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Abstract

Many problems in digital signal processing can be converted to algebraic problems over
polynomial and Laurent polynomial rings, and can be solved using the existing methods of algebraic
and symbolic computation. This paper aims to establish this connection in a systematic manner,
and demonstrate how it can be used to solve various problems arising from multidimensional signal
processing. The method of Gr¨obner bases is used as a main computational tool.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper aims to show how the processing of discrete-time signals is related to linear
algebra over polynomial rings and how the methods of computational algebra can be used
naturally for various problems of multidimensional signal processing.

We start by reviewing basic concepts from signal processing, and relate the processing
of discrete-time signals to linear algebra over Laurent polynomial rings. Then, we show
how to efficiently convert problems over Laurent polynomial rings to the ones over
(regular) polynomial rings. Emphasis is given on the problem of unimodular completion of
Laurent polynomial matrices, and it is explained how this problem is related to the problem
of parametrizing the synthesis of perfect reconstruction (PR) finite impulse response (FIR)
systems. Some of these results appeared inKalker et al.(1995), Park et al.(1997) andPark
(1999), whose full proofs are given in this paper.

It should be noted that many researchers,Faugère et al.(1998), Selesnick(1999),
Lebrun and Vetterli(1998), Lin (1999) andCharoenlarpnopparut and Bose(1999), have
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successfully used computational algebra for multidimensional systems and signal
processing. This is made possible essentially because many signal processing problems
can be modeled in the form of polynomial equations, which can then be solved by the
methods of computational algebra, notably Gr¨obner bases.

2. Basic concepts from signal processing

2.1. 1D discrete-time signals

Definition 2.1. 1. A one-dimensional (1D) discrete-time signal is a sequence of real
numbers, i.e.(an)n∈Z = (. . . , a−2, a−1, a0, a1, a2, . . .), wherean ∈ R and there
existsN ∈ Z such thatan = 0 for all n < N .

2. The set of 1D discrete-time signals is denoted byS.

Discrete-time signals arise naturally, for example, by sampling continuous-time signals:
for a continuous-time signalf (t), definean to be f (nT ) whereT is a preset sampling
period.

Remark. The above definition is a formal one. In practice, a 1D discrete-time signal
often means a square-summable sequence. The set of such square-summable sequences
is denoted byl2(Z).

Remark. In this paper, a 1D signal(an)n∈Z will be abbreviated as(an).

The setS of 1D discrete-time signals naturally forms anR-vector space with the well-
defined operations of the superposition and the scalar multiplication of sequences.

Definition 2.2. Convolution of discrete-time signals: for two given signals(an) and(cn),
their convolution(bn) := (an) ∗ (cn) is defined bybn := ∑

i+ j=n ai c j .

Definition 2.3. For a fixed(cn) ∈ S, the operatorL(cn ) on the setS of discrete-time signals
is defined byL(cn)((an)) := (an) ∗ (cn).

Trivially, the mapL(cn) : S S is a linear map ofR-vector spaces. And the setS of
discrete-time signals equipped with the two operations ofsuperposition andconvolution
forms a commutative ring with identity(δn,0), whereδ0,0 = 1 andδn,0 = 0,∀n �= 0.

2.2. Linear time-invariant systems

Definition 2.4. Then anR-linear mapL : S S is said to betime-invariant if, for any
fixed integeri ,

L((an)) = (bn) implies L((an+i )) = (bn+i ).

Such an operator can be described by the following single-input single-output (SISO)
system.
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Lemma 2.1. Let S be the R-vector space of discrete-time signals. Then a map L : S S
is R-linear and time-invariant if and only if L is S-linear.

Proof. An easy exercise. �
An immediate consequence of this lemma is:

Corollary 2.1. Let S be the R-vector space of discrete-time signals. If a map L : S S
is linear and time-invariant, then it can be represented by a convolution, i.e. there exists a
unique discrete-time signal (cn) ∈ S such that L = L(cn).

In such a case,(cn) is called themodulating signal for L or theimpulse response for L.
If L = L(cn) with cn = 0,∀n < 0, thenL is called acausal system. In this case, one

checks easily thatbn is determined completely byai ’s with i ≤ n. Loosely speaking, this
means that the present value in the output signal does not depend on the future values in
the input signal.

If L = L(cn) and(cn) is a discrete-time signal of finite duration, i.e. a finite sequence,
thenL is called anFIR system.

Definition 2.5. LetS be the ring of discrete-time signals, andp, q ∈ N. Then anS-module
homomorphismA : S p Sq is called a linear time-invariant multi-input multi-output
(MIMO) system.

Remark. To understand this definition, consider a mapA : S p Sq , which can be
viewed as a map betweenR-vector spaces. One can show that, ifA is R-linear and time-
invariant, then it is actually anS-module homomorphism.

