
AAECC manuscript No.
(will be inserted by the editor)
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Abstract In the first sections we extend and generalize Gröbner basis
theory to submodules of free right modules over monoid rings. Over free
monoids, we adapt the known theory for right ideals and prove versions of
Macaulay’s basis theorem, the Buchberger criterion, and the Buchberger al-
gorithm. Over monoids presented by a finitely generated convergent string
rewriting system we generalize Madlener’s Gröbner basis theory based on
prefix reduction from right ideals to right modules. After showing how these
Gröbner basis theories relate to classical group-theoretic problems, we use
them as a basis for a new class of cryptosystems that are generalizations
of the cryptosystems described in [2] and [8]. Well known cryptosystems
such as RSA, El-Gamal, Polly Cracker, Polly Two and a braid group cryp-
tosystem are shown to be special cases. We also discuss issues related to the
security of these Gröbner basis cryptosystems.
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1 Introduction

In recent years, algebraic cryptosystems experienced a considerable increase
in active interest, mainly due to the braid group based cryptosystem sug-
gested in [1]. In this paper we want to unite recent attempts at group based
cryptosystems with earlier suggestions by Neal Koblitz and others in a com-
mutative setting (see [8] and [14]). Unfortunately, these earlier suggestions
met a very polemic response by the Gröbner basis community (see the paper
by Boo Barkee et al. [2]; note that Boo was the name of Moss Sweedler’s
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former dog). In the following years, there were only scattered attempts to
rescue these Polly Cracker type cryptosystems, for instance in [29] and [18].
We find it particularly ironic that one of the authors of that polemic pa-
per [2], Teo Mora aka. Theo Moriarty, had already helped to develop the
very Gröbner basis theory for non-commutative rings which we feel is des-
tined to overcome those initial objections (see [23], [24], and [25]).

Let us explain the basic setup. For non-commutative rings, there are sev-
eral types of Gröbner basis theories. The natural way of defining Gröbner
bases for free associative algebras (i.e. non-commutative polynomial rings)
has been generalized to so-called basic algebras by Edward Green and his
co-workers (see [6], [10], and [11]). These algebras are characterized by the
property that they have a multiplicative vector space basis on which there
exists a term ordering. Alas, for the monoid and group rings we are inter-
ested in such bases are usually not available. Thus we resort to another gen-
eralization of Mora’s approach: Klaus Madlener, Birgit Reinert, and their
co-workers (see [19], [20], [21], [22], and [27]) have successfully described a
Gröbner basis theory for monoid and group rings based on a presentation
of the monoid or group by a convergent term rewriting system.

In Sections 2, 3, and 4 we extend this theory to the case of submodules
of finitely generated right or two-sided free modules over monoid rings. Fur-
thermore, we prove a general version of Macaulay’s basis theorem (see 2.2)
which plays a key role in our cryptosystems, and we formulate general-
izations of Buchberger’s algorithm for enumerating Gröbner bases (see 2.7
and 4.12). In Section 5 we show how one can solve well-known problems
(such as the word problem, the subgroup problem, the conjugacy problem,
and the conjugator search problem) if one succeeds in computing a Gröbner
basis of the appropriate module.

Then we introduce a new class of Gröbner basis cryptosystems in Sec-
tion 6. We show that this class contains the original Polly Cracker cryptosys-
tems (see [8] and [14]), Ly’s Polly Two system (see [29] and [30]), the RSA
cryptosystem (see [28]), the ElGamal cryptosystem (see [5]), and certain
group based cryptosystems derived from [15]. Other special cases are the
non-commutative polynomial cryptosystems of [26]. The underlying idea of
our cryptosystems is straightforward: the plain text units are normal forms
of elements w.r.t. a finitely generated module, encryption is achieved by
adding a random element of the module, and decryption uses a Gröbner
basis of the module and a reduction process to compute the normal form
again. The security of such cryptosystems is based on a number of facts:
• Gröbner bases are usually difficult to compute
• the attacker knows only part of the module for which he wants to

compute a Gröbner basis; the Gröbner basis of this part may be infinite
• the action of the monoid ring on the module can encode hard combi-

natorial and number theoretic problems
• the structure of the base ring may encode hard algebraic and combi-

natorial problems
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In Section 7 we consider the efficiency of the computations that are
involved when using the cryptosystem. Moreover we discuss how one can
meet various attacks on the system.

A more general discussion about these and related issues follows in the
last section, together with some suggestions for generating further secure
instances of Gröbner basis cryptosystems.

2 Gröbner Bases for Right Modules over Free Monoid Rings

In the following we let Σ = {x1, . . . , xn} be a finite alphabet. The monoid
of words (or terms) generated by Σ will be denoted by Σ∗ . Its elements are
of the form w = xi1 · · ·xis

with i1, . . . , is ∈ {1, . . . , n} . Its neutral element
is the empty word λ , and its multiplication is given by concatenation.

Let K be a field. The free monoid ring (or the free associative algebra or
the non-commutative polynomial ring) of Σ∗ over K is the set consisting
of all formal sums

∑s
i=1 ciwi with ci ∈ K and wi ∈ Σ∗ together with the

obvious addition and the multiplication defined by extending the multipli-
cation in Σ∗ linearly.

Our goal in this section is to develop some parts of a Gröbner basis theory
for submodules of finitely generated free right modules over the free monoid
ring K[Σ∗] . We shall content ourselves with introducing those results that
are necessary to define and study the cryptosystems in Section 6. We begin
by recalling the basics of the Gröbner basis theory for two-sided and right
ideals of K[Σ∗] described in [20], [21], [22], and [27].

Let σ be a term ordering on Σ∗ , i.e. a total ordering such that:

1. The inequality w1 ≤σ w2 implies w3w1w4 ≤σ w3w2w4 for all elements
w1, w2, w3, w4 ∈ Σ∗ .

2. Every descending chain of terms w1 ≥σ w2 ≥σ · · · in Σ∗ is eventually
stationary, i.e. σ is a well-ordering.

Then every f ∈ K[Σ∗] \ {0} has a unique representation f =
∑s

i=1 ciwi

with ci ∈ K\{0} and wi ∈ Σ∗ such that w1 >σ w2 >σ · · · >σ ws . The term
LTσ(f) = w1 is called the leading term of f . Moreover, we let LCσ(f) = c1

be the leading coefficient of f and LMσ(f) = c1w1 .
Given a two-sided ideal I ⊆ K[Σ∗] , the leading term ideal of I is defined

to be the two-sided ideal generated by the leading terms of the non-zero
elements of I and is denoted by LT∗

σ(I) = 〈LTσ(f) | f ∈ I \ {0}〉 . A set
of elements {fi | i ∈ Λ} ⊆ I is called a σ -Gröbner basis of I if LT∗

σ(I) =
〈LTσ(fi) | i ∈ Λ〉 .

Similarly, given a right ideal I ⊆ K[Σ∗] , the right leading term ideal of I
is defined to be the right ideal generated by the leading terms of the non-
zero elements of I and is denoted by LTσ(I) = 〈LTσ(f) | f ∈ I \ {0}〉% .
(The subscript % will be used to denote right modules, right generation,
etc.) A set of elements {fi | i ∈ Λ} ⊆ I is called a right σ -Gröbner basis
of I if LTσ(I) = 〈LTσ(fi) | i ∈ Λ〉% .
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Now we extend this theory to submodules of free right modules over
the ring K[Σ∗] . Let Φ be a finite or countably infinite set, and let F% be
the free right K[Σ∗] -module with basis {ei | i ∈ Φ} . The elements of F%

can be represented as formal sums
∑

i∈Φ eifi where all but finitely many
of the elements fi ∈ K[Σ∗] are zero. Furthermore, let U ⊆ F% be a finitely
generated right submodule. In this situation we introduce Gröbner bases as
follows.

Definition 2.1 A term in F% is an element of the form eim with i ∈ Φ
and m ∈ Σ∗ . The set of all terms in F will be denoted by T(F%) . If t =
eim ∈ T(F%) is a term and c ∈ K by ct we will mean eicm .

