establish this connection in a systematic manner,
and demonstrate how it can be used to solve various problems arising from multidimensional signal
processing. The method of Gbiier bases is used as a main computational tool.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper aims to show how the processing of discrete-time signals is related to linear
algebra over polynomial rings and how the methods of computational algebra can be used
naturally for various problems of multidimensional signal processing.

We start by reviewing basic concepts from signal processing, and relate the processing
of discrete-time signals to linear algebra over Laurent polynomial rings. Then, we show
how to efficiently convert problems over Laurent polynomial rings to the ones over
(regular) polynomial rings. Emphasis is given on the problem of unimodular completion of
Laurent polynomial matrices, and it is explained how this problem is related to the problem
of parametrizing the synthesis of perfect reconstruction (PR) finite impulse response (FIR)
systems. Some of these results appear&dlker et al.(1995, Park et al(1997) andPark
(1999, whose full proofs are given in this paper.

It should be noted that many researchdtaugre et al.(1998, Selesnick(1999,

Lebrun and Vetterl{1999, Lin (1999 and Charoenlarpnopparut and BogE999, have
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successfully used computational algebra for multidimensional systems and signal
processing. This is made possible essentially because many signal processing problems
can be modeled in the form of polynomial equations, which can then be solved by the
methods of computational algebra, notablyp@nér bases.

2. Basic conceptsfrom signal processing
2.1. 1D discrete-time signals

Definition 2.1. 1. A one-dimensional (1D) discrete-time signal is a sequence of real
numbers, i.e(an)nez = (...,a-2,a 1, a9, a1, a2, ...), wherea, € R and there
existsN € Z such that, = 0 foralln < N.

2. The set of 1D discrete-time signals is denotedby

Discrete-time signals arise naturally, for example, by sampling continuous-time signals:
for a continuous-time signal (t), definea, to be f(nT) whereT is a preset sampling
period.

Remark. The above definition is a formal one. In practice, a 1D discrete-time signal
often means a square-summable sequence. The set of such square-summable sequences
is denoted by2(Z).

Remark. In this paper, a 1D signabn)nc7 Will be abbreviated a&ay).

The setS of 1D discrete-time signals naturally forms &avector space with the well-
defined operations of the superposition and the scalar multiplication of sequences.

Definition 2.2. Convolution of discrete-time signals: for two given sign@s) and(cy),
their convolution(b,) := (an) * (cn) is defined byb, = Ziﬂ-:n aicj.

Definition 2.3. For afixed(cy) € S, the operatok (¢, on the sefS of discrete-time signals
is defined byL (¢, ((@n)) = (an) * (Cn).

Trivially, the mapL, : S — S is a linear map ofR-vector spaces. And the s§tof
discrete-time signals equipped with the two operatiorgip&r position andconvolution
forms a commutative ring with identit$n o), wheredg o = 1 andsn o = 0, Vn # 0.

2.2. Linear time-invariant systems

Definition 2.4. Then anR-linear mapL : S — S is said to beime-invariant if, for any
fixed integeii,
L((an)) = (bn) impliesL((@n+i)) = (bn+i).

Such an operator can be described by the following single-input single-output (SISO)
system.

(..,a_1,a0,a1,...) (eersb—1,b0,b1,...)

_— L —
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Lemma 2.1. Let S betheR-vector spaceof discrete-timesignals. ThenamaplL : S — S
isR-linear and time-invariant if and only if L isS-linear.

Proof. An easy exercise.d
An immediate consequence of this lemma is:

Corollary 2.1. Let S bethe R-vector space of discrete-timesignals. IfamapL : S — S
islinear and time-invariant, then it can be represented by a convolution, i.e. there exists a
unique discrete-time signal (cy) € S suchthat L = L(g,).

In such a casegy) is called themodulating signal for L or theimpulse responsefor L.

If L = L, with c, = 0,¥n < O, thenL is called acausal system. In this case, one
checks easily that, is determined completely bg;’s with i < n. Loosely speaking, this
means that the present value in the output signal does not depend on the future values in
the input signal.

If L = L, and(cn) is a discrete-time signal of finite duration, i.e. a finite sequence,
thenL is called arFIR system.