A MIMO systemA : S p Sq can be described by the following picture:

In this case, such ap-input q-output linear time-invariant system is an operator from the
moduleS p to the moduleSq defined by convolutions with various fixed signals.

2.3. Perfect reconstruction of signals

Let A andS be ap-inputq-output MIMO system and aq-input p-output MIMO system,
respectively. Suppose that, when an incoming signal goes intoA and the subsequent output
is fed intoS, the resulting output ofS is identical to the original input signal ofA. If this
is true for any input, then the combined effect of the overall system made ofA andS is
complete preservation of inputs.
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For a givenp-inputq-output MIMO systemA, if there exists aq-input p-output MIMO
systemS such that the overall system (made ofA andS) preserves inputs completely, then
A is said to have theperfect reconstruction property. In this case,A andS are said to
make a PR system, andA (S, respectively) is called the analysis (synthesis, respectively)
part of the overall system.

3. Algebraic formulation

3.1. Z-transform

In the previous section, it was established that the setS of 1D discrete-time signals
equipped with the operations ofsuperposition andconvolution forms a commutative ring.
This ringS is isomorphic to the ringC[[z−1]]z−1, a localization of the formal power series
ring C[[z−1]], via the following correspondence:

(an)

∞∑
n=−∞

anz−n.

This mapping is usually called theZ -transform in signal processing literature.

A SISO system can be viewed as an operator onC[[z−1]]z−1.

If f is a linear time-invariant system, then it is a multiplication by a power series in
C[[z−1]]z−1, and the causal system is a multiplication by a power series inC[[z−1]].

If f is an FIR system, then it is a multiplication by a Laurent polynomial inC[z−1]z−1 =
C[z, z−1], and therefore, a causal FIR system is a multiplication by a polynomial inC[z−1].

This is readily generalized to a (linear time-invariant)multi-input multi-output
system, that is, a linear time-invariantp-input q-output FIR systemA : (C[z±1])p →
(C[z±1])q is a multiplication by a matrix, i.e.

A ∈ Mqp(C[z±1]).
This matrixA is sometimes calledthe transfer matrix of the underlying MIMO system.

Remark. Various signal processing problems can be understood in terms of MIMO
systems which are characterized by their transfer matricesVetterli (1986), Janssen(1989),
Vaidyanathan(1993) andVetterli and Herley(1992). For example, by using the method of
polyphase decomposition, the design of PR oversampled filter bank can be reduced to the
design of a PR MIMO systemPark(1999).
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3.2. Perfect reconstruction in the Z-transform domain

Consider a givenp-inputq-output MIMO system whoseZ -transform representation is
a q × p matrix A. Then clearly, this MIMO system has the PR property if and only ifA
has a left inverseS such that

SA = Ip,

whereIp is the p × p identity matrix. In this case, the overall system made ofA andS
makes a PR system, andA (S, respectively) is the analysis (synthesis, respectively) part of
the overall system.

Remark. In signal processing literature, the MIMO system represented by aq× p Laurent
polynomial matrixA, q ≥ p, is often said to have the PR property if there is ap×q Laurent
polynomial matrixS and an integerd such that

SA = zd Ip.

In this context, the integer|d| is called a delay ifd is negative, and is called an advance if
d is positive.

Note that these two definitions of PR are actually identical: that is, ifSA = zdIp, then
z−d S is the left inverse ofA.

4. Extensions to higher dimensions

Definition 4.1. An m-D discrete-time signal is a multiply indexed sequence of real
numbers, i.e.(ai1···im )(i1···im )∈Zm , or an infinitem-dimensional array of numbers, where
eachai1···im ∈ R and there existsN ∈ Z such thatai1···im = 0 if ii < N for somei .

One can define superposition and convolution ofm-D discrete-time signals as in the 1D
case. Linear time-invariantm-D systems are defined in the same way. It is easy to check that
the set ofm-D discrete-time signals forms a commutative ring with these two operations.
This set is naturally isomorphic to the ringC[[z−1

1 , . . . , z−1
m ]]z−1

1 ···z−1
m

, a localization of the

multivariate formal power series ringC[[z−1
1 , . . . , z−1

m ]], via theZ -transform

(ai1···im )(i1···im )∈Zm

∑
(i1···im )∈Zm

ai1···im z−i1
1 · · · z−im

m .

All the concepts introduced for 1D signals in the preceding sections can be readily
extended to them-D signals. For example, in theZ -transform domain, anm-D FIR MIMO
system is described by a matrix whose entries are Laurent polynomials inm variables, i.e.
elements ofC[z±1

1 , . . . , z±
m ]. The method of polyphase representation can be extended to

multidimensional filter banks. In this case, the delay chain is replaced by cosets of a fixed
sampling lattice (seeKalker and Shah, 1996).