A module term ordering on T(F%) is a total ordering τ such that:

1. The inequality t1 ≤τ t2 implies t1w ≤τ t2w for all t1, t2 ∈ T(F%) and
w ∈ Σ∗ .

2. Every descending chain of terms t1 ≥τ t2 ≥τ · · · in T(F%) is eventually
stationary, i.e. τ is a well-ordering.

Given a module term ordering τ and an element v =
∑s

i=1 citi ∈ F%\{0}
with ci ∈ K \ {0} and ti ∈ T(F%) satisfying t1 >τ · · · >τ ts , we say that
LTτ (v) = t1 is the leading term of v and LCτ (v) = c1 its leading
coefficient. Moreover, we let LMτ (v) = c1t1 .

The right submodule LTτ (U) = 〈LTτ (v) | v ∈ U \ {0}〉% of F% is called
the (right) leading term module of U , the set LTτ{U} = {LTτ (v) | v ∈
U \ {0}} the leading term set of U .

Finally, a set of non-zero vectors {vi | i ∈ Λ} in U is called a (right)
τ -Gröbner basis of U if we have LTτ{U} = {LTτ (vi)w | i ∈ Λ, w ∈ Σ∗} .

Note that G = {vi | i ∈ Λ} is a right τ -Gröbner basis of U if and only
if LTτ (U) = 〈LTτ (vi) | i ∈ Λ〉% .

The following result will become essential for our cryptosystems.

Proposition 2.2 (Macaulay’s Basis Theorem)
Let τ be a module term ordering on T(F%) and U ⊆ F% a right submodule.
Then the residue classes of the terms in T(F%) \ LTτ{U} form a K-basis
of F%/U .

Proof For b ∈ F% let b̄ ∈ F%/U denote the corresponding residue class.
First suppose the residue classes of T(F%)\LTτ{U} do not generate F%/U .
Let m ∈ F% such that m̄ /∈ 〈b̄ | b ∈ T(F%) \ LTτ{U}〉K =: A . Since τ is a
well ordering we may assume that m has minimal leading term with respect
to τ among all elements of F whose residue classes are not contained in A .
If LTτ (m) ∈ T(F%) \ LTτ{U} then m− LMτ (m) also has residue class not
in A , but has a smaller leading term, a contradiction. If LTτ (m) ∈ LTτ{U}
then there exists u ∈ U with LTτ (u) = LTτ (m). But then m− LCτ (m)

LCτ (u) u has
residue class not in A but has a smaller leading term than m , giving again
a contradiction. Therefore the residue classes of T(F%) \ LTτ{U} generate
F%/U .



Gröbner Basis Cryptosystems 5

Now suppose that
∑k

i=1 cib̄i = 0̄ with k ≥ 1, ci ∈ K \ {0} , and
terms bi ∈ T(F%) \ LTτ{U} . This means that

∑k
i=1 cibi ∈ U . But then

LTτ (
∑k

i=1 cibi) ∈ LTτ{U} ∩ (T(F%) \ LTτ{U}), a contradiction. ut

A Gröbner basis of U allows us to compute for each residue class
in F%/U a representative that is a K -linear combination of elements of
T(F%) \LTτ{U} . Gröbner bases can be characterized via the corresponding
reduction systems.

Definition 2.3 Let v, w ∈ F% . If there exist a term eim1 ∈ Supp(w) and
m2 ∈ Σ∗ such that LTτ (v)m2 = eim1 then we say that v reduces w to
w′ = w − cLCτ (v)−1vm2 in one step, denoted by w

v−→w′ . Here c ∈ K

is the coefficient of eim1 in w . If G ⊆ F% is a set of vectors we let G−→
denote the reflexive and transitive closure of

⋃
g∈G

g−→ . This means that we

write v
G−→w if there exists a sequence v

g1−→ v1
g2−→· · · gk−→w of reduction

steps where k ≥ 0, gi ∈ G . By G←→ we denote the reflexive, symmetric, and
transitive closure of

⋃
g∈G

g−→ .

A reduction system G−→ is called Noetherian if there are no infinite
rewriting sequences. It is called confluent if for all v, w1, w2 such that
v

G−→w1 and v
G−→w2 there exists w3 such that w1

G−→w3 and w2
G−→w3 .

It is called locally confluent if for all g1, g2 ∈ G and all v, w1, w2 such that
v

g1−→w1 and v
g2−→w2 there exists w3 such that w1

G−→w3 and w2
G−→w3 .

A reduction system that is Noetherian and confluent is called convergent.

If G−→ is a Noetherian reduction system then G−→ is confluent if it is
locally confluent. In general this implication does not hold.

Proposition 2.4 Let τ be a module term ordering on T(F%) , let U ⊆ F%

be a right submodule, and let G = {g1, . . . , gs} ⊆ U \{0} be a generating set
for U . Furthermore we assume that the field K has effective arithmetic.

1. The term rewriting system G−→ is convergent if and only if G is a τ -
Gröbner basis of U .

2. Let G be a τ -Gröbner basis of U , and let v ∈ F% . There exists a unique

element NFU (v) ∈ F% with v
G−→NFU (v) and such that NFU (v) is

irreducible with respect to G−→ . This element is effectively computable.
It is called the normal form of v w.r.t. U . It does not depend on the
choice of the Gröbner basis G .

3. For every v ∈ F% , the normal form NFU (v) is a K -linear combination
of the elements in T(F%) \ LTτ{U} .

Proof ¿From the fact that τ is a module term ordering it immediately
follows that the term rewriting system G−→ is Noetherian.

Suppose that G is a τ -Gröbner basis for U . Let m ∈ F% and suppose

that m′,m′′ ∈ F% are irreducible w.r.t G−→ and m
G−→m′ , m

G−→m′′ . Then
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m′−m′′ is irreducible as well and m′−m′′ ∈ U . But since G is a τ -Gröbner
basis we must have m′ −m′′ = 0 showing that G−→ is confluent.

Now suppose that G−→ is convergent. For all u ∈ U , we have u
G←→ 0.

But if two elements are equivalent with respect to some convergent rewriting
system they have the same irreducible normal form, so u

G−→ 0, and hence
LTτ (u) ∈ {LTτ (vi)w | i = 1, . . . , s, w ∈ Σ∗} . Altogether, we have shown
the first claim.

Macaulay’s Basis Theorem yields the equality of vector spaces F% =
U ⊕ 〈T(F%) \ LTτ{U}〉K . An element v = u + w ∈ F with u ∈ U and

w ∈ 〈T(F%) \ LTτ{U}〉K is reduced by G−→ to w in finitely many steps,
yielding the second and third claim. ut

Definition 2.5 Let v, v′ ∈ F% . If there exists a term r ∈ Σ∗ such that
LTτ (v)r = LTτ (v′) or LTτ (v) = LTτ (v′)r then the vector S(v, v′) =
LCτ (v)−1vr − LCτ (v′)−1v′ or S(v, v′) = LCτ (v)−1v − LCτ (v′)−1v′r , re-
spectively, is called the S-vector of v and v′ .

In this setting we have the following criterion for Gröbner bases.

Proposition 2.6 (The Buchberger Criterion)
A set of generators G of a right submodule U ⊆ F% is a τ -Gröbner basis

of U if and only if we have S(g1, g2)
G−→ 0 for every S-vector S(g1, g2) of

elements g1, g2 ∈ G .

Proof If G is a τ -Gröbner basis then by Proposition 2.4 G−→ is convergent.
Since every S-vector S(g1, g2) of elements g1, g2 is in U or, equivalently,
S(g1, g2)

G←→ 0 this implies that S(g1, g2)
G−→ 0.