Definition 2.5. LetS be the ring of discrete-time signals, apdg € N. Then anS-module
homomorphismA : SP — SY is called a linear time-invariant multi-input multi-output
(MIMO) system.

Remark. To understand this definition, consider a map SP — SY, which can be
viewed as a map betwedhvector spaces. One can show thatifs R-linear and time-
invariant, then it is actually a§-module homomorphism.

A MIMO systemA : SP — S can be described by the following picture:

(ayll)n —> > (bl)n
: A :

(@D)—] T

In this case, such a-input g-output linear time-invariant system is an operator from the
moduleSP to the moduleSY defined by convolutions with various fixed signals.

2.3. Perfect reconstruction of signals

1
1 (b 1
(an)n —> _'(an)n
: A : S :
(arI;)n —> W _>(ar1:)n

Let A andSbe ap-inputg-output MIMO system and g-input p-output MIMO system,
respectively. Suppose that, when an incoming signal goe#iated the subsequent output
is fed intoS, the resulting output 0% is identical to the original input signal &. If this
is true for any input, then the combined effect of the overall system madeawid S is
complete preservation of inputs.
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For a givenp-inputg-output MIMO systemd, if there exists &-input p-output MIMO
systemS such that the overall system (madefo&ndS) preserves inputs completely, then
A is said to have th@erfect reconstruction property. In this caseA andS are said to
make a PR system, amfd (S, respectively) is called the analysis (synthesis, respectively)
part of the overall system.

3. Algebraic formulation
3.1. Z-transform

In the previous section, it was established that theSsef 1D discrete-time signals
equipped with the operations gfper position andconvolution forms a commutative ring.
This ringS is isomorphic to the rin@:[[z—l]]zfl, a localization of the formal power series
ring C[[z~1]], via the following correspondence:

o
@) — Y anz "
n=—00
This mapping is usually called th&-transform in signal processing literature.
A SISO system can be viewed as an operato@ﬁa*l]]z_l.

Ya,7" Ybyz"

f —_—

If f is a linear time-invariant system, then it is a multiplication by a power series in
C[[z 1]1,-1, and the causal system is a multiplication by a power seri€§[izr]].

If fisan FIR system, thenitis a multiplication by a Laurent polynomidlig1],-1 =
Clz, z"1], and therefore, a causal FIR system is a multiplication by a polynomiint].

This is readily generalized to a (linear time-invariamulti-input multi-output
system, that is, a linear time-invariaptinput g-output FIR systenA : (C[z*1])P —
(C[z*1])¥ is a multiplication by a matrix, i.e.

A € Mgp(C[ZY)).

This matrixA is sometimes callethe transfer matrix of the underlying MIMO system.

Remark. Various signal processing problems can be understood in terms of MIMO
systems which are characterized by their transfer mat¥ietterli (1986, Janssel(1989,
Vaidyanathar{1993 andVetterli and Herley(1992. For example, by using the method of
polyphase decomposition, the design of PR oversampled filter bank can be reduced to the
design of a PR MIMO systerRark(1999.
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3.2. Perfect reconstruction in the Z-transform domain

Consider a giverp-inputg-output MIMO system whosg-transform representation is
aqg x p matrix A. Then clearly, this MIMO system has the PR property if and onk if
has a left invers& such that

SAZIp,

wherelp is the p x p identity matrix. In this case, the overall system madéaindS
makes a PR system, aAd(S, respectively) is the analysis (synthesis, respectively) part of
the overall system.

Remark. Insignal processing literature, the MIMO system representedjpy pLaurent
polynomial matrixA, q > p, is often said to have the PR property if there {aq Laurent
polynomial matrixS and an integed such that

_-d
SA =29,

In this context, the integdd| is called a delay ifl is negative, and is called an advance if
d is positive.

Note that these two definitions of PR are actually identical: that BAit= 291, then
z-9Sis the left inverse oA\.

4. Extensionsto higher dimensions

Definition 4.1. An m-D discrete-time signal is a multiply indexed sequence of real
numbers, i.e(aj;...ip ) (i;--im)ezm, O an infinitem-dimensional array of numbers, where
eachaj,..i,, € R and there existdl € Z such that, ..., = 0if ij < N for somei.