5. Unimodularity and perfect reconstruction

Definition 5.1. Let R be a commutative ring.
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1. Letv = (v1, . . . , vn)t ∈ Rn for somen ∈ N. Thenv is called aunimodular column
vector if its components generateR, i.e. if there existg1, . . . , gn ∈ R such that
v1g1 + · · · + vn gn = 1.

2. A matrixA ∈ Mpq (R) is called aunimodular matrix if its maximal minors generate
the unit ideal inR.

Theorem 5.1. A q × p Laurent polynomial matrix, q ≥ p, has a left inverse if and only if
it is unimodular.

A proof of this assertion in the case of polynomial matrices can be found in
Logar and Sturmfels(1992), and this result was extended to the case of Laurent polynomial
matrices inPark(1995). An immediate corollary of this theorem is

Corollary 5.1. A p-input q-output FIR MIMO system can be the analysis portion of a PR
FIR MIMO system if and only if its Z-transform representation is a unimodular Laurent
polynomial matrix.

This corollary allows us to see the study of PR FIR linear time-invariant MIMO systems
as the study of unimodular matrices over Laurent polynomial rings.

Example 5.2. Consider an FIR MIMO system whoseZ -transform representation is given
by

U =



3
z − 2 − 2z + 2z2 6

z + 25− 23z − 16z2 + 20z3

3
z − 2z 6

z + 29− 4z − 20z2

2z 2 + 4z + 20z2


 .

Determine whether this system allows PR of arbitrary input signals.
Solution. The three maximal minors ofU are−1,−4+6/z −2z +2z2, 6/z −2z. These

three Laurent polynomials do not have a common zero inC
∗, and by a Laurent polynomial

analogue of Nullstellensatz, generate the unit ideal. Hence the given system allows PR of
arbitrary input signals. �

6. Construction of the synthesis matrix

Consider a unimodularq × p matrix A, q ≥ p, with Laurent polynomial entries. By
Theorem 5.1, A represents a PR MIMO system, and there exists ap ×q matrixS such that
SA = Ip.

In the 1D case, such a matrixS (not unique unlessp = q) can be easily computed by
using a Laurent polynomial analogue of the Euclidean Division Algorithm.

Example 6.1. Consider again the FIR MIMO system inExample 5.2. It was determined
that this system allows PR of arbitrary input signals. Let us explicitly construct a synthesis
system which will reconstruct the original inputs.

Using the Laurent polynomial analogue of Euclidean Division Algorithm, we can
successively apply elementary row operations to reduceU to its row echelon form:

EU =

1 0

0 1
0 0


 ,
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where the 3× 3 matrixE is found as
 z

18(−18− 125z − 188z2 + 252z3 − 215z4 + 178z5 + 6z6) z
3 (−2 − 27z + 30z2 + z3)

(−12−89z+51z2−60z3−2z4)
6

z
6 (3 + 19z − 32z2 + 23z3 − 9z4 − 8z5 + 6z6) z(4 − 3z − z2 + z3) 9/2 − 4z + 3z2/2 + z3 − z4

z(−4z + 23z2
3 − 5z3 + z4 + 8 z5

3 − 2z6) 2z(−3 + 2z + z2 − z3) −6 + 6z − z2 − 2z3 + 2z4


 .

Here the 3× 3 matrixE represents the series of elementary row operations applied to
U, and the first two rows ofU make a left inverse ofU. �

In m-D case, however, this method for the univariate case is no longer applicable as the
Euclidean Division Algorithm is not available any more, and computingS is substantially
harder. For example, consider the 2-D linear time-invariant system whoseZ -transform
representation is given by

A =
( 1

z2
+ z1

z2
+ z1

z1
z2
2

+ 1 + z2 + z1z2

)
∈ (C[z±1

1 , z±1
2 ])2.

7. Working over Laurent polynomial rings

Many of the known methods for unimodular matrices are developed mainly over
polynomial rings, i.e. when the matrices involved are unimodularpolynomial matrices
rather than Laurent polynomial matrices. For example, for a polynomial matrixA ∈
Mpq (k[x1, . . . , xn]), determining its unimodularity overk[x1, . . . , xn] is equivalent to
determining the ideal membership of 1∈ k[x1, . . . , xn] to the ideal generated by the
maximal minors ofA. And the resulting problem can be effectively solved by a Gr¨obner
bases computation (Kalker et al.(1995) andPark et al.(1997)).

In system theoretic terminology, causal-invertibility of causal filters is therefore covered
by these methods.

Remark. It may occur to the reader that, to deal with Laurent polynomial entries in a
matrix, one could just multiply all the entries by a common monomial and then work with
the resulting polynomial matrix.