Now suppose that S(g1, g2)
G−→ 0 for every S-vector of elements

g1, g2 ∈ G . We want to show that G−→ is confluent. Since G−→ is Noetherian
it suffices to show that G−→ is locally confluent, i.e. if a vector m ∈ F% can be
reduced to both m1 = m−cjgjwj and m2 = m−ckgkwk in one step where
cj , ck ∈ K \ {0} , gj , gk ∈ G and wj , wk ∈ Σ∗ then there exists m3 ∈ F%

such that m1
G−→m3 and m2

G−→m3 . First suppose that in this situation
LTτ (gj)wj 6= LTτ (gk)wk . Without loss of generality let LTτ (gj)wj >τ

LTτ (gk)wk . If LTτ (gk)wk is not a term in gjwj then m1
gk−→m− cjgjwj −

ckgkwk and m2
gj−→m− cjgjwj − ckgkwk . If LTτ (gk)wk is a term in gjwj

with coefficient c ∈ K \ {0} then m1
gk−→m− cjgjwj − (ck − cjc

LCτ (gk) )gkwk

and m2
gj−→m− cjgjwj − ckgkwk

gk−→m− cjgjwj − (ck − cjc
LCτ (gk) )gkwk . So,

if LTτ (gj)wj 6= LTτ (gk)wk then m3 exists independently on any conditions

on G−→ .
Now suppose LTτ (gj)wj = LTτ (gk)wk . Then m2 − m1 = cjgjwj −

ckgkwk is a multiple of S(gj , gk) so by our assumption we have m2 −
m1

G−→ 0. Let m2 −m1

gi1−→ f1 = (m2 −m1) − ci1gi1wi1

gi2−→· · ·
gil−→ 0 with
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gij
∈ G be a sequence of reduction steps. Then LTτ (gi1)wi1 ∈ Supp(m1) or

LTτ (gi1)wi1 ∈ Supp(m2). Let c′1 and c′2 be the coefficient of LTτ (gi1wi1)
in m1 and m2 respectively where at most one of c′1 and c′2 is zero. With a
slight abuse of notation in the case that one of the coefficients is zero we have
ci1 = c′2 − c′1 , m1

gi1−→h′1 = m1 − c′1gi1wi1 and m2

gi1−→h′2 = m2 − c′2gi1wi1 ,
so f1 = h′2 − h′1 . By induction on l there exist h1, h2 ∈ F% such that

m1
G−→h1 , m2

G−→h2 and h2 − h1 = 0 yielding the confluence of G−→ . ut
Easy examples show that not every right submodule of F% has a finite

Gröbner basis, even if both F% and the submodule are finitely generated.
However, the following generalization of Buchberger’s algorithm (and of the
Knuth-Bendix completion procedure) provides us at least with a procedure
for enumerating a Gröbner basis. We say that a selection strategy for ele-
ments from a set B is fair if no element stays in B forever, i.e. if it is not
possible that the addition of new elements to B delays the selection forever.

Theorem 2.7 (The Buchberger Algorithm)
Let U be a right submodule of F% , and let G = {g1, . . . , gs} be a system of
generators of U . Consider the following sequence of instructions:

1. Let s′ = s and B = {(i, j) | 1 ≤ i < j ≤ s′ and gi, gj have a nontrivial
S-vector} .

2. If B = ∅ , return the result G . Otherwise choose a pair (i, j) ∈ B using
a fair strategy and delete it from B .

3. Using G−→ , reduce S(gi, gj) as much as possible, i.e. until we reach an

element S′(gi, gj) that is irreducible with respect to G−→ . If the result
is zero, continue with step 2.

4. Increase s′ by one. Append gs′ = S′(gi, gj) to G , and append the set
of pairs {(i, s′) | gi, gs′ have a nontrivial S-vector} to B . Then continue
with step 2.

This is a procedure that enumerates a τ -Gröbner basis G of U . If U has
a finite τ -Gröbner basis, it stops after finitely many steps and the resulting
tuple G is a finite τ -Gröbner basis of U .

Proof For every pair g, g′ in the output G we have S(g, g′) G−→ 0 by con-
struction of G if the S-vector of g, g′ exists. By Proposition 2.6 the set G
is a Gröbner basis.

If there exists a finite Gröbner basis G′ = {g′1, . . . , g′k} then, since the
procedure enumerates a Gröbner basis G , for each j = 1, . . . , k there
is gij ∈ G such that LTτ (gij ) divides LTτ (g′j). But then LTτ{U} =
{LTτ (g′j)w | j = 1, . . . , k, w ∈ Σ∗} ⊆ {LTτ (gij

)w | j = 1, . . . , k, w ∈
Σ∗} ⊆ {LTτ (gi)w | i = 1, . . . ,max{i1, . . . , ik}, w ∈ Σ∗} ⊆ LTτ{U} shows
that {g1, . . . , gmax{i1,...,ik}} is a Gröbner basis of U . Therefore, after the

procedure has appended gmax{i1,...,ik} to G , we have S(gi, gj)
G−→ 0 for all

(i, j) ∈ B . Thus no element is appended to G anymore and the procedure
halts after treating all (i, j) ∈ B . ut
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3 Gröbner Bases for Two-Sided Modules over Free Monoid Rings

In this section we give a brief account of a Gröbner basis theory for sub-
modules of two-sided free modules over free monoid rings, since this theory
will be applied in Section 5 to the conjugator search problem.

Let F be a two-sided free module over K[Σ∗] with basis {ei | i ∈ Φ}
where Φ is finite or countably infinite. By this we mean the K[Σ∗] -bimodule
consisting of elements of the form

∑
i∈Φ

∑
j∈N fijeigij where all but finitely

many of the elements fij , gij ∈ K[Σ∗] are zero and where we identify
cfeig and feicg for c ∈ K and f, g ∈ K[Σ∗] . Multiplication is defined
by (h1, h2)feig = h1feigh2 for (h1, h2) ∈ K[Σ∗] × K[Σ∗] . Furthermore,
let U ⊆ F be a two-sided submodule. In this setting, Definition 2.1 can be
adjusted as follows.

Definition 3.1 A term in F is an element of the form meim
′ with i ∈ Φ

and m,m′ ∈ Σ∗ . The set of all terms in F will be denoted by T(F ) .
A module term ordering on T(F ) is a total ordering τ such that:

1. The inequality t1 ≤τ t2 implies w3t1w4 ≤τ w3t2w4 for all t1, t2 ∈ T(F )
and w3, w4 ∈ Σ∗ .

2. Every descending chain of terms t1 ≥τ t2 ≥τ · · · in T(F ) is eventually
stationary, i.e. τ is a well-ordering.

Given a module term ordering τ and a non-zero element v =
∑s

i=1 citi ∈
F with ci ∈ K \ {0} and ti ∈ T(F ) satisfying t1 >τ · · · >τ ts , we say that
LT∗

τ (v) = t1 is the leading term of v and LC∗
τ (v) = c1 its leading

coefficient. Moreover, we let LM∗
τ (v) = c1t1 .

The two-sided submodule LT∗
τ (U) = 〈LTτ (v) | v ∈ U \ {0}〉 of F is

called the (two-sided) leading term module of U , the set LT∗
τ{U} =

{LT∗
τ (v) | v ∈ U \ {0}} the leading term set of U .
Finally, a set of vectors {vi | i ∈ Λ} in U \ {0} is called a (two-

sided) τ -Gröbner basis of U if we have LT∗
τ{U} = {w1 LT∗

τ (vi)w2 | i ∈
Λ, w1, w2 ∈ Σ∗} .

Since we are not going to use them, we leave it to the reader to write
down the two-sided versions of Propositions 2.2 and 2.4. However, we want
to explain the computation of two-sided Gröbner bases. The definition of
S-vectors and critical pairs now reads as follows.

Definition 3.2 Let f, g ∈ F . If there exist `, r ∈ Σ∗ such that we have
LT∗

τ (f) = `LT∗
τ (g)r or LT∗

τ (f)r = `LT∗
τ (g) or `LT∗

τ (f) = LT∗
τ (g)r or

`LT∗
τ (f)r = LT∗

τ (g) then the vector S(f, g) = LC∗
τ (f)−1f−LC∗

τ (g)−1`gr or
S(f, g) = LC∗

τ (f)−1fr−LC∗
τ (g)−1`g or S(f, g) = LC∗

τ (f)−1`f−LC∗
τ (g)−1gr

or S(f, g) = LC∗
τ (f)−1`fr−LC∗

τ (g)−1g , respectively, is called the S-vector
of f and g .

