
doi:10.1006/jsco.2001.0478
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 43–55

Continuously Parameterized Symmetries and
Buchberger’s Algorithm

RALF HEMMECKE†

Research Institute for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria

Systems of polynomial equations often have symmetries. In solving such a system using

Buchberger’s algorithm, the symmetries are neglected. Incorporating symmetries into
the solution process enables us to solve larger problems than with Buchberger’s algo-

rithm alone. This paper presents a method that shows how this can be achieved and

also gives an algorithm that brings together continuously parameterized symmetries with
Buchberger’s algorithm.

c© 2002 Academic Press

1. Introduction

The Gröbner basis technique has proved to be an indispensable tool in many areas.
For the basic concepts, we refer to Buchberger (1985) and Becker and Weispfenning
(1993). Although it has been refined in various ways, many problems which are solvable
in principle by the Gröbner basis technique remain practically intractable due to the
double-exponential worst-case complexity of Buchberger’s algorithm. One way to try
and tackle such problems is to use additional information which is normally neglected
during a Gröbner basis computation.

In this paper, we investigate problems which are additionally invariant under a linear
group action. To describe our aim in detail, let K be an algebraically closed field and
B = {b1, . . . , bp} ⊂ K[A1, . . . , An]. Furthermore, let Γ be a group parameterized by
the affine space X = Km: i.e. an element γ of Γ can be written in the form γ = γ(x)
with x ∈ X . We assume that Γ acts on A = Kn, and this action can be described by
polynomials γ1, . . . , γn ∈ K[X1, . . . , Xm, A1, . . . , An], such that

(∀x ∈ X)(∀a ∈ A) γ(x) · a = (γ1(x, a), . . . , γn(x, a)) ∈ A. (1)

In addition, we require that the set of common zeros

Z(B) := {a ∈ A | b1(a) = · · · = bp(a) = 0}

is invariant under the group action of Γ, and we are looking for the description of Z(B).
The main idea to simplify the original problem is to determine a subset Z ⊂ Z(B)

which is easy to compute and such that Orb(Z), the Γ-orbits of z ∈ Z, covers Z(B). Here,
we try to take Z as the intersection of Z(B) with appropriate coordinate-hyperplanes.
For such a choice, however, Orb(Z) need not cover Z(B). Hence, the problem is divided

†E-mail: ralf@hemmecke.de

0747–7171/02/010043 + 13 $35.00/0 c© 2002 Academic Press

44 R. Hemmecke

into a description of Z and of the “exceptional set” Z ′ = Z(B) \ Orb(Z). Both may be
found with a variant of the Gröbner factorizer algorithm.

It turns out that we can weaken the assumptions about Γ: we can take a polynomially
parameterized set of transformations of A leaving Z(B) invariant, which may be inverted
effectively in each point of Z(B) to recover the orbits.

Further investigation has to be done to choose Z in such a way that Z ′ inherits a
“nice” structure, since the decomposition of this “exceptional set” consumes most of the
time of the whole computation.

2. Preliminaries

In this paper, K will be an algebraically closed field. K[A1, . . . , An] is abbreviated
by K[A]. R denotes a Euclidean ring (though this condition can be weakened in some
places), and Q its field of fractions. In many cases, we take R = K[A]. We write R[X] for
the polynomial ring R[X1, . . . , Xm]. For the natural numbers m and n, the affine spaces
Km and Kn are denoted by X and A, respectively.

We follow the notation in Becker and Weispfenning (1993) and denote by C(f), T (f),
and M(f) the set of coefficients, terms, and monomials of f , respectively. These sets are
empty if f = 0. T (X1, . . . , Xm), abbreviated by T (X), is the set of all terms in these
indeterminates, i.e. monomials with coefficient 1.

Let us fix an arbitrary Noetherian term order throughout the paper. We use LC, LT,
and LM as usual, and denote for F ⊆ R[X] the set {LT(f) | 0 6= f ∈ F} by LT(F).
I(B) is the ideal generated by the elements of B. It will always follow from the context

in which polynomial ring this ideal is generated.