The situation, however, is not as simple as this scenario. For an example, consider
the polynomial vector

( z
z2

) ∈ (k[z])2. While the relation(1/2z) · z + (1/2z2) · z2 = 1
clearly shows the FIR-invertibility of this vector, it is not causal-invertible since there are
no polynomialsf (z), g(z) ∈ k[z] satisfying

f (z) · z + g(z) · z2 = 1

as we can see easily by evaluating both sides atz = 0.

Therefore, any polynomial-based method will incorrectly conclude that this MIMO
system does not have the PR property.

In order to extend any affine results (i.e. causal cases) to general FIR systems, we
need an effective process of converting a given Laurent polynomial vector to a polynomial
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vector while preserving unimodularity. One immediate solution would be to use the ring
isomorphism (seePark, 1999, for this approach),

k[z±1
1 , . . . , z±1

n ] ∼= k[z1, . . . , zn, w]/(z1z2 · · · zn · w − 1).

However, this process increases the complexity of the problem by introducing an extra
variable. To remedy the situation, an alternative systematic process for the same purpose
was developed inPark (1995). This process uses a change of variables, but keeps the
number of variables the same. After the process is applied to a given Laurent polynomial
vector, we get a polynomial vector of the same size in the same number of variables, and we
determine the unimodularity of this polynomial vector by a Gr¨obner bases computation and
find its left inverses by tracing the details of the Gr¨obner bases construction. The original
Laurent polynomial vector is unimodular (as a Laurent polynomial vector) if and only if
the converted polynomial vector is unimodular (as a polynomial vector).

8. A special 1-input p-output case

Consider a 1-inputp-output (p > 1) multidimensional FIR system whoseZ -transform
representation is ap × 1 Laurent polynomial matrix (or ap-dimensional Laurent
polynomial vector)

v(z1, . . . , zn) =



f1(z1, . . . , zn)
...

f p(z1, . . . , zn)


 .

Suppose there is an invertible change of variables,

(z1, . . . , zn) (z′
1, . . . , z′

n),

such thatv, expressed in terms of the new variablesz′
1, . . . , z′

n , represents acausal system
with causal inverse. This means that allfi ’s becomepolynomials in z′−1

1 , . . . , z′−1
n and

there is a synthesis vector

w = (g1(z
′
1, . . . , z′

n), . . . , gp(z
′
1, . . . , z′

n))

such thatgi ’s are polynomials inz′−1
1 , . . . , z′−1

n andg1 f1 + · · · + gp f p = 1.
Let us recall an algorithm introduced inPark and Woodburn(1995, Theorem 4.5). It was

named the Algorithm for Elementary Column Property which will now be called the
Elementary Reduction Algorithm. In this algorithm, ann × n elementary matrixEi j ( f ) is
a matrix which has 1’s on the diagonal, and 0’s elsewhere except that its(i, j)th entry is a
polynomial f . A schematic description of this algorithm is given inTable 1.

Note that this Elementary Reduction Algorithm offers an analogue of Gaussian
Elimination for multivariate polynomial vectors.

By applying this algorithm to the polynomial vectorv(z′
1, . . . , z′

n), we find elementary
matricesE1, . . . , El such that

E1 · · · Elv = (1, 0, . . . , 0)t . (1)
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Table 1
Elementary Reduction Algorithm

Input: u ∈ (k[x1, . . . , xn ])p , a unimodular polynomial vector.

Output: E1, . . . , El , elementary polynomial matrices.

Specification: The matricesE1, . . . , El represent the elementary
row operations reducingu to (1, 0, . . . , 0)t , i.e.
E1 · · · El u = (1, 0, . . . , 0)t .

Denoting the productE1 · · · El by E, and expressing the above reduction relation of Eq.
(1) in terms of the old variablesz1, . . . , zm , we get the relation

Ev = (1, 0, . . . , 0)t .

It is immediate that the first row vectorw1(z1, . . . , zm) of E satisfiesw1v = 1, and
defines a synthesis system that, together with the analysis system defined byv, makes a
PR system. A natural question regarding the role of the other row vectorsw2, . . . , wp of E
arises here. One notes thatEv = ep implies

w2v = · · · = wpv = 0.

Therefore, for any Laurent polynomialst2, . . . , tp ,

(w1 + t2w2 + · · · + tpwp)v = 1,

and this formula gives a parametrized family

w := w1 + t2w2 + · · · + tpwp (2)

of left inverses ofv in terms of thep − 1 Laurent polynomial parameterst2, . . . , tp .
The parametrization in Eq. (2) is complete in the sense that any left inverse ofv can

be written in such a form, and iscanonical in the sense that the expression of a synthesis
system in terms of the above parameters is unique. The proof of the completeness and
canonicalness of a general version of this parametrization can be found inPark(1995).