Using this definition, both the Buchberger Criterion 2.6 and the Buch-
berger Algorithm 2.7 hold true without modifications and with the same
proofs. Thus there is also a procedure for enumerating a two-sided Gröbner
basis of a two-sided submodule of the two-sided free module F .
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4 Gröbner Bases for Modules over Monoid Rings

In this section we consider a finitely presented monoid M = Σ∗/ ∼W

where ∼W is the equivalence relation on Σ∗ generated by a finite number
of relations w1 ∼ w′

1 , . . . , wr ∼ w′
r . We shall use a multiplicative notation

for M . Let K be a field. The monoid ring of M over K is the K -algebra

K[M ] = {
s∑

i=1

aiti | a1, . . . , as ∈ K \ {0}, t1, . . . , ts ∈M}

with K -basis M and multiplication induced by extending the multiplication
of M linearly.

Remark 4.1 For a finitely presented monoid M as above, the monoid ring
of M has a presentation K[M ] ∼= K[Σ∗]/IM where K[Σ∗] is the free
monoid ring and IM is the two-sided ideal IM = 〈w1 − w′

1, . . . , wr − w′
r〉 .

Assumptions. From now on we shall always assume that there exists a
term ordering σ on Σ∗ such that wi >σ w′

i for i = 1, . . . , r , i.e. for the re-
lations defining M , implying that the string rewriting system W−→ generated
by wi

W−→wi′ for i = 1, . . . , r is Noetherian. Moreover, we require that this
string rewriting system is convergent. Unless explicitly stated otherwise, the
elements of M shall be presented by the corresponding irreducible words
in Σ∗ with respect to W−→ . For a, b ∈ M , let ab denote the product of a
and b in M , a� b denote the concatenation of the corresponding words in
Σ∗ , and ≡ denote the identity of words. In particular it follows that ab is
the normal form of a� b w.r.t. W−→ .

Remark 4.2 The assumption that W−→ is a convergent string rewriting
system implies that the ideal IM has a finite two-sided σ -Gröbner basis
G = {g1, . . . , gr} where gi = wi − w′

i for i = 1, . . . , r , and every element
f ∈ K[Σ∗] can be effectively reduced via G−→ to a unique normal form
NFIM

(f).

The remainder of this section is devoted to introducing and studying
Gröbner bases for submodules of right free modules over K[M ] . In the
following we collect the necessary results generalizing the theory of prefix
rewriting and prefix Gröbner bases for one-sided ideals of K[M ] developed
in [20], [21], [22], and [27]. A Gröbner basis theory for the two-sided case
can be introduced in a similar way. However, we do not need it here so we
omit it.
Assumption. Let Φ be a finite or countably infinite set, and let F % be the
free right K[M ] -module with basis {ēi | i ∈ Φ} . The elements of F % are of
the form

∑
i∈Φ ēifi where only finitely many of the elements fi ∈ K[M ] are

non-zero. Furthermore, let U ⊆ F % be a finitely generated right submodule,
and let τ be a module term ordering on T(F%) that is compatible with the
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term ordering σ on Σ∗ , i.e. for all i ∈ Φ and w1, w2 ∈ Σ∗ with w1 <σ w2

we have eiw1 <τ eiw2 . Using the above assumption, we can view τ as an
ordering on the set of terms

T(F %) = {ēi m | i ∈ Φ, m ∈M}

of F % . Although τ is a module term ordering, we cannot expect an in-
equality ēim1 ≤τ ēim2 to imply ēim1m3 ≤τ ēim2m3 where i ∈ Φ and
m1,m2,m3 ∈ M because the reductions via W−→ may destroy the inequal-
ity. So, for v ∈ F % and m ∈ M , we may have LTτ (vm) 6= LTτ (v)m . To
get a Noetherian rewriting system, the appropriate definition of reduction
is the following.

Definition 4.3 Let v, w ∈ F % \ {0} . If there exist a term ēim1 ∈ Supp(w)
and m2 ∈ M such that LTτ (vm2) = ēim1 then we say that v strongly
reduces w to w − cLCσ(vm2)−1vm2 in one step. Here c ∈ K is the
coefficient of ēim1 in w .

Unfortunately, in general one cannot decide whether an equation sx = t
is solvable for x in the monoid M . Therefore one cannot decide whether
a vector w ∈ F % can be strongly reduced by another one. To make this
decision feasible, we introduce a weaker kind of reduction.

Definition 4.4 Let v, w ∈ F % \ {0} . If there exist a term ēi m1 ∈ Supp(w)
and m2 ∈ M such that LTτ (v) � m2 ≡ ēim1 , we say that v prefix re-
duces w to w′ = w− cLCτ (v)−1vm2 in one step and we write w

v−→π w′ .
Here c ∈ K is the coefficient of ēim1 in w .

In the situation of this definition we have LTτ (vm2) = LTτ (v) � m2 .
Therefore the term rewriting system generated by prefix reduction steps is
Noetherian. By using prefix reduction instead of strong reduction we gain
computability, but another problem arises. We have to pay the price that
given a set of generators G of U and a vector v ∈ U we do not necessarily
have v

G←→π0. This additional property can be achieved by prefix saturation.

Definition 4.5 A subset S ⊆ F % is called prefix saturated if we have

vm
S−→π 0 in one step for all v ∈ S and all m ∈M .

Proposition 4.6 Let S ⊆ F % be prefix saturated. Then we have v
S←→π 0

for all v ∈ 〈S〉% .

Proof Let v ∈ 〈S〉% . We write v =
∑k

i=1 ciwimi with ci ∈ K , wi ∈ S ,
and mi ∈ M . We proceed by induction on k . For k = 0, the claim holds
obviously true. Since S is prefix saturated, there exists an element w̃ ∈ S

such that wkmk
w̃−→π 0. Hence we have ckwkmk = c̃ w̃m̃ for some element

m̃ ∈ M . Now we distinguish two cases. If LTτ (w̃) � m̃ is not a term in
the support of v then we have

∑k−1
i=1 ciwimi

w̃−→π v . Otherwise, we have

v
w̃−→π v − c̃ w̃m̃

w̃←−π

∑k−1
i=1 ciwimi . The assertion now follows from the

inductive hypothesis. ut
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There are examples for vectors v ∈ F % for which there does not exist a
finite prefix saturated set S such that 〈v〉% = 〈S〉% . However, the following
procedure enumerates such a set.

Proposition 4.7 Let M = Σ∗/ ∼W be a finitely presented monoid, where
the eqivalence relation ∼W corresponds to the convergent term rewriting
system W−→ generated by wi−→w′

i for i = 1, . . . , r . Given a vector v ∈ F % ,
consider the following sequence of instructions.

1. Let Sat(v) = {v} and A = {v} .
2. Using a fair strategy, choose a vector w ∈ A and delete it from A . Write

t = LTτ (w) = ēim with i ∈ Φ and m ∈M . Let C(t) = {m′ ∈ Σ∗ | m ≡
m′′ � r and r �m′ ≡ wj for some j ∈ {1, . . . , r}, r 6= λ} .

3. If C(t) = ∅ , continue with step 5). Otherwise, choose m′ ∈ C(t) and
delete it from C(t) .

4. Compute the normal form w̃ of wm′ with respect to W−→ . If w̃ 6= 0

and w̃ does not reduce to zero in one step using
Sat(v)−→ then append w̃

to Sat(v) and to A and continue with step 3.
5. If A = ∅ then return Sat(v) and stop. Otherwise, continue with step 2.

This is a procedure that enumerates a prefix saturated set Sat(v) that gen-
erates the right module 〈v〉% .