One can define superposition and convolutiomed discrete-time signals as in the 1D
case. Linear time-invariam-D systems are defined in the same way. Itis easy to check that
the set ofm-D discrete-time signals forms a commutative ring with these two operations.
This set is naturally isomorphic to the rin@{[zl‘l, e Zr?]l]]zil___zr;l, a localization of the

multivariate formal power series rir@[[zl‘l, L z,;l]], via theZ-transform

(ajl...im)(il,,,im)ezm — Z a;l...isz'l S Zr;'m.
(i1-im)eZ™

All the concepts introduced for 1D signals in the preceding sections can be readily
extended to then-D signals. For example, in thé-transform domain, am-D FIR MIMO
system is described by a matrix whose entries are Laurent polynomialgamniables, i.e.
elements ofC[zfl, ..., Z5]. The method of polyphase representation can be extended to
multidimensional filter banks. In this case, the delay chain is replaced by cosets of a fixed
sampling lattice (seKalker and Shah1996.

5. Unimodularity and perfect reconstruction

Definition 5.1. Let R be a commutative ring.
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1. Letv = (v1,...,vn)' € R for somen € N. Thenv is called aunimodular column
vector if its components generat®, i.e. if there existgs, ..., gn € R such that
v101+---+vngn = 1.

2. AmatrixA € Mpq(R) is called aunimodular matrix if its maximal minors generate
the unitideal inR.

Theorem 5.1. Aq x p Laurent polynomial matrix, q > p, hasa left inverseif and only if
it isunimodular.

A proof of this assertion in the case of polynomial matrices can be found in
Logar and Sturmfel€l 992, and this result was extended to the case of Laurent polynomial
matrices inPark(1995. An immediate corollary of this theorem is

Corollary 5.1. A p-input g-output FIR MIMO system can be the analysis portion of a PR
FIR MIMO system if and only if its Z-transform representation is a unimodular Laurent
polynomial matrix.

This corollary allows us to see the study of PR FIR linear time-invariant MIMO systems
as the study of unimodular matrices over Laurent polynomial rings.

Example 5.2. Consider an FIR MIMO system who&etransform representation is given
by
3_2-2z+222 $+25-237-162°+20°
U= -2z § +29- 4z - 2022
2z 2+ 4z + 2072

Determine whether this system allows PR of arbitrary input signals.

Solution. The three maximal minors &f are—1, —4+6/z— 2z+ 27%, 6/z— 2z. These
three Laurent polynomials do not have a common zef@*inrand by a Laurent polynomial
analogue of Nullstellensatz, generate the unit ideal. Hence the given system allows PR of
arbitrary input signals. O

6. Construction of the synthesis matrix

Consider a unimodulag x p matrix A, q > p, with Laurent polynomial entries. By
Theorem 5.1A represents a PR MIMO system, and there exigis<ag matrix S such that

In the 1D case, such a mati$(not unique unles® = q) can be easily computed by
using a Laurent polynomial analogue of the Euclidean Division Algorithm.

Example 6.1. Consider again the FIR MIMO system Example 5.2t was determined
that this system allows PR of arbitrary input signals. Let us explicitly construct a synthesis
system which will reconstruct the original inputs.

Using the Laurent polynomial analogue of Euclidean Division Algorithm, we can
successively apply elementary row operations to rediliteits row echelon form:

10
EU=]|0 1],
00
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where the 3x 3 matrixE is found as

£ (~18- 125 — 18872 + 2522 — 2157% + 17825 + 620) (-2 272+ 3022 + ) <‘12‘892+5152‘6023‘224>
2(3+192 3272 +237° - 97 — 825 + 625) 24-32-22 + 73 9/2— 474322+ -7

2
z(—4z+23%—523+24+8§—226) 22(-3+ 22+ 2 - D) —6+62—22 283+ 27

Here the 3x 3 matrix E represents the series of elementary row operations applied to
U, and the first two rows o) make a leftinverse df). [

In m-D case, however, this method for the univariate case is no longer applicable as the
Euclidean Division Algorithm is not available any more, and compu8rig substantially
harder. For example, consider the 2-D linear time-invariant system whdsansform
representation is given by

1 Z1

1y

_ 2"z 41 172

A_(%+1+22+zlzz) € (Clz " 7"
3

7. Working over Laurent polynomial rings

Many of the known methods for unimodular matrices are developed mainly over
polynomial rings, i.e. when the matrices involved are unimodptdynomial matrices
rather than Laurent polynomial matrices. For example, for a polynomial maAtriz
Mpq (KX, ..., Xn]), determining its unimodularity ovek[xy, ..., Xa] is equivalent to
determining the ideal membership of & K[xy, ..., Xn] to the ideal generated by the
maximal minors ofA. And the resulting problem can be effectively solved by alsher
bases computatiorKélker et al.(1995 andPark et al(1997).