9. General 1-input p-output systems

9.1. Overview: Causal Conversion Algorithm

The results in the preceding section work only for the very special 1-inputp-output
systems, namely, the systems for which theirZ -transforms become invertible polynomial
vectors in terms of the new variables. In this section, we develop an algorithm that
transforms a given Laurent polynomial column vector to a polynomial column vector while
preserving unimodularity.

A schematic description of this algorithm is presented inTable 2, where p ≥ 2 is a
nonzero integer and the shorthand notationx := x1, . . . , xm is used.

It should be noted that this process converts the unimodularity of the Laurent
polynomial vectorv(x) ∈ (k[x±1])p to the unimodularity of the polynomial vector
v̂(y) ∈ (k[x])p. A graphical demonstration of this process is shown inFig. 1.
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Table 2
Causal Conversion Algorithm

Input: v, a p-dimensional Laurent polynomial column vector
in the variablesx1, . . . , xm .

Output: x → y, an invertible change of variablesT, a p × p
unimodular (or invertible) Laurent polynomial matrix
in the variablesx1, . . . , xm .

Specification: (1) v̂ := Tv is apolynomial column vector in the new
variablesy1, . . . , ym .
(2) v is FIR-invertible in the old variablesx1, . . . , xm
(i.e. unimodular as a Laurent polynomial vector) if and
only if v̂ is causal-FIR-invertible in the new variables
y1, . . . , ym
(i.e. unimodular as a polynomial vector).

Fig. 1. Conversion of an FIR systemv to a causal FIR system̂v.

Finding an FIR inversew to the given FIR analysisv is equivalent to finding a
causal inversêw to the causal system̂v. The Elementary Column Reduction Algorithm
of Section 8produces a completely parametrized family of left inverses ofv̂. Once a left
inverseŵ of v̂ is found,w := ŵT is a (not necessarily causal) left inverse ofv, producing
a complete parametrization of PR FIR pairs for the given analysisv.

In order to describe the details of the Causal Conversion Algorithm, we start by
generalizing the Noether Normalization Lemma to the case of Laurent polynomials.

9.2. Normalization of Laurent polynomials

Let f ∈ k[x±1
1 , . . . , x±1

m ] be a Laurent polynomial. Sincef is a finite sum of
monomials,

f =
∑

(i1,...,im )∈I

ai1,...,im x i1
1 · · · xim

m ,

whereI ⊂ Zm is a finite index set.
Defining new variablesy1, . . . , ym by

x1 = y1, x2 = y2yl
1, . . . , xm = ym ylm−1

1 ,
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Table 3
Laurent Normalization Algorithm

Input: f , a Laurent polynomial in the variablesx1, . . . , xm .

Output: x → y, an invertible change of variables.

Specification: f , when viewed as a Laurent polynomial in the new
variablesy1, . . . , ym , can be written with respect to the
first variable y1 in the following form: f = bs ys

1 +
bs+1ys+1

1 + · · · + bt yt
1, wherebs , . . . , bt are Laurent

polynomials iny2, . . . , ym , and in particular,bs andbt
are monomials iny2, . . . , ym .

and lettingi = (i1, . . . , im) andl = (1, l, l2, . . . , lm−1), one has

f =
∑
i∈I

aix
i1
1 · · · xim

m

=
∑
i∈I

aiy
i1
1 (yi2

2 yi2l
1 ) · · · (yim

m yimlm−1

1 )

=
∑
i∈I

aiy
i1+i2l+···+im lm−1

1 yi2
2 · · · yim

m

=
∑
i∈I

aiy
i · l
1 yi2

2 · · · yim
m .

By choosing a sufficiently largel, the integersi · l for i ∈ I can be made all distinct. Let

s = min{i · l | i ∈ I }
t = max{i · l | i ∈ I }.

Then

f = bs ys
1 + bs+1ys+1

1 + · · · + bt yt
1

where all thebi ’s are units ofk[y±1
2 , . . . , y±1

m ], i.e. monomials (Table 3).

9.3. Description of the Causal Conversion Algorithm

Let v = (v1, . . . , vp)
t be a Laurent polynomial vector in the variablesx1, . . . , xm ,

where p ≥ 2. By using the Laurent Normalization Algorithm, one may assume that the
leading and the lowest coefficients ofv1 w.r.t. x1 are monomials inx2, . . . , xm . Write

v1 = apx p
1 + ap+1x p+1

1 + · · · + aq xq
1

whereap andaq are monomials inx2, . . . , xm .