Proof For a contradiction, suppose that the resulting set Sat(v) is not prefix
saturated. Then there exist w ∈ Sat(v) and m ∈ M such that the term
LTτ (w) �m ∈ F% is minimal among all elements for which wm does not

reduce to zero via
Sat(v)−→ . Then LTτ (w) �m ∈ F% is necessarily reducible

with respect to W−→ . Let LTτ (w) = eim
′ with m′ ∈ M . Since m′m is

reducible with respect to W−→ , there exist decompositions m′ ≡ m′
1 �m′

2

and m ≡ m1�m2 such that m1,m2,m
′
1,m

′
2 ∈M and m′

2 6= λ and m′
2�m1

is the left side of W−→ .
Consequently, we have m1 ∈ C(LTτ (w)). Let w̃ = NFW (w �m1). In

step 4 of the procedure there are two possibilities. Either w̃ reduces to

zero via
Sat(v)−→ or w̃ is appended to Sat(v) and A . In the former case

there exists an element v′ ∈ Sat(v) such that LTτ (wm1) ≡ LTτ (v′) �m3

and wm1 = cv′m3 for some c ∈ K and m3 ∈ M . Then the relations
LTτ (w)�m >τ LTτ (wm1)�m2 ≡ LTτ (v′)�m3�m2 ≥τ LTτ (v′)�(m3m2)
and the minimality of LTτ (w) � m imply that wm reduces to zero via
Sat(v)−→ π , a contradiction. It remains to consider the case that w̃ does not

reduce to zero via
Sat(v)−→ and hence is appended to Sat(v). The relations

LTτ (w)�m ≡ LTτ (w)�m1�m2 >τ LTτ (wm1)�m2 ≡ LTτ (w̃)�m2 and
the minimality of LTτ (w)�m imply that wm = w̃m2 reduces to zero via
Sat(v)−→ π , a contradiction again. ut

In analogy to Proposition 2.4 we now introduce Gröbner bases for prefix
rewriting.
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Definition 4.8 Let U be a right submodule of F % . A set G ⊆ U is called a

prefix Gröbner basis of U if we have u
G←→π 0 for all u ∈ U and if G−→

is confluent.

Remark 4.9 In analogy to Definition 2.1 the following holds: A set G ⊆ U
is a Gröbner basis of U if and only if LTτ{U} = {LTτ (g)�m | g ∈ G, m ∈
M} .

Macaulay’s Basis Theorem also holds: If U is a right submodule of F %

then the residue classes of the terms in T(F %) \ LTτ (U) form a K -basis of
F %/U .

In order to characterize prefix Gröbner bases by a Buchberger criterion,
we need to define the proper notion of S-vectors.

Definition 4.10 Let v, w ∈ F % . If there exists an element m ∈M such that
LTτ (v)�m ≡ LTτ (w) or LTτ (v) ≡ LTτ (w)�m then the element S(v, w) =
LCτ (v)−1vm − LCτ (w)−1w or S(v, w) = LCτ (v)−1v − LCτ (w)−1wm , re-
spectively, is called the S-vector of v and w .

Proposition 4.11 (Buchberger Criterion for Prefix Gröbner Bases)
Let G ⊆ F % be a prefix saturated set. Then the set G is a prefix τ -Gröbner

basis for 〈G〉% if and only if we have S(v, w) G−→π 0 for all S-vectors of
elements v, w ∈ G .

Proof Let G be a prefix Gröbner basis, and let S(v, w) be an S-vector
of elements v, w ∈ G . Since S(v, w) ∈ 〈G〉% , by Proposition 4.6 we have

S(v, w) G←→π 0. Now the fact that 0 is irreducible with respect to G−→π

easily implies that we actually have S(v, w) G−→π 0.
Conversely, assume that S(v, w) G−→π 0 for all S-vectors of v, w ∈ G . If

we want to show that G−→π is confluent it suffices to consider the critical
situations as in Proposition 2.6. These critical situations correspond to S-
vectors of elements of G and resolve if for all S-vectors S(v, w) we have
S(v, w) G−→π 0. The remaining claim follows from Proposition 4.6. ut

Finally, we provide a procedure for computing prefix Gröbner bases.

Theorem 4.12 (Buchberger Algorithm for Prefix Gröbner Bases)
Let U be a right submodule of F % , let G = {g1, . . . , gs} by a system of

generators of U , and let τ be a module term ordering on T(F ) . Consider
the following sequence of instructions.

1. Let H = G , A = G , Sh = {h} for all h ∈ G , s′ = s and B = {(i, j) |
1 ≤ i < j ≤ s′, gi, gj have a non-trivial S-vector} .

2. If A is empty, return H and stop. Otherwise start a computation of
Sat(h) using Proposition 4.7 for every h ∈ A . If this procedure yields
Sat(h) = Sh , remove h from A . Otherwise, stop the procedure when
it has computed a finite subset S′

h of Sat(h) consisting of Sh and at
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least one more element. Append the elements of
⋃

h∈A(S′
h \ Sh) to H ,

increase s′ by the number s′′ of these new elements, and write H =
{h1, . . . , hs′} . Set Sh = S′

h and append {(i, j) | 1 ≤ i < j ≤ s′, j >
s′ − s′′, hi, hj have a non-trivial S-vector} to the set B .

3. If B = ∅ , continue with step 2. Otherwise, use a fair strategy to choose
a pair (i, j) ∈ B and delete it from B .

4. Using H−→π , reduce S(hi, hj) as much as possible and call the result
S′(hi, hj) . If S′(hi, hj) = 0 , continue with step 2. Otherwise, increase s′

by one, set hs′ = S′(hi, hj) and append hs′ to H and A . Set Shs′ =
{hs′} , append {(i, s′) | 1 ≤ i < s′, hi, hs′ have a non-trivial S-vector}
to the set B and continue with step 2.

This is a procedure that enumerates a prefix τ -Gröbner basis H of U .

Proof The set H enumerated by the procedure is prefix saturated as it is the
union of prefix saturated sets Sat(h). By construction we have
S(hi, hj)

H−→π 0 for all hi, hj ∈ H for that S(hi, hj) exists. The assertion
now follows from Propositions 4.6 and 4.11. ut

5 Some Classical Problems

As above, we let M = Σ∗/ ∼W be a finitely presented monoid, we let Φ
be a finite or countably infinite set, and we let F % be the free right K[M ] -
module with basis {ēi | i ∈ Φ} . We continue to operate under the general
assumptions introduced above. Moreover, we suppose that a right submod-
ule U ⊆ F % is given by a finite tuple of generators U = (ū1, . . . , ūs) and
that we know a prefix Gröbner basis of U .

In this setting a number of classical problems for groups and monoids
can be solved using Gröbner basis techniques. Therefore the original com-
putational problem becomes the problem to find the correct Gröbner basis.
Let us illustrate the method with some examples.

Proposition 5.1 (The Word Problem for Free Right Modules)
Given two vectors v̄, w̄ ∈ F % , we write v̄− w̄ =

∑
i∈Φ ēifi with fi ∈ K[M ] .

Then the following conditions are equivalent:

1. v̄ = w̄
2. For all i ∈ Φ we have NFIM

(fi) = 0 .

Notice that if we write the terms in the support of fi in their normal
form with respect to W−→ , we only have to check whether these normal forms
are zero.

In free right K[M ] -modules, we can solve the submodule membership
problem as follows.

Proposition 5.2 (The Submodule Membership Problem)
For a vector v̄ ∈ F % the following conditions are equivalent:



14 Peter Ackermann and Martin Kreuzer

1. v̄ ∈ U
2. v̄ + U = 0 in the module F/U

3. v̄
G−→π 0 for some prefix Gröbner basis G of U .

Proof This follows immediately from Proposition 4.6.

The generalized word problem (also called the submonoid membership
problem) was discussed in [20]. It was shown that it leads to a subalgebra
membership problem in K[M ] . For groups the situation is somewhat more
accessible, since the subgroup membership problem is equivalent to a right
ideal membership problem in K[M ] .

The next interesting monoid and group theoretic problems are the con-
jugacy problem and the conjugator search problem. Let us indicate some
methods for solving them using Gröbner bases.

Definition 5.3 Let f1, . . . , fs ∈ K[M ] . The two-sided submodule of the
two-sided free module F = ⊕s

i=1 K[M ]eiK[M ] generated by all elements∑s
i=1 gieihi such that g1f1h1 + · · ·+gsfshs = 0 is called the syzygy mod-

ule of the tuple (f1, . . . , fs) . We shall denote it by SyzK[M ](f1, . . . , fs) .