In system theoretic terminology, causal-invertibility of causal filters is therefore covered
by these methods.

Remark. It may occur to the reader that, to deal with Laurent polynomial entries in a
matrix, one could just multiply all the entries by a common monomial and then work with
the resulting polynomial matrix.

The situation, however, is not as simple as this scenario. For an example, consider
the polynomial vecto(}) e (k[z])2. While the relation(1/22) - z + (1/22%) - 22 = 1
clearly shows the FIR-invertibility of this vector, it is not causal-invertible since there are
no polynomialsf (z), g(z) € k[z] satisfying

f(2)-z+9@ 22=1

as we can see easily by evaluating both sides=at.

Therefore, any polynomial-based method will incorrectly conclude that this MIMO
system does not have the PR property.

In order to extend any affine results (i.e. causal cases) to general FIR systems, we
need an effective process of converting a given Laurent polynomial vector to a polynomial
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vector while preserving unimodularity. One immediate solution would be to use the ring
isomorphism (seark 1999 for this approach),

Kiz?h ... 2N =Kz, ...,z wl/ (2122 20 - w — D).

However, this process increases the complexity of the problem by introducing an extra
variable. To remedy the situation, an alternative systematic process for the same purpose
was developed iPark (1999. This process uses a change of variables, but keeps the
number of variables the same. After the process is applied to a given Laurent polynomial
vector, we get a polynomial vector of the same size in the same number of variables, and we
determine the unimodularity of this polynomial vector by akrér bases computation and
find its left inverses by tracing the details of theoBnéer bases construction. The original
Laurent polynomial vector is unimodular (as a Laurent polynomial vector) if and only if
the converted polynomial vector is unimodular (as a polynomial vector).

8. A special 1-input p-output case

Consider a 1-inpup-output (p > 1) multidimensional FIR system who&etransform
representation is g x 1 Laurent polynomial matrix (or gp-dimensional Laurent
polynomial vector)

fl(zls ceey Zn)
V(Zlv ceey Zn) =

fp(Zl, ceey Zn)

Suppose there is an invertible change of variables,

(Z1, ... Z0) — (Z}, ..., Z),

such thaw, expressed in terms of the new variat#es. . ., z,, represents aausal system

with causal inverse. This means that alf;’s becomepolynomials in 2/1*1, ....,zZ7tand
there is a synthesis vector

W= (91(Z},...,2), ..., 9p(Z], .- -, Z1))

such thag;’s are polynomials irz’l‘l, e, z{;l andgifi +---+gpfp=1.

Let us recall an algorithm introducediark and Woodbur(1995 Theorem 4.5). It was
named the Algorithm for Elementary Column Property which will now be called the
Elementary Reduction Algorithm. In this algorithm, arx n elementary matrig;j (f) is
a matrix which has 1's on the diagonal, and 0's elsewhere except that jjgh entry is a
polynomial f. A schematic description of this algorithm is givenTiable 1

Note that this Elementary Reduction Algorithm offers an analogue of Gaussian
Elimination for multivariate polynomial vectors.

By applying this algorithm to the polynomial vectefz,, . . ., z;,), we find elementary
matricesEq, ..., E; such that

Ei---Eiv=(10,...,0)". (1)
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Table 1
Elementary Reduction Algorithm
Input: ue (K[xq,..., Xn]) P, a unimodular polynomial vector.
Output: Eq,..., E;, elementary polynomial matrices.
Specification: The matricesEq, ..., E| represent the elementary
row operations reducingu to (1,0,..., 0!, ie.