• Step 1. Define ap × p matrixD and ap-dimensional column vectorv′ by

D :=

 a−1

p x−p
1 0

0 apx p
1

In−2




v′ = (v′
1, . . . , v

′
n)t := Dv.
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Note here that the matrix

D = E21(apx p
1 )E12(1 − a−1

p x−p
1 )E21(1)E12(1 − apx p

1 )

is a product of elementary matrices with Laurent polynomial entries, and

v′
1 = a−1

p x−p
1 v1 = 1 + ap+1/apx1 + · · · + aq/apxq−p

1 (3)

has no negative powers ofx1.
• Step 2. Write the Laurent polynomialsv′

1, . . . , v
′
p w.r.t. x1. Then

v′
i = bsi x

si
1 + bs1+1xsi+1

1 + · · · + bti x
ti
1

becomes a Laurent polynomial inx1 with coefficients being Laurent polynomials in
x2, . . . , xm . Eq. (3) is such an expression forv′

1, and since the smallest degree term
of v′

1 in this expression is 1, by adding suitable multiples ofv′
1 to v′

i ’s, i = 2, . . . , p,
we can makev′

2, . . . , v
′
p have only positive powers ofx1 (with constant terms

being zero), i.e. findE, a product of elementary matrices, such that the entries of

v̂ := Ev′ =



v̂1
...

v̂p




arepolynomials in x1 (i.e. have no negative powers ofx1) with coefficients being
Laurent polynomials inx2, . . . , xm , and

v̂1 ≡ 1 modx1

v̂i ≡ 0 modx1, ∀i = 2, . . . , n.

• Step 3. Choose a sufficiently large numberl ∈ N that, with the following change of
variables,

x1 = y1 · (y2 · · · ym)l

x2 = y2

...

xm = ym,

all the v̂i ’s become polynomials in the new variablesy1, . . . , ym . Then v̂1 ≡
1 mody1 · · · ym . Return the transformation matrixT := ED as the output.

It still remains to prove the following theorem.

Theorem 9.1. With the notation as in the above, v(x) is unimodular over k[x±1] if and
only if v̂(y) is unimodular over k[y].
Proof. ( ) The unimodularity of̂v(y) over k[y] trivially implies the unimodularity of
v̂(x) overk[x±1]. This, together with the unimodularity ofT ∈ Mn(k[x±1]), immediately
implies the unimodularity ofv(x) = T−1v̂(x) overk[x±1].
( ) v̂ is unimodular overk[y±1] and there existh1, . . . , hn ∈ k[y] andk ∈ N such that

h1v̂1 + · · · + hn v̂n = (y1 · · · ym)k .
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Sincev̂1 ≡ 1 mody1 · · · ym , there existsg ∈ k[y] such that

v̂1 = 1 + g · (y1 · · · ym).

Define recursively a sequence of polynomials{ fi ∈ k[y] | i ∈ N} in the following way:

f1 = 1 − g · (y1 · · · ym)

fi+1 = (1 − g2i · (y1 · · · ym)2i
) · fi .

Then thefi ’s defined in this way satisfy the following property:

f1v̂1 = (1 − g · (y1 · · · ym)) · (1 + g · (y1 · · · ym)) = 1 − g2 · (y1 · · · ym)2

f2v̂1 = (1 − g2 · (y1 · · · ym)2) · f1v̂1 = 1 − g4 · (y1 · · · ym)4

...

fi v̂1 = 1 − g2i
(y1 · · · ym)2i

.

Let r ∈ N be the smallest number such that 2r ≥ k, and defineh ∈ k[y] by h =
g2r

(y1 · · · ym)2r −k . Then,

1 = fr v̂1 + g2r
(y1 · · · ym)2r

= fr v̂1 + g2r
(y1 · · · ym)2r −k · (h1v̂1 + · · · + hn v̂n)

= fr v̂1 + h(h1v̂1 + · · · + hn v̂n)

= ( fr + hh1)v̂1 + hh2v̂2 + · · · + hhn v̂n .

This gives a required unimodular relation.�

10. General q-input p-output systems

Now we have enough tools to deal with general multidimensional FIR systems.

• Step 1. Consider a multidimensional FIR system whoseZ -transform representation
is a p × q Laurent polynomial matrixA(z1, . . . , zn), and let the Laurent polynomial
vector

v(z1, . . . , zn) =



f1(z1, . . . , zn)
...

f p(z1, . . . , zn)




be the first column vector ofA.
Apply the Causal Conversion Algorithm tov in order to find ap × p unimodular
matrix T, and a new set of variablesz′

1, . . . , z′
m such that

v̂ := Tv

is a polynomial vector in the new variablesz′−1
1 , . . . , z′−1

m .
• Step 2. Use the Elementary Reduction Algorithm ofSection 8to find U, a product

of elementary polynomial matrices in the new variablesz′−1
1 , . . . , z′−1

m , such that

Uv̂ = ep.
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If such U does not exist, then the given multidimensional FIR system doesnot
constitute the analysis part of a PR FIR system; terminate the process.
If suchU exists, denoteUT by Û; thenÛ is a unimodular Laurent polynomial matrix
in the old variablesz1, . . . , zn such that

Ûv = ep.