In the case M = Σ∗ , there exist explicit descriptions of algorithms to
compute syzygy modules (see [7] and [10]). For the general case, we can
either lift the computation to K[Σ∗] or construct a similar algorithm (see
[3]). The computation of syzygy modules and the following easy proposition
help us achieve our goal.

Proposition 5.4 Let M be a group. For w̄1, w̄2 ∈M, the following condi-
tions are equivalent:

1. w̄1 = w̄3w̄2w̄
−1
3 for some w̄3 ∈M

2. SyzK[M ](w1, w2) ∩ {e1w̄ − w̄e2 | w̄ ∈M} 6= ∅

Proof It suffices to note that we have w̄1 = w̄3w̄2w̄
−1
3 if and only if w̄1w̄3 =

w̄3w̄2 , i.e. if and only if e1w̄3 − w̄3e2 is a syzygy of (w̄1, w̄2). ut

Hence the conjugacy and the conjugator search problems have been re-
duced to finding certain very simple elements in a syzygy module. The latter
task can be achieved by a straightforward generalization of the method in
the commutative case (see [16] and [17]).

6 Gröbner Basis Cryptosystems

In this section we will propose a public key cryptographic primitive based
on the Gröbner basis theory in the setting described so far. Note that to
actually use this Gröbner basis cryptosystem one has to find instances that
guarantee efficient computations where needed and security under certain
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assumptions. We show how one can realize well known public key cryp-
tosystems as special cases of this cryptographic framework. Besides these
examples we do not give concrete instances, however we will discuss how
one can meet various attacks on the system in the next section.

In the following we continue to work in the described setting and use
the assumptions of the earlier sections. In particular, we let M = Σ∗/ ∼W

be a finitely presented monoid and assume that elements of M can be
represented by normal forms that can be efficiently computed, e.g. by a
convergent term rewriting system W−→ . Let σ be a W−→ -admissible term
ordering on Σ∗ , F% be the free right K[Σ∗] -module with basis {ei | i ∈ Φ}
and let τ be a module term ordering on T(F%) that is compatible with σ .
Let F % be the free right K[M ] -module with basis {ēi | i ∈ Φ} and let U
be a right submodule of F % . Finally, we assume that we know a τ -Gröbner
basis G of U w.r.t. some reduction system that allows efficient computations
of normal forms, and therefore the set Oτ (U) = T(F %) \ LTτ{U} .

Definition 6.1 A Gröbner basis cryptosystem consists of the following
data.

1. Public information: the free module F % , the set Oτ (U) , and finitely
many vectors ū1, . . . , ūs ∈ U

2. Secret key: a prefix Gröbner basis G of U .
3. Encryption procedure: A plaintext is a vector m ∈ 〈Oτ (U)〉K , i.e. a

linear combination m = ēλ1c1w1 + · · · + ēλrcrwr such that ci ∈ K ,
λi ∈ Φ , wi ∈M , and ēiwi ∈ Oτ (U) . Then the corresponding ciphertext
is the vector w = m + ū1f1 + · · ·+ ūsfs with suitably (e.g. randomly)
chosen f1, . . . , fs ∈ K[M ] .

4. Decryption procedure: Using G−→ , compute m = NFτ,Ū (w) .

Note that the right choice of f1, . . . , fs ∈ K[M ] in the encryption proce-
dure can be crucial for the security of the cryptosystem and will depend on
the concrete setting in which the primitive is used. For some settings this
issue will be discussed in the next section.

Remark 6.2 We shall also consider the following variant : for the ciphertext
we construct a pair w = (f0,mf0 + ū1f1 + · · ·+ ūsfs) where f0 ∈ K[M ] is a
further randomly chosen element. Then the decoding procedure consists of
computing NFτ,Ū (mf0 + ū1f1 + · · ·+ ūsfs) = NFτ,Ū (mf0) and “dividing”
by f0 to obtain m . In this way we achieve some additional data hiding:
the summand mf0 on the right hand-side has the same shape as the other
summands. However there is no general method for performing the “divi-
sion” NFτ,Ū (mf0) 7→ m . We have to provide an explicit procedure in every
individual example.

Let us collect some easy remarks about the merits of such a cryptosys-
tem.

Remark 6.3 Let a Gröbner basis cryptosystem be given as above.



16 Peter Ackermann and Martin Kreuzer

1. If an attacker can compute G , he can break the cryptosystem. In general,
the computation of Gröbner bases is EXPSPACE-hard.

2. The attacker knows ū1, . . . , ūs and Oτ (U), but not a system of gener-
ators of U . We can make his task difficult by choosing ū1, . . . , ūs such
that a Gröbner basis of 〈ū1, . . . , ūs〉% is hard to compute.

3. The advantage of using modules (rather than ideals in K[M ]) is that
one can encode hard combinatorial or number theoretic problems in the
action of the terms on the canoncial basis vectors (see the examples
below).

4. The free module F% is not required to be finitely generated. Any concrete
calculation will involve only finitely many components.

Now we give some examples of Gröbner basis cryptosystems. In particu-
lar, we show that many classical cryptosystems can be realized as Gröbner
basis cryptosystems.

Example 6.4 Let K = Fq be a finite field, where q = pe with a prime
number p and e > 0. Let M be the monoid M = Nn = Σ∗/ ∼W

where Σ = {x1, . . . , xn} and we require the relations W = {xjxi ∼
xixj | 1 ≤ i < j ≤ n} . We use the free right module of rank one, i.e.
F % = K[M ] = K[x1, . . . , xn] is the commutative polynomial ring. Choose
a point (a1, . . . , an) ∈ Fn

p . Let U = (x1 − a1, . . . , xn − an) and choose
elements ū1, . . . , ūs ∈ U , i.e. ūi(a1, . . . , an) = 0. Consider the following
Gröbner basis cryptosystem.

1. Public information: The one-dimensional free right module F % , the set
Oτ (U) = {1} , and the commutative polynomials ū1, . . . , ūs .

2. Secret key: The point (a1, . . . , an) ∈ Fn
q corresponding to the Gröbner

basis G = {x1 − a1, . . . , xn − an} of the ideal U .
3. Encryption procedure: A plaintext m ∈ Fq is encrypted as the poly-

nomial w = m + ū1f1 + · · · + ūsfs with randomly chosen polynomials
f1, . . . , fs ∈ K[M ] .

4. Decryption procedure: Compute m = w(a1, . . . , an) = NFτ,Ū (w).

This is Neal Koblitz’ polly cracker cryptosystem (cf. [8] and [14]). Its
disadvantage is that the attacker knows that there is an element in the set
w+ū1 ·K[M ]+· · ·+ūs ·K[M ] that has support {1} . Hence many coefficients
have to vanish. This allows a linear algebra attack (see [2], [8] and [14]).

A number of improvements of Koblitz’ original approach have been pro-
posed (see for instance [18] and [29]). Many of them fit our scheme.

Example 6.5 In the setting of the preceding example, choose a second com-
mutative polynomial ring Q = K[y1, . . . , ym] and polynomials g1, . . . , gm

in K[M ] . In this way there is a K -algebra homomorphism φ : Q −→ K[M ]
given by φ(yi) = gi for i = 1, . . . ,m . Choose a point (ξ1, . . . , ξn) ∈ Fn

p and
elements f1, . . . , fs ∈ Q such that φ(f1), . . . , φ(fs) ∈ U = (x1−ξ1, . . . , xn−
ξn). Now construct the following Gröbner basis cryptosystem.
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1. Public information: The rings K[M ] and Q , the homomorphism φ , the
term Oτ (U) = {1} , and the polynomials f1, . . . , fs ∈ Q .

2. Secret key: The point (ξ1, . . . , ξn) ∈ Kn , or equivalently, the Gröbner
basis {x1 − ξ1, . . . , xn − ξn} of the ideal Ū = (x1 − ξ1, . . . , xn − ξn)
in K[M ] .

3. Encryption procedure: We proceed in a similar way to the variant above.
A plaintext is an element m ∈ K . We choose random polynomials h ∈
(f1, . . . , fs) and h′ ∈ ker(φ) and a random exponent κ ∈ Nn . Then we
send (yκ,myκ + h + h′) where y = (y1, . . . , ym). In other words, an
attacker knows the pair (φ(y)κ,mφ(y)κ + φ(h)).