Ei---Elu=(10,...,0

Denoting the produck; - - - E| by E, and expressing the above reduction relation of Eq.
(2) in terms of the old variables, . .., zm, we get the relation

Ev=(10,...,00

It is immediate that the first row vectovi(z, ..., zm) of E satisfieswiv = 1, and
defines a synthesis system that, together with the analysis system definechbites a
PR system. A natural question regarding the role of the other row veggors. , wp of E
arises here. One notes tlat = ep implies

WoVv =...=wpv=0.
Therefore, for any Laurent polynomidls . . . , tp,
Wy +towp + - - +tpwp)v =1,
and this formula gives a parametrized family
W= W1 + oW + - - - + tpWp (2)

of left inverses ol in terms of thep — 1 Laurent polynomial parametets . . ., tp.

The parametrization in Eq2) is complete in the sense that any left inversewtan
be written in such a form, and @nonical in the sense that the expression of a synthesis
system in terms of the above parameters is unique. The proof of the completeness and
canonicalness of a general version of this parametrization can be fotraak(i1995.

9. General 1-input p-output systems
9.1. Overview: Causal Conversion Algorithm

The results in the preceding section work only for the very special 1-ipputtput
systems, namely, the systems for which thi&itransforms become invertible polynomial
vectors in terms of the new variables. In this section, we develop an algorithm that
transforms a given Laurent polynomial column vector to a polynomial column vector while
preserving unimodularity.

A schematic description of this algorithm is presentedable 2 wherep > 2 is a
nonzero integer and the shorthand notakioa: X1, ..., Xy is used.

It should be noted that this process converts the unimodularity of the Laurent
polynomial vectorv(x) € (k[x*1])P to the unimodularity of the polynomial vector
v(y) € (K[IX])P. A graphical demonstration of this process is showRim 1
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Table 2
Causal Conversion Algorithm
Input: v, a p-dimensional Laurent polynomial column vector
in the variables, ..., Xm.-
Output: X — Y, an invertible change of variablds, ap x p
unimodular (or invertible) Laurent polynomial matrix
in the variabley, ..., Xm.
Specification: (1) V := Tv is apolynomial column vector in the new
variablesy, ..., Ym-
(2) v is FIR-invertible in the old variablegy, ..., Xm

(i.e. unimodular as a Laurent polynomial vector) if and
only if U is causal-FIR-invertible in the new variables

Y1, .- Ym
(i.e. unimodular as a polynomial vector).

<>
K
=
=8

\% W

Fig. 1. Conversion of an FIR systewto a causal FIR systefn

Finding an FIR inversev to the given FIR analysiv is equivalent to finding a
causal inverseav to the causal system The Elementary Column Reduction Algorithm
of Section 8produces a completely parametrized family of left inverse&. @nce a left
inversew of v is found,w := WT is a (not necessarily causal) left inversevpproducing
a complete parametrization of PR FIR pairs for the given analysis

In order to describe the details of the Causal Conversion Algorithm, we start by
generalizing the Noether Normalization Lemma to the case of Laurent polynomials.

9.2. Normalization of Laurent polynomials

Let f e k[xifl...,x5%] be a Laurent polynomial. Sincé is a finite sum of
monomials,
f= Z all ..... ImX:Il_l XII-H]’
(i1,...,im)€l

wherel c ZM is a finite index set.
Defining new variabley, ..., ym by

|m—1

|
X1 =Y1, X2=Y2Y1,---» Xm=YmYy1 >
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Table 3
Laurent Normalization Algorithm
Input: f, a Laurent polynomial in the variables, ..., Xm.
Output: X — Y, an invertible change of variables.
Specification: f, when viewed as a Laurent polynomial in the new
variablesyy, . .., Ym, can be written with respect to the
first variabley; in the following form: f = bsyf +
bs+1y§+l + -+ byy!, wherebs, ..., bt are Laurent
polynomials inyo, .. ., Ym, and in particularbs andbt
are monomials iryo, ..., Ym.
and lettingi = (i1, ...,im) andl = (1,1,12,...,1™1) one has

f:Zaxill---xm

iel
=Y ayyzy?) - iy

iel

LR P EEE Y Lt Y i
=D ay mYE YR

iel

=Y ayy 'y

iel

By choosing a sufficiently large the integers-| fori € | can be made all distinct. Let
s=min{i-l|iel}
t=maxi-l|iel}

Then
f = bsy§ + bsy1ys™ + - + byl

where all theb;’s are units oﬂ([yfl, ..., y£1],i.e. monomialsTable 3.