Definition 2.1. Let f, f̃ , f∗, g ∈ R[X], and G = {g1, . . . , gk} ⊂ R[X].

(i) f is pseudo-reducible modulo g to f̃ (written: f →g f̃) if f, g 6= 0, and there
exists r0t0 ∈ M(f) such that LT(g)|t0, and

f̃ = r̃f − r̃0tg

where

% = gcd(r0,LC(g)), r̃ =
LC(g)

%
, r̃0 =

r0

%
, t =

t0
LT(g)

.

(ii) f is pseudo-reducible modulo G to f̃ (written: f →G f̃) if f →g f̃ for some
g ∈ G.

(iii) f is called pseudo-reducible modulo G if there is some f̃ ∈ R[X], such that f
is pseudo-reducible modulo G to f̃ .

(iv) f∗ is a pseudo-normal form of f modulo G iff f∗ is not pseudo-reducible
modulo G and f →∗

G f∗ holds.

By →∗
G we denote the reflexive transitive closure of →G.

Recall that, when R = Q is a field, the normal form of a polynomial w.r.t. pseudo-
reduction differs only in a constant factor (from R) from the normal form w.r.t. the
usual concept of reduction as, for example, described in Becker and Weispfenning (1993).

Continuously Parameterized Symmetries and Buchberger’s Algorithm 45

In particular, reducibility and pseudo-reducibility modulo G coincide. Hence, 0 is a nor-
mal form of a polynomial f modulo G iff 0 is a pseudo-normal form of f modulo G.

Pseudo-normal forms can be computed with the algorithm pseudoNormalForm
given below. It incorporates the obvious changes to the usual normal form algorithm (as,
for example, presented in Becker and Weispfenning (1993)) necessary for denominator-
free computations.

A Gröbner basis G of an ideal I of Q[X] is called denominator-free (w.r.t. R) if
G ⊂ R[X].

For g1, g2 ∈ R[X] \ {0} we define the S-polynomial in a denominator-free way by

spol(g1, g2) :=
LM(g2) g1 − LM(g1) g2

gcd(LT(g1),LT(g2))
∈ R[X].

For later reference, we now present a pseudo-normal form algorithm and Buchberger’s
algorithm in a denominator-free form.

Algorithm pseudoNormalForm
Input:

f ∈ R[X]
G = {g1, . . . , gk} ⊂ R[X]

Output:
f∗ ∈ R[X], such that f∗ is a pseudo-normal form of f modulo G.
r ∈ R and H = {h1, . . . , hk} ⊂ R[X], such that LT(higi) ≤ LT(f) holds for all
1 ≤ i ≤ k if the corresponding leading terms are defined, and

rf = f∗ +
k∑

i=1

higi.

begin
f∗ := f
r := 1
Let hi := 0 for all i = 1, . . . , k.
while f∗ (pseudo-)reducible modulo G do

Choose 1 ≤ i0 ≤ k such that f∗ →g f̃ where g = gi0 .
If r0t0 ∈ M(f∗) is the monomial that will be replaced,
choose r̃, r̃0, t as in Definition 2.1, i.e.

% := gcd(r0,LC(g))
r̃ := LC(g)/%
r̃0 := r0/%
t := t0/LT(g)

Update
f∗ := r̃f∗ − r̃0tg
hi0 := r̃hi0 + r̃0t
hi := r̃hi for 1 ≤ i ≤ k, i 6= i0
r := r̃r

end while
return (f∗, r,H)
end pseudoNormalForm

46 R. Hemmecke

Algorithm buchberger
Input:

B = finite subset of R[X]
Output:

G = finite subset of R[X], such that G is a denominator-free Gröbner basis of
I(B) in Q[X].