4. Decryption procedure: Compute v̄ = [mφ(y)κ + φ(h)](ξ1, . . . , ξn) =
mφ(y)κ(ξ1, . . . , ξn) and obtain m = v̄/[φ(y)κ(ξ1, . . . , ξn)] .

This is Le Van Ly’s Polly Two cryptosystem (cf. [29]). Compared to
Polly Cracker, it has the advantage that the usual linear algebra attacks
do not work. It appears that an attacker has no choice but to compute a
(possibly hard) Gröbner basis. Supposedly hard concrete instances of this
cryptosystem have been suggested (see [30]).

Example 6.6 Let K = F2 , let Σ = {x, y} , and let M = N2 = Σ∗/ ∼W

with W = {yx ∼ xy} . Then K[M ] = K[Σ∗]/〈yx − xy〉 = K[x, y] is a
commutative polynomial ring in two indeterminates. Moreover, let p, q � 0
be two distinct prime numbers, let n = pq , and let Π = (Z/nZ)× be the set
of residue classes prime to n . We use the free module F % =

⊕n−1
i=0 ei K[x, y]

and the term ordering τ = DegLexPos . Choose a number ε ∈ (Z/(p−1)(q−
1)Z)× and compute the inverse d of ε in (Z/(p− 1)(q − 1)Z)× .

1. Public information: The module F % (and thus the number n), the set
Oτ (U) = {e0, . . . , en−1} , the number ε and the vectors {u1, . . . , us} =
{eix− eiεmod n | i = 0, . . . , n− 1} ∪ {eixy − ei | i = 0, . . . , n− 1} .

2. Secret key: The secret key consists of the primes p and q and the number
d . Equivalently, the secret key is the τ -Gröbner basis G = {u1, . . . , us}∪
{eiy − eidmod n | i = 0, . . . , n− 1} of U = 〈G〉 .

3. Encryption procedure: A plaintext is a vector em ∈ Oτ (U). To encrypt
it, we form em + (emxy − em)− (emx− emεmod n)y ∈ em + U to obtain
the ciphertext w = emεmod ny .

4. Decryption procedure: Compute NFτ,Ū (emεmod ny) = emεdmod n = em .

It is easy to see that this is the Gröbner basis version of the RSA
cryptographic primitive (see [28]) which is used to derive concrete instances
of practical cryptosystems that are widely used in practice. If an attacker is
able to factor n , he can break the code. This is equivalent to being able to
find d . In the Gröbner basis version, the problem the attacker faces is that
he does not know the Gröbner basis elements eiy − eidmod n .

Also discrete logarithms can be used in Gröbner basis cryptosystems.

Example 6.7 Let K = F2 , let Σ = {x} , and let M = Σ∗ = N . Then
K[M ] = K[x] is a polynomial ring. Moreover, let p� 0 be a prime number.
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We use the K[x] -module F% =
⊕p−1

i=1 εi K[x] ⊕
⊕p−1

j=1 ejK[x] where εi, ej

are the standard basis vectors. Let g be a generator of the multiplicative
group F×p , and let τ = DegPos with εi >τ ej for all i, j = 1, . . . , p − 1.
Choose a number a ∈ {1, . . . , p − 1} and compute b = gamodp. Now we
introduce the following Gröbner basis cryptosystem.

1. Public information: The module F% , the set Oτ (U) = {e1, e2, . . . , ep−1} ,
the number b , and the vectors {u1, . . . , us} = {ε1 − e1} ∪ {εix − εgi |
i = 1, . . . , p − 1} ∪ {ejx − ebj | j = 1, . . . , p − 1} where all indices are
computed modulo p .

2. Secret key: The number a ∈ {1, . . . , p− 1} , or equivalently, the τ -Gröb-
ner basis G = {u1, . . . , us} ∪ {εi − eia | i = 1, . . . , p− 1} of U = 〈G〉 .

3. Encryption procedure: A plaintext is of the form e1 + em with a number
m ∈ {0, . . . , p − 1} . Using the variant, we randomly choose a number
k ∈ {0, . . . , p − 1} , form (e1 + em)xk and send the ciphertext w =
εgk + embk ∈ (e1 + em)xk + 〈u1, . . . , us〉% .

4. Decryption procedure: We compute NFτ,Ū (w) = ebk + embk . Since ebk +

embk
G←→(e1 + em)xk , we have to “divide” this vector by xk . To this

end, it suffices to compute m = (mbk)/(bk) in Fp and to form e1 + em .

Clearly, this is the Gröbner basis version of the ElGamal cryptosystem
(see [5]). It can be broken if the attacker is able to compute the discrete
logarithm a of b = ga or k of gk . In the Gröbner basis version, an attacker
can only reduce using εgk

ui−→· · · uj−→xkε1
u1−→xke1 which takes k � 0 re-

duction steps. If one knows a , one can get rid of the vector εgk by using
just one reduction step εgk −→ egka = ebk .

The next example uses non-commutative polynomials. In order to pre-
vent linear algebra attacks (see next section) T. Rai suggested in his recent
doctoral thesis [26] to construct Gröbner basis cryptosystems based on two-
sided ideals. The corresponding Gröbner basis theory was sketched in [20],
[21], [22], [27] and Section 3.

Example 6.8 Let K be a (finite) field, let Σ = {x1, . . . , xn} , and let M =
Σ∗ . Then K[M ] is a non-commutative polynomial ring. We choose a two-
sided ideal I ⊆ K[M ] for which we know a finite (two-sided) Gröbner basis
G = {g1, . . . , gt} with respect to some term ordering τ .

1. Public information: The ring K[M ] , the set Oτ (U), and a finite subset
{u1, . . . , us} ∈ I such that computing a Gröbner basis of 〈u1, . . . , us〉 is
infeasible.

2. Secret key: The τ -Gröbner basis G of I .
3. Encryption procedure: A plaintext m is an element in 〈Oτ (U)〉K . The

corresponding ciphertext is w = m + f1u1g1 + · · · + fsusgs where the
non-commutative polynomials fi, gi are suitably chosen so that in the
computation of w leading term cancellation occurs (see [26], Section
4.1).
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4. Decryption procedure: Compute m = NFτ,Ū (w) using the Gröbner ba-
sis G .

In [26] several concrete instances of these cryptosystems are proposed.
They offer good resistence to linear algebra attacks because using indetermi-
nate coefficients for the polynomials fi and gj leads to systems of quadratic
equations in these coefficients which cannot be solved using linear algebra.
However, one has to take great care to make these cryptosystems secure
against attackers who are able to compute partial Gröbner bases (see [26],
Chapter 4).

Our approach is flexible enough to include recent attempts at group
based cryptosystems. For instance, the following Gröbner basis cryptosys-
tem relies on the difficulty of solving the conjugator search problem in cer-
tain groups.

Example 6.9 Let K be a field, and let M = Σ∗/ ∼W be a finitely pre-
sented group. We use the free right K[M ] -module F =

⊕
w̄∈M εw̄ K[M ]⊕⊕

w̄∈M ew̄ K[M ] (possibly of infinite rank). Moreover, let τ = llexPos be
such that εw̄ >τ eū for all w, u ∈ M . Choose a, g ∈ M and compute
g′ = a−1ga . Now consider the following Gröbner basis cryptosystem.

1. Public information: The module F % , the elements g, g′ ∈ M , a set
B ⊆ {c ∈M | ca = ac} , the set Oτ (U) = {ew̄ | w̄ ∈M} , and the vectors
{uλ | λ ∈ Λ} = {εih − εh−1ih | i, h ∈ M} ∪ {εg − eg′} ∪ {ejk − ek−1jk |
j, k ∈M} .

2. Secret key: The element a ∈ M , or equivalently, the τ -Gröbner basis
G = {uλ | λ ∈ Λ} ∪ {εi − ea−1ia | i ∈ M} of the submodule U = 〈G〉%
of F % .

3. Encryption procedure: Randomly choose an element b ∈ B . A plaintext
m ∈ M is written in the form εg + eg′m̃ , where m̃ = bmb−1 . Then
we multiply by b and use the elements uλ to obtain the ciphertext
w = εb−1gb + eb−1g′m̃b .