• Step 3. FromÛv = ep, one deduces

ÛA =




1 h12 · · · h1q

0
... C
0


 ,

whereh12, . . . , h1q are Laurent polynomials inz1, . . . , zn , andC is a(p−1)×(q−1)

Laurent polynomial matrix.
Now go back toStep 1 with A replaced byC, a matrix of strictly smaller size.

If the given multidimensional FIR systemA ∈ Mp×q can constitute the analysis of a
PR FIR system, then the above algorithm should produce unimodular Laurent polynomial
matricesS1, . . . , Sq such that

Sq · · · S1A =




1 h12 · · · h1q

0 1 · · · h2q

...
. . .

...

0 0 · · · 1
0 0 · · · 0
...

... · · · ...

0 0 · · · 0




∈ Mp×q . (4)

One can get rid of allhi j ’s by performing elementary row operations on this matrix, i.e. by
findingE, a product ofp × p elementary matrices, such that

ESq · · · S1A =




1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1
0 0 · · · 0
...

... · · · ...

0 0 · · · 0




∈ Mp×q .

Define ap × p Laurent polynomial matrix̂S by

Ŝ = ESq · · · S1.
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Denote bySpart the submatrix of̂S consisting of its firstq rows. Then

SpartA = Iq .

That is, theq × p matrixSpart defines aparticular synthesis FIR system that, together with
the given analysisA, makes a PR system. Eq. (4) implies that thep × q matrix consisting
of the firstq columns ofŜ−1 is precisely the given matrixA, i.e. Ŝ−1 is a unimodular
completion of A.

What is the role played by the remainingp − q rows of Ŝ? Again, they parametrize all
possible synthesis systems with the same PR property: ifS ∈ Mqp(k[x±1]) is an arbitrary
left inverse ofA, then

SA = Iq SŜ−1 = (Iq , u1, . . . , up−q )

S = (Iq , u1, . . . , up−q )Ŝ,

whereu1, . . . , up−q are Laurent polynomial column vectors in(k[x±1])q . Now regarding
u1, . . . , up−q as free vector parameters ranging over(k[x±1])q , we get a parametrized
family of left inverses involvingq × (p − q) free (Laurent polynomial) parameters.
More explicitly,

S = (Iq , u1, . . . , up−q )Ŝ

=




1 0 · · · 0 u11 · · · u1(p−q)

0 1 · · · 0 u21 · · · u2(p−q)

...
. . .

...
...

...

0 0 · · · 1 uq1 · · · uq(p−q)


 Ŝ,

(5)

whereui j ’s are arbitrary Laurent polynomials.
The parametrization in the above Eq. (5) is complete in the sense that any left inverse of

S can be written in that form, and iscanonical in the sense that the expression of a synthesis
filter in terms of the above parameters is unique. The number of free parameters,q×(p−q),
is an invariant for the given matrixA and represents thedegree of freedom in obtaining
its left inverses. The proof of the completeness and canonicalness of this parametrization
can be found inPark(1995).

Example 10.1. Determine whetherv :=
(

f1
f2

)
=

( 1
y + x

y + x
x
y2 + 1 + y + xy

)
, a Laurent

polynomial vector in the two variablesx and y, is FIR-invertible, i.e. whether it has an
FIR inverse.

• Step 1. Write f1 in terms ofx : f1 = (1/y) + ((1/y) + 1)x . The leading coefficient
of f1 w.r.t. x is (1/y) + 1, not a monomial iny.

So the Causal Conversion Algorithm has to be applied tof1: define a new variable
z by puttingy = zxl where the integerl is to be determined. With respect to the new
variablesx and z, f1 becomesv1 = (1/zxl) + (1/zxl−1) + x . Let l = 1. Then
f1 = (1/zx)+ (1/z) + x in which the leading and the lowest coefficients w.r.t.x are
monomials inz.
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• Step 2.

v =
( 1

zx + 1
z + x

1
z2x

+ 1 + zx + zx2

)

v1 :=
(

zx 0
0 1

zx

)
v =

(
1 + x + x2z

1
z3x2 + 1

zx + 1 + x

)
.

Apply elementary operations tov1 to make its second component a polynomial in
x whose constant term is zero.

1.

v2 := E21

(
− 1

z3x2

)
v1 =

(
1 + x + x2z

− 1
z3x

+ 1
zx + 1 − z−2 + x

)
.

2.

v3 := E21

((
1

z3 − 1

z

)
x

)
v2 =

(
1 + x + x2z

1
z3 − 1

z2 − 1
z + 1 + x

z2

)
.