9.3. Description of the Causal Conversion Algorithm

Letv = (vy, ...,vp)t be a Laurent polynomial vector in the variabbes ..., Xm,
wherep > 2. By using the Laurent Normalization Algorithm, one may assume that the
leading and the lowest coefficients@fw.r.t. x; are monomials irxa, . . ., Xm. Write

v = apx? + ap x4 agdd
whereap andag are monomials irxz, . . ., Xm.
e Step 1. Define ap x p matrix D and ap-dimensional column vectar by
—1,-P
a, X 0
— p
D= 0 apXy

In—2
vVi=(,..., 11;1)t = Dv.
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Note here that the matrix
D = Ez1(apx{)E12(1 — a5 %y ")E21(DE12(1 — apx;)

is a product of elementary matrices with Laurent polynomial entries, and

v/l = a;lx;pvl =1+apii/apxs+---+ aq/apx‘f’p ®)

has no negative powers gf.
Step 2. Write the Laurent polynomials , .. ., v’p w.r.t.x1. Then

v = b xS +bs xS T 4 by

becomes a Laurent polynomiala with coefficients being Laurent polynomials in
X2, ..., Xm. EQ. @) is such an expression fof, and since the smallest degree term
of vj in this expression is 1, by adding suitable multiples’pfo v{’s,i =2, ..., p,

we can makev,, ..., v’p have only positive powers af; (with constant terms
being zero), i.e. fin&, a product of elementary matrices, such that the entries of

arepolynomialsin x; (i.e. have no negative powers f) with coefficients being
Laurent polynomials iz, .. ., Xm, and

11 = 1 modxy
v = 0 modxy, Vi=2,...,n.

Step 3. Choose a sufficiently large numbee N that, with the following change of
variables,

Xt =y1- (Y2 Ym)
X2 =Y2

Xm = Ym,

all the vi's become polynomials in the new variablgs, ..., ym. Thenv; =
1 modys - - - ym. Return the transformation matrix:= ED as the output.

It still remains to prove the following theorem.

Theorem 9.1. Wth the notation as in the above, v(x) is unimodular over k[x*] if and
only if V(y) is unimodular over k[y].

Proof. (<=) The unimodularity ofi(y) overkl[y] trivially implies the unimodularity of
¥(x) overk[x*1]. This, together with the unimodularity @ € Mn(k[x*1]), immediately
implies the unimodularity 0f(x) = T~10(x) overk[x*1].

(=) ¥V is unimodular ovek[y*1] and there exidhs, . . ., h, € k[y] andk € N such that

hids+ -+ hnfn = (y1- - - ym)*.
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Sincet1 = 1 modys - - - Y, there existg € k[y] such that
01 =149 (Y1 Ym).

Define recursively a sequence of polynomigise k[y] | i € N} in the following way:
fi=1-9-(y1 - Ym)
fit1=@1- o (yi-ym?) - i,

Then thef;’s defined in this way satisfy the following property:
fidr=(L—g-(yr--ym) (A+g- (V1 Ym) =1— g% (Y1 Ym)?
fob1 = (1—g* (y1---ym)? - i1 =1-g* (y1---ym)*

fidy =1—g” (i - ym?.
Lert reN ber the smallest number such that 2 k, and defineh € k[y] by h =
g% (y1---Ym)? . Then,

1= fior+0? (yr-ym?
= frﬁ1+92 (yl"'ym)2 _k'(hlﬁl+"'+hnﬁn)

(fr + hh1)v1 4+ hhat2 + - - - 4+ hhyOp.

This gives a required unimodular relation]

10. General g-input p-output systems
Now we have enough tools to deal with general multidimensional FIR systems.

e Step 1. Consider a multidimensional FIR system whasdransform representation

is ap x q Laurent polynomial matridA(zy, .. ., z,), and let the Laurent polynomial
vector
fi(za, ..., zn)
V(Z1,...,2Zn) =
fo(za,...,2n)

be the first column vector aX.
Apply the Causal Conversion Algorithm toin order to find ap x p unimodular

matrix T, and a new set of variable$, . . ., z,, such that
Vi=Tv
is a polynomial vector in the new variablé§l, ozt
e Step 2. Use the Elementary Reduction Algorithm $éction 8to find U, a product
of elementary polynomial matrices in the new variatzfgé, ..., Z71, such that
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If such U does not exist, then the given multidimensional FIR system does
constitute the analysis part of a PR FIR system; terminate the process.
If suchU exists, denot&T by U; thenU is a unimodular Laurent polynomial matrix
in the old variableg;, . . ., z, such that

e Step 3. FromUv = ey, one deduces

1 hiz - hyg
. 0
UA=| . ,
: C
0
wherehyo, ..., hig are Laurent polynomialsim, .. ., z,,andCisa(p—1)x (q—1)