begin
G := B
P := {(g1, g2) | g1, g2 ∈ G, g1 6= g2}
while P 6= ∅ do

Choose (g1, g2) from P
P := P \ {(g1, g2)}
g := spol(g1, g2)
(g, r,H) := pseudoNormalForm(g,G)
if g 6= 0 then

g := primitivePart(g) ∈ R[X]
P := P ∪ {(ḡ, g) | ḡ ∈ G}
G := G ∪ {g}

end if
end while
return G
end buchberger

Buchberger’s algorithm has been refined in various ways. One method is to factor the
normal forms of produced S-polynomials and split the corresponding problem according
to these factors into several “simpler” branches. Gräbe presents in Gräbe (1995b) a form
of the Buchberger-algorithm with factorization (called FGB) which will be used here.

Given a set B = {b1, . . . , bp} ⊂ K[A] and a set C = {c1, . . . , cq} ⊂ K[A] of “con-
straints”, the algorithm FGB determines the set Z(B,C) of common zeros by returning
a certain number of Gröbner bases Bi and corresponding “constraints” Ci such that
Z(B,C) =

⋃
iZ(Bi, Ci) holds. Here Z(B,C) = Z(B) \ Z(c) with c =

∏
f∈C f is the

relative set of common zeros of B w.r.t. C in A.

3. Gröber Bases and Specialization

Let R = K[A], fix some elements a1, . . . , an ∈ K, and let σ : R[X] → K[X] be the
specialization induced by Ai 7→ ai. For B = {b1, . . . , bp} the set {bσ

1 , . . . , bσ
p} is denoted

by Bσ.

Lemma 3.1. Let G = {g1, . . . , gk} ⊂ R[X] be a denominator-free Gröbner basis of I(G)
in Q[X], σ a specialization, and f ∈ I(G) ∩ R[X]. If LC(g)σ 6= 0 for all g ∈ G then
fσ ∈ I(Gσ) ⊂ K[X].

Proof. Since f ∈ I(G) and G is a Gröbner basis, we have f →∗
G 0. Now consider the

algorithm pseudoNormalForm with input f and G. The algorithm yields a relation

rf =
k∑

i=1

higi (2)

Continuously Parameterized Symmetries and Buchberger’s Algorithm 47

where h1, . . . , hk ∈ R[X] and r ∈ R divides a product of {LC(g) | g ∈ G}. Hence, rσ 6= 0
is K-invertible and fσ ∈ I(Gσ). 2

Theorem 3.2. Let B = {b1, . . . , bp} ⊂ R[X], and let σ be a specialization. Let B in
Q[X] generate the proper ideal I(B), and let G = {g1, . . . , gk} be a denominator-free
Gröbner basis of I(B).

If LC(gi)σ 6= 0, i.e. LC(gi)σ = LC(gσ
i) and LT(gi) = LT(gσ

i), for all i = 1, . . . , k, then
Gσ generates a proper ideal in K[X], and we have

I(Bσ) ⊆ I(Gσ) (⊂ K[X]). (3)

Proof. I(Gσ) is a proper ideal of K[X], since LT(G) = LT(Gσ) and G is a Gröbner
basis. For each b ∈ B we have b ∈ I(G), since G is a Gröbner basis of I(B). From
Lemma 3.1, it follows that bσ ∈ I(Gσ), and hence also I(Bσ) ⊆ I(Gσ). 2

For a proper ideal I in K[X] the Hilbert Nullstellensatz yields

∅ 6= Z(I) ⊆ X .

Therefore, we can state:

Corollary 3.3. Under the same assumptions as in Theorem 3.2, we have

∅ 6= Z(Gσ) ⊆ Z(Bσ) ⊆ X ,

i.e. the set of zeros of Bσ is non-empty.

4. Un Nouvel Algorithme

4.1. origin

The motivating origin of the investigation presented here is the complete solution of
the constant quantum Yang–Baxter equation in the two-dimensional case in Hietarinta
(1992). Our paper formalizes and generalizes the method used by Hietarinta, and presents
an algorithm which can then also be used to attack similar problems.