4. Decryption procedure: Find NFτ,Ū (w) = ea−1g′′a + eb−1g′bm = eb−1g′b +
eb−1g′b m first, where g′′ = b−1gb . Then determine m from
m = (b−1g′b)−1(b−1g′bm).

As one can readily check, this is a Gröbner basis version of an ElGa-
mal like cryptosystem based on a group with a “hard” Diffie-Hellman con-
jugacy problem, i.e. the problem to find a−1b−1gba given g , a−1ga and
b−1gb where a and b commute. One can solve this problem if given g and
g′ = a−1ga one can find a1, a2 such that a1ga2 = g′ and a1, a2 com-
mute with the elements from B . The advantage of knowing the Gröbner
basis is that one can pass from εg′′ to the corresponding ei without going
through εg −→ eg′ . The computation of that Gröbner basis is equivalent to
finding a .

To perform the encryption step explicitly one has to perform the follow-
ing simple computations in the group: Conjugate g′ with b to obtain b−1g′b
and multiply by the plaintext m . Conjugate g with b to obtain b−1gb .
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If we want to decrypt the ciphertext εb−1gb+eb−1g′m̃b knowing the secret
a an explicit decryption amounts to performing the following: Conjugate
b−1gb with a to obtain the Gröbner basis element εb−1gb−ea−1b−1gba , reduce
w via this element in one step to NFτ,Ū (w) = ea−1b−1gba + eb−1a−1gabm and
obtain m by multiplying the inverse of the first index by the second index.

So all computations performed to encrypt and decrypt are actually com-
putations in the group M .

In [15] braid groups have been suggested for this kind of cryptosystems.
However in [4] it is shown that there is a polynomial time algorithm solving
the Diffie-Hellman conjugacy problem in braid groups. If one chooses rea-
sonable parameters this algorithm is not feasible today but it seems that a
braid group based version of this cryptosystem is not secure in the future.

7 Efficiency and Security Considerations

Although we are not going to propose concrete examples of Gröbner basis
cryptosystems, we are now going to discuss some issues one has to confront
if one tries to construct hard instances.

A. Efficiency. Both for encryption and decryption, the users of Gröbner
basis cryptosystems have to be able to compute efficiently in the ring K[M ]
where K is a computable field and M a finitely presented monoid. The
complexity of the multiplication in M is controlled by the convergent term
rewriting system W−→ . However, for efficient computations in F% we also
have to make sure that the supports of the elements we use do not get too
large.

In particular, this constraint has to be taken into account when one has
to compute the normal form NFτ,G in the decryption procedure. To make
the necessary reduction steps feasible, we have to choose the Gröbner basis
G suitably. Some possibilities are apparent from the examples above:

a) If G and w are binomials, all reduction steps yield binomials, i.e. the
support of all elements consists of at most two terms.

b) If G and w are homogeneous and have bounded degrees with respect
to some grading, there may exist bounds on the number of terms in the sup-
port of the elements computed during w

W−→NFτ,Ū (w) and on the number
of reduction steps.

c) If the set T(F%) \ LTτ{U} is small, the coefficients of NFτ,Ū (w) can
be found by applying suitable K -linear maps to the terms in the support
of w (see Example 6.4).

B. Linear Algebra Attacks. Several types of linear algebra attacks have
been proposed that apply to special Gröbner basis cryptosystems.

1) The basic type is the attack proposed in the original paper [8]. In the
equation w = m + ū1f1 + · · · + ūsfs , the attacker regards the coefficients
of f1, . . . , fs as unknowns and tries to solve the resulting linear system of
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equations. In our setup, it is possible to make this attack infeasible: By
choosing a large set Oτ (U), we can make the plaintext m “similar” to the
ciphertext w . By using a module of large rank, we can make the solution of
this linear system infeasible. Moreover, since we are working over a monoid
or group ring, many products (eit)t′ with eit ∈ Supp(ūj) and t′ ∈ Supp(fj)
can be made to yield the same term, so that the corresponding coefficients
cannot be recovered.

2) The “intelligent” linear algebra attack suggested by H.W. Lenstra and
described in [14] is based on the idea that in the equation w = m + ū1f1 +
· · ·+ ūsfs one can guess the terms t occuring in the support of ū1, . . . , ūs

if t · Supp(fi) intersects Supp(w), and that the list of all such terms is not
too large. As before, in our approach this attack can be repelled in several
ways, namely by working over group rings or by using a free module of large
rank. In each case sufficient cancellation happens during the computation
of the cyphertext.

C. The Differential Attack. In [12] and [13] D. Hofheinz and R. Stein-
wandt described a “differential” attack on the Polly Cracker cryptosystem.
This attack uses the observation that in an expansion w = m+ ū1f1 + · · ·+
ūsfs the quotients of terms in the support of w sometimes allow conclusions
about the shape of the supports of the elements ū1, . . . , ūs . In our setting,
this attack can be repelled in the very same way as the “intelligent” linear
algebra attack described above.

D. The Attack Using Characteristic Terms. If a representation w =
m+ ū1f1+ · · ·+ ū2f2 is such that there are terms in w that do not belong to
Oτ (U) and therefore not to Supp(m) then it is sometimes possible to reveal
individual messages by performing suitable linear algebra on the coefficients
of w and f1, . . . , fs , in particular when there exist “characteristic terms”,
i.e. terms that occur in just one of the elements fi . By recognizing multiples
of these terms in the ciphertext one can reconstruct a constant message unit.
As before this attack rests on the fact that plaintext units are small, i.e. that
Oτ (U) is small. Furthermore, if several products t · t′ with t ∈ Supp(ūi)
and t′ ∈ Supp(fi) contribute to one coefficient of w this attack becomes
infeasible. Thus the defensive measures described above apply.

E. Chosen Ciphertext Attacks. In the proposed cryptosystems the re-
ceiver has no method for detecting invalid ciphertexts. In addition, since
decryption is K -linear, the chosen ciphertext attacks described in [9] and
[14] are possible. However by using suitable hash functions the system can
be made secure in the way described in [30]: The sender appends a suitable
random value to his message, computes the hash value of the result, and
transmits the ciphertext of the message, the ciphertext of the random value,
and the hash value.
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8 Discussion and Further Suggestions

Let us point out some reasons for the choices we made in presenting Gröbner
basis cryptosystems and some possibilities for further generalization and
improvement.
• In the original Polly Cracker cryptosystem, an attacker has several

advantages that allow him to use linear algebra methods. For instance, he
knows (or guesses) that the normal form of the ciphertext with respect
to an unknown Gröbner basis is very simple. Since no cancellation occurs
when one multiplies terms in a polynomial ring, this means that many
coefficients have to vanish. Using a similar system over the monoid ring of a
large monoid with a sufficient amount of cancellation foils this attack. This
is the reason why we think it is advisable to use monoid rings as base rings.
• The fact that Gröbner basis theory works for modules and not just

rings gives us another degree of freedom: we can encode the action of a
monoid on a set (namely the set of basis vectors of a free module). Hard
instances of such actions are known.
• By leaving the world of commutative rings, we gain another advantage.

In most cases, submodules of free modules over non-commutative rings do
not have a finite Gröbner basis, and even the computation of partial (“trun-
cated”) Gröbner bases may not be practical. Therefore it is not difficult to
create sets of vectors {u1, u2, . . .} such that the module 〈u1, u2, . . .〉 has no
“reasonable” Gröbner basis whereas a larger module (that is kept secret)
does.
• An alternative, large class of non-commutative algebras for which

there exists a well-developed Gröbner basis theory is the class of path alge-
bras (see e.g. [10], [11]). Using these algebras as base rings, we can introduce
a new kind of complexity: the oriented graph underlying a path algebra can
incorporate hard combinatorial problems. We believe that this aspect de-
serves to be examined further in the future.
• Altogether, we can conclude that Gröbner basis cryptosystems allow

us to combine several difficult computational problems coming from sep-
arate areas of mathematics. We think they form a suitable framework for
searching for new hard instances.
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