Laurent polynomial matrix.
Now go back toStep 1 with A replaced byC, a matrix of strictly smaller size.

If the given multidimensional FIR systef € Mpyq can constitute the analysis of a
PR FIR system, then the above algorithm should produce unimodular Laurent polynomial
matricesSy, . .., S such that

1 hyp -+ hyg

S-SA=lo 0 ... 1 |eMpq (4)
0 O 0
0 O 0

One can getrid of alhj;'s by performing elementary row operations on this matrix, i.e. by
finding E, a product ofp x p elementary matrices, such that

10 --0
ESy---SIA=[0 0 -+ 1]¢eMpx.
00 0

Define ap x p Laurent polynomial matriss by

S=ES;--S1.
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Denote bySyart the submatrix ofs consisting of its firsfj rows. Then

SparA = Ig

That is, theq x p matrix Spart defines garticular synthesis FIR system that, together with
the given analysi&, makes a PR system. Ed) (mplies that thep x g matrix consisting
of the firstq columns ofS1 is precisely the given matriR, i.e. S is aunimodular
completion of A.

What is the role played by the remainipg— g rows of S? Again, they parametrize all
possible synthesis systems with the same PR propei®yciMqp (K[x*1]) is an arbitrary
left inverse ofA, then

SA=lqg=S51=(lq,us...,Uup_q)

:>S= (Iq, ug, ..., Up_q)S,
whereus, ..., Up_q are Laurent polynomial column vectors(kix=1])%. Now regarding
ui,...,Up—_q as free vector parameters ranging ovieix™1))9, we get a parametrized

family of left inverses involvingg x (p — q) free (Laurent polynomial) parameters.
More explicitly,

S: (Iq, U]_, ey Upfq)é

1 0 ... 0 uig - ul(p—q)

0 1 - 0 unm - Uxpg |, 5)
= . S,

0 0 o1 uql A uq(piq)

whereuij’s are arbitrary Laurent polynomials.

The parametrization in the above E§) is completein the sense that any left inverse of
Scan be written in that form, andésnonical in the sense that the expression of a synthesis
filter in terms of the above parameters is unique. The number of free parametéps; q),
is an invariant for the given matri& and represents thiegree of freedom in obtaining
its left inverses. The proof of the completeness and canonicalness of this parametrization
can be found irPark(1995.

1 X
. f1 v + + X
Example 10.1. Determine whether = = , a Laurent
fa % + 1 + y + Xy

polynomial vector in the two variablesandy, is FIR- mX/erUbIe i.e. whether it has an
FIR inverse.

e Step 1. Write f1 in terms ofx: f1 = (1/y) + ((1/y) + Dx. The leading coefficient
of f1 w.r.t.xis (1/y) + 1, not a monomial iry.

So the Causal Conversion Algorithm has to be appliefi talefine a new variable
z by puttingy = zx' where the integdris to be determined. With respect to the new
variablesx andz, f; becomes; = (1/zx') + (1/zx'"1) + x. Let| = 1. Then
f1 = (1/zx) + (1/2) + x in which the leading and the lowest coefficients wx.are
monomials inz.
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e Step 2.
1 1
V= ( ﬂ+i+x >
5 + 14 2x + 2x?

zx 0 1+ X + X2z
:Wl::(o i>vz<i+i+1+x)'
ZX 73x2 ZX

Apply elementary operations tq to make its second component a polynomial in
X whose constant term is zero.

1.
Vo E < 1 >v < 1+x+x%z )
2=Exn|—-—==)v1= 1 1 -2 .
z8x2 gty tl-77+x
2.
. E <<1 1>x)v ( 1+ X + x?2z )
3 .= E21 2 — 2= 1 1 1 .
23 z g—?—2+1+%
3.