Hietarinta applied the Gröbner basis technique with factorization for his solution.
Using the problem formulation introduced at the beginning of this paper, Hietarinta’s
method to employ inherent “continuous” symmetries can be formalized in the follow-
ing way.

Choose a subset of {1, . . . , n}, w.l.o.g. we take {1, . . . , l}, and assume that for a ∈ A
there is a γ ∈ Γ such that the first l coordinates of γ ·a vanish. For a fixed a ∈ A, this can
be decided by investigating the solvability of the system γ1(X, a) = · · · = γl(X, a) = 0.

Thus, the problem splits in the following way:

(i) Describe the set Z = Z(B) ∩ {a ∈ A | a1 = · · · = al = 0}.
(ii) Describe the set Z ′ = Z(B) \Orb({a ∈ A | a1 = · · · = al = 0}).

The first set provides whole Γ-orbits for the solution set. To each point z ∈ Z corres-
ponds a whole orbit Orb(z) ⊂ Z(B) which can be determined by the parametrization of
the Γ-action.

The second set is given by the system B and the unsolvability condition of ∆(a) :=
{γ1(X, a), . . . , γl(X, a)}, i.e. may be described as Z(B) ∩ {a ∈ A | I(∆(a)) = K[X]}.

48 R. Hemmecke

4.2. the algorithm gamma

In this section we present an algorithm for the desired task.

Algorithm gamma
Input:

B = {b1, . . . , bp} ⊂ R = K[A]
l = number of vanishing coordinates as described above
Γ = group parameterized by X , acting on A and leaving Z(B) invariant. The
group action is given by γ1, . . . , γn ∈ R[X], i.e. relation (1) holds.

Output:
Sν = {(Bi, Ci)}i∈Iν

Gröbner bases with corresponding constraints for certain
finite index sets I0 and I1 where I0 ∩ I1 = ∅, such that

Z(B) =
⋃
i∈I0

Z(Bi, Ci) ∪
⋃
i∈I1

Orb(Z(Bi, Ci)).

All Bi and Ci are finite subsets of K[A], and the orbit is taken w.r.t. Γ.

begin
∆ := {γ1, . . . , γl}
G := buchberger(∆), (use R = K[A])

(G is now a denominator-free Gröbner basis.)
if I(G) = Q[X] then

(No usage of the group action is possible, and thus no problem reduction.)
S0 := FGB(B, ∅)
S1 := ∅

else
rν1
1 · · · · · rνu

u =
∏

g∈G LC(g) (Z1)
(decomposition into (irreducible) factors in R = K[A])
S0 :=

⋃u
i=1 FGB(B ∪ {ri}, {r1, . . . , ri−1})

S1 := FGB(B ∪ {A1, . . . , Al}, {r1, . . . , ru})
end if
return (S0, S1)
end gamma

Since we have m parameters, namely x1, . . . , xm, l = m would be an optimum for the
input in gamma. However, this may not be possible as the example below will show.

For a ∈ A we try to find out, whether there exists an x ∈ X such that γ1(x, a) = · · · =
γl(x, a) = 0. For a fixed a, such an x exists iff the set ∆(a) generates a proper ideal in
K[X]. In order to avoid a Gröbner basis computation for each single a, we determine a
Gröbner basis of the ideal of Q[X] generated by ∆. Theorem 3.2 gives sufficient conditions
that after a specialization σ of ∆, the set ∆σ = ∆(a) generates a proper ideal in K[X].

Theorem 3.2 yields even more. A naive algorithm would have to collect all the leading
coefficients of the polynomials occurring during the Gröbner basis computation of ∆ to
ensure that no information is lost, when, in the algorithm buchberger, a polynomial
g is replaced by its primitive part primitivePart(g), and thus that no wrong decision
about the existence of an x for a certain a is made. Such a collection is unnecessary. As
follows from Theorem 3.2, it is sufficient to consider the leading coefficients of a minimal
Gröbner basis only.