3.

v̂ := E21

(
− 1

z3
+ 1

z2
+ 1

z
− 1

)
v3

=
(

1 + x + x2z
x(−1+2z−xz+z2+xz2−z3+xz3−xz4)

z3

)
.

The transformation matrix is

T := E21

(
−1 − z − z2 + z3

z3

)
E21

((
1

z3 − 1

z

)
x

)

× E21

(
− 1

z3x2

)(
zx 0
0 1

zx

)
,

and the converted vector is

v̂ = Tv =
(

1 + x + x2z
x(−1+2z−xz+z2+xz2−z3+xz3−xz4)

z3

)
.

• Step 3. Make another change of variables. Define a new variablew by x = w · zl

where the integerl is to be determined.

Then w.r.t. the new variablesz, w, v̂ becomes

v̂ =
(

1 + wzl + w2z2l+1

wzl−3(−1 + 2z − wzl+1 + z2 + wzl+2 − z3 + wzl+3 − wzl+4)

)
.

Let l = 3 as it is the smallest integer that makes the components ofv̂ polynomials in
z andw. Then

v̂ :=
(

f̂1
f̂2

)
=
(

1 + wz3 + w2z7

w(−1 + 2z + z2 − z3 − wz4 + wz5 + wz6 − wz7)

)
.
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The unimodularity ofv over k[x±1, y±1] is equivalent to the unimodularity of̂v as a
polynomial vector ink[z, w]. And the unimodularity of a polynomial vector can be easily
checked by a Gr¨obner basis computation: forv̂ to be unimodular, the reduced Gr¨obner
basis of{v̂1, v̂2} ⊂ k[w, z] w.r.t. an arbitrary term order must be{1}.

A computation with the computer algebra package SINGULARGreuel et al.(2001)
shows that the reduced Gr¨obner basis of{v̂1, v̂2} ⊂ k[w, z] w.r.t. the reverse degree
lexicographic order is

{−z2 + 81w + 17z − 11,−21wz − 4z2 + 9w + 5z − 2,

− 567w2 − 116wz − z2 + 77w − 2z + 4}.
Thereforev̂ is not unimodular overk[w, z], and neither isv overk[x±1, y±1], i.e.v is not
FIR-invertible. �

Example 10.2. SupposeA := ( f1, f2, f3, f4)t where

f1 = 1 − xy − 2z − 4xz − x2z − 2xyz + 2x2y2z − 2xz2 − 2x2z2 + 2x2yz2

f2 = 2 + 4x + x2 + 2xy − 2x2y2 + 2xz + 2x2z − 2x2yz

f3 = 1 + 2x + xy − x2y2 + xz + x2z − x2yz

f4 = 2 + x + y − xy2 + z − xyz.

Let us consider the problem of finding a complete parametrization for all the left inverses
of the 4× 1 matrixA:

The unimodularity of the matrixA can be shown using the method of Gr¨obner bases
again, i.e. the reduced Gr¨obner basis of{ f1, f2, f3, f4} w.r.t an arbitrary term order is{1}.
The Elementary Reduction Algorithm ofSection 8produces

Ŝ :=
( 0 −z + 1 2z − 1 −x

−y − z xz − yz − z2 − x + 2z − 2 −2xz + x − 4z + 2 x2 + 2x + 1
−y2 − yz + 1 −y2z − yz2 + 2yz − 2y + 2z − 1 −4yz + 2y − 2z + 1 2xy + x + y

xy + xz xyz + xz2 − 2xz + 2x + 1 4xz − 2x − 2 −2x2 − x

)
.

Therefore, an arbitrary left inverseS of A is of the form

S = (1, u1, u2, u3)Ŝ

= (1, u1, u2, u3)

×
( 0 −z + 1 2z − 1 −x

−y − z xz − yz − z2 − x + 2z − 2 −2xz + x − 4z + 2 x2 + 2x + 1
−y2 − yz + 1 −y2z − yz2 + 2yz − 2y + 2z − 1 −4yz + 2y − 2z + 1 2xy + x + y

xy + xz xyz + xz2 − 2xz + 2x + 1 4xz − 2x − 2 −2x2 − x

)

= (0,−z + 1, 2z − 1,−x)

+ u1(−y − z, xz − yz − z2 − x + 2z − 2,−2xz + x − 4z + 2, x2 + 2x + 1)

+ u2(−y2 − yz + 1,−y2z − yz2 + 2yz − 2y + 2z − 1,−4yz

+ 2y − 2z + 1, 2xy + x + y)

+ u3(xy + xz, xyz + xz2 − 2xz + 2x + 1, 4xz − 2x − 2,−2x2 − x).

whereu1, u2, u3 are arbitrary Laurent polynomials in the variablesx, y, z.
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