- 1 1 1
V:=E21<——3+—2+——1>V3
Z V4 4

1+ X+ x%z
= \ x(=142z—xz+Z24+x22—B+x23—xz% | -

23

The transformation matrix is

1-z—-22+7 1 1
T=Bal————F— |Ballz—2)*
1 zx 0

<en(-za) (3 1)

and the converted vector is

1+ X + x?%z
Tv= X(—1+422—XZ+Z24XZ2—234+x23—x7%) | -
3

Y

e Step 3. Make another change of variables. Define a new variablyy x = w - 7
where the integdris to be determined.

Then w.r.t. the new variables w, ¥V becomes
o 1+ wz + w2z2+1
T \wd 314 2z—wZt + 2+ wd 2 - B wd B —wdth )

Letl = 3 as itis the smallest integer that makes the componenitpolynomials in
zandw. Then

o f1\ 1+ wzd +w?z’
T\fh)  \wE1l+22+ 22 - —wr+wP+wd —wz) )’



H. Park / Journal of Symbolic Computation 37 (2004) 209-226 225

The unimodularity ofv over k[x*!, y*1] is equivalent to the unimodularity of as a
polynomial vector irk[z, w]. And the unimodularity of a polynomial vector can be easily
checked by a Gitiner basis computation: fdrto be unimodular, the reduced @nier
basis of{vy, v2} C k[w, z] w.r.t. an arbitrary term order must f&}.

A computation with the computer algebra package SINGUL&Ruel et al.(200])
shows that the reduced Gbrier basis ofv1, v2} C k[w, z] w.r.t. the reverse degree
lexicographic order is

(=2 + 81w + 17z — 11, —21wz — 47° + 9w + 5z — 2,
— 567w? — 116wz — 2% + 77w — 2z + 4}.

Thereforel is not unimodular ovek[w, z], and neither iv overk[x*1, y*1], i.e.v is not
FIR-invertible.

Example 10.2. Suppose := (f1, fp, fa, f4)! where

f1 = 1 — Xy — 22 — 4xZ — Xz — 2xyz + 2x%y%z — 2xz% — 2x?7° + 2x%y7?
fo = 24+ 4X + X° + 2xy — 2x°y? + 2xz + 2x%z — 2x%yz

fa = 1+ 2X + Xy — x°y? + xz + x%z — x%yz
fa=2+X+Yy—xy’+z—xyz

Let us consider the problem of finding a complete parametrization for all the left inverses
of the 4x 1 matrixA:

The unimodularity of the matriA can be shown using the method ofdBrier bases
again, i.e. the reduced @her basis of f1, f2, f3, f4} w.r.t an arbitrary term order igl}.
The Elementary Reduction Algorithm 8kection 8roduces

0 —-z+1 2z—-1 —X
8 .— —y—z XZ—yz—22 —X+2z2—2 —2XZ+X—4z+2 X2 +2x+1
TN —v2-yz4+1 —yZz-yR 4 2yz-2y+22—-1 —4yz+2y—2z+1 Xy+x+y |°
Xy + Xz xyz+x22—2xz+2x+l 4Xz —2X — 2 —2x2 — x

Therefore, an arbitrary left inverseof A is of the form

S = (1, ug, uy, U3)é

= (11 ul! u27 u3)
0 -z+1 2z-1 —X
-y—z xz—yz—zz—x+22—2 —2Xz+Xx—4z+2 X2 42x+1
XN\ ov2 vzl —y2royR2 i oyr—oy4 271 —dyz+2y—2241 AY+xX+Y
Xy + Xz xyz+x22—2xz+2x+l 4xz —2x — 2 —2x2 — x

=(0,-z+1,2z-1,—x)
FUL(—Y —Z, XZ—YZ—Z° =X+ 22— 2, —2XZ+ X — 42+ 2, X* + 2X + 1)
+ U=y’ —yz+1,—y’z—yZ? +2yz— 2y + 22— 1, —4yz
+2y—22+1,2xy+X+Y)
4+ U3(XY 4 XZ, XyZ+ XZ2 — 2XZ+ 2X + 1, 4xz — 2x — 2, —2X° — X).

whereus, Uy, uz are arbitrary Laurent polynomials in the variabley, z.
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