Continuously Parameterized Symmetries and Buchberger’s Algorithm 49

The set S1 (together with the group action of Γ) describes the part of Z(B) where
no leading coefficient of G vanishes. In other words, if (B0, C0) ∈ S1, a ∈ Z(B0, C0),
and σ : R[X] → K[X] is induced by Ai 7→ ai (i = 1, . . . , n), then LC(g)σ 6= 0 holds
for all g ∈ G. In this case, Γ can successfully be used for the reduction of the problem.
Otherwise, we extend the set B by an additional polynomial ri and thus (hopefully)
decrease the dimension.

Lemma 4.1. The algorithm gamma terminates and meets its specification.

Proof. Termination is obvious. Correctness follows from the correctness of FGB. Con-
sider the else branch. Sν is a set of pairs. Assume Sν = {(Bi, Ci)}i∈Iν

(ν = 0, 1) for
certain finite index sets I0 and I1 with I0 ∩ I1 = ∅. We have to prove

Z(B) =
⋃
i∈I0

Z(Bi, Ci) ∪
⋃
i∈I1

Orb(Z(Bi, Ci)). (4)

By specification of FGB, we have the identities⋃
i∈I0

Z(Bi, Ci) =
⋃u

i=1Z(B ∪ {ri}, {r1, . . . , ri−1}), (5)

⋃
i∈I1

Z(Bi, Ci) = Z(B ∪ {A1, . . . , Al}, {r1, . . . , ru}), (6)

which correspond to the last two lines in the else branch.
The inclusion “⊇” follows from (5) and (6) and the Γ-invariance of Z(B).
For the opposite inclusion, it is sufficient to describe an element a ∈ Z(B) in terms of

S0 or S1. If rj(a) = 0 for some j ∈ {1, . . . , u}, we can easily see that by (5) this a is covered
by S0. Consider the line (Z1) in gamma and suppose ri(a) 6= 0 for all i = 1, . . . , u. For
the specialization σ induced by Ai 7→ ai (i = 1, . . . , n), we have LC(g)σ 6= 0 for all g ∈ G.
From Corollary 3.3 we get γ1(x, a) = · · · = γl(x, a) = 0 for some x ∈ X . Therefore, a is
covered by the set S1. 2

4.3. generalization

If we look at the algorithm gamma more closely, we observe that the invertibility of
an element of Γ is only needed to deduce the full set of solutions from S1. Therefore,
we can weaken the assumptions about Γ. Instead of requiring a group to describe the
symmetries, we now only assume that we have a set of polynomials γ1, . . . , γn ∈ K[X, A]
such that

(∀x ∈ X)(∀a ∈ Z(B)) γ(x, a) := (γ1(x, a), . . . , γn(x, a)) ∈ Z(B). (7)

These polynomials are used as before.
In order to be able to deduce the complete solution space from S1, we additionally

require a set γ′1, . . . , γ
′
n ∈ K[X, A] of polynomials which reverses the effect of the trans-

formation of the γi, i.e.

(∀x ∈ X)(∀a ∈ Z(B))(∀i ∈ {1, . . . n}) γ′i(x, γ(x, a)) = ai. (8)

We now replace in the specification of the algorithm gamma the input parameter Γ by

• Γ = (γ1, . . . , γn) ∈ K[X, A]n, n-tuple of polynomials such that (7) holds;

50 R. Hemmecke

• Γ′ = (γ′1, . . . , γ
′
n) ∈ K[X, A]n, n-tuple of polynomials such that (8) holds.

The output specification is replaced by

• Sν = {(Bi, Ci)}i∈Iν
Gröbner bases with corresponding constraints for certain index

sets I0 and I1 with I0 ∩ I1 = ∅ such that

Z(B) =
⋃
i∈I0

Z(Bi, Ci) ∪
⋃
i∈I1

(Z(Bi, Ci))Γ
′
.

All Bi and Ci are finite subsets of K[A], and for a subset Z ⊆ A let

ZΓ′
:= {(γ′1(x, a), . . . , γ′n(x, a)) | x ∈ X , a ∈ Z}.

We call this changed algorithm gamma, too. Correctness of this algorithm follows from
the proof of Lemma 4.1, when its reference to the group action is replaced by the trans-
formations Γ and Γ′.

5. Example

In this section we ask for all automorphisms of a given Lie algebra. We show how we
can obtain a context which enables us to apply gamma. With the help of an example,
we shall demonstrate how the algorithm works.

5.1. automorphisms of Lie algebras

For better legibility we use Einstein notation, i.e. summation over doubly occurring
indices from 1 to N . Additionally, we use concepts from the theory of Lie algebras which
can be found, for example, in Humphreys (1980).

Let V be an N -dimensional Lie algebra over K with vector space basis {e1, . . . , eN},
whose Lie bracket is given by structural constants such that for 1 ≤ j, k ≤ N we have
[ej , ek] = cl

jkel. An endomorphism of this Lie algebra is a linear transformation Â :
V → V such that Â[v, v′] = [Âv, Âv′]. Let A = (Ak

j) be the corresponding matrix of Â.
By linear algebra, and due to the antisymmetry of the Lie bracket, we deduce that the
endomorphisms correspond to the set of zeros of

F := {Al
mcm

jk −Ap
jA

q
kcl

pq | 1 ≤ j, k, l ≤ N, j < k}. (9)

To solve this system, we can use the fact that the composition of an endo- and an auto-
morphism is again an endomorphism, and that we can recover the original endomorphism
in an analogous way.

From the theory of Lie algebras, it is known that for each v ∈ V the map ad(v) : V → V ,
v′ 7→ [v, v′] is a derivation. Let us only regard charK = 0, and assume that ad(v)s = 0
for some s > 0. An argument from Humphreys (1980, p. 9) proves exp ad(v) to be a Lie
algebra automorphism.

Without loss of generality, we assume that ad(ei) is nilpotent for e1, . . . , em. Denote
the matrix which corresponds to exp(Xi, ad(ei)) by Γi(Xi).

Let the matrices Γ and Γ′ be defined as follows:

Γ :=

 γ1
1 . . . γ1

N
...

...
γN
1 . . . γN

N

 := A · Γ1(X1) · · · · · Γm(Xm),

Γ′ := (γ′jk) := A · (Γ1(X1) · · · · · Γm(Xm))−1 = A · Γm(−Xm) · · · · · Γ1(−X1).

Continuously Parameterized Symmetries and Buchberger’s Algorithm 51

Putting n := N2 and fixing an order of the index pairs, we obtain polynomials γ1, . . . , γn

and γ′1, . . . , γ
′
n in A1, . . . , An, X1, . . . , Xm. By this construction, it is clear that relation (8)

is fulfilled.
Patera et al. (1976) classifies low-dimensional Lie algebras. We pick out one of them

to demonstrate the behaviour of the algorithm gamma. A detailed treatment of another
example can be found in Hemmecke (1996).

The indeterminates Ai
j are ordered w.r.t. the relation ≺. For i, j, k, l = 1, . . . , N let

Ai
j ≺ Ak

l iff one of the following conditions is fulfilled:

(i) |i− j| < |k − l|
(ii) |i− j| = |k − l| and i + j < k + l
(iii) |i− j| = |k − l| and i + j = k + l and i < k.

This corresponds to the intention to order the indices in such a way that the indetermin-
ates of the main diagonal are less than the others.

We use this order on the variables to define the lexicographical term order on the terms
T (Ai

j : 1 ≤ i, j ≤ N). From now on we shall always use such a term order.
For our calculations we use routines from the REDUCE† package CALI‡. By employing

some functions of CALI, we implemented the algorithm gamma§ in REDUCE.

5.2. the Lie algebra A4,7

In this section, K denotes the complex numbers. We examine the four-dimensional
complex Lie algebra V (A4,7 in Patera’s notation) which is given by the non-zero com-
mutator relations

[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e2 + e3

between the basis vectors.
The set F corresponding to (9) contains 22 polynomials. After autoreducing in a

denominator-free way, we obtain

F ′ := {A2
1, A

3
1, A

4
1, A

4
2, A

4
3, A4

4A
1
1 −A1

1, A3
2A

4
4 −A3

2, A3
2 + A4

4A
2
2 −A2

2,

A3
2A

2
3 −A3

3A
2
2 + A1

1, −A3
2 + A4

4A
3
3 −A3

3, A2
4A

3
2 −A3

4A
2
2 − 2A1

2A
4
4 + A1

2,

A3
2 + A2

3A
4
4 −A2

3 + A3
3 −A2

2, −A2
4A

3
3 + 2A1

3A
4
4 −A1

3 + A3
4A

2
3 −A1

2}.

Although the indeterminate A1
4 occurs in F , it does not in F ′. We remove this in-

determinate from further examination; and we remove the variables A2
1, A3

1, A4
1, A4

2,
A4

3, since from F ′ it can easily be deduced that their corresponding coordinates vanish.
Hence, it is sufficient to describe the set of zeros of B := F ′ \ {A2

1, A
4
3, A

4
1, A

3
1, A

4
2}.

We now try to determine l and the corresponding coordinates for the algorithm
gamma. The derivations ad(ei), (i = 1, 2, 3) are nilpotent. We denote the matrices

1 0 0 2x
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 x 0
0 1 0 x
0 0 1 0
0 0 0 1

 ,


1 −x 0 − 1

2x2

0 1 0 x
0 0 1 x
0 0 0 1

 ,

corresponding to exp(x, ad ei) by M1(x), M2(x), and M3(x), respectively.

†For documentation of the used version 3.4.1 see Hearn and Melenk (1991).
‡We use version 2.2.1. See Gräbe (1995a).
§The implementation is described in Hemmecke (1996).

52 R. Hemmecke

Since the indeterminate A1
4 does not occur in B, there is no advantage in examining its

corresponding coordinate further. The variable x, however, occurs only in position (1, 4)
of the matrix A ·M1(x). For that reason, the matrix M1(x) has no effect.

We set Γ1(X1) := M2(X1) and Γ2(X2) := M3(X2), and define with m = 2 the matrices
Γ and Γ′ as in the previous section.

Considering the fact that certain coordinates vanish, namely those corresponding to
the indeterminates A2

1, A3
1, A4

1, A4
2, and A4

3, we obtain from Γ the matrix
A1

1 −A1
1X2 + A1

2 A1
1X1 + A1

3 γ1
4

0 A2
2 A2

3 A2
2X1 + (A2

2 + A2
3)X2 + A2

4

0 A3
2 A3

3 A3
2X1 + (A3

2 + A3
3)X2 + A3

4

0 0 0 A4
4

 ,

by replacing the above indeterminates by zero.
Since we have two parameters, namely X1 and X2, we can choose two of the polyno-

mials γi
j . So let l = 2 for gamma, and let A1

2 and A1
3 be the first two coordinates, i.e.

γ1 := γ1
2 , γ2 := γ1

3 .
We compare the algorithms gamma and FGB (implemented in CALI by the procedure

groebfactor).
groebfactor returns for the input set B three sets of polynomials. While two of them

describe non-invertible endomorphisms, from the third we get
a2
1 −a1a5 a1a4 − a1a5 − a2a5 a3

0 a1 a2 a4

0 0 a1 a5

0 0 0 1

 (a1, . . . , a5 ∈ K, a1 6= 0).

It is clear how Γ and Γ′ are put into a suitable form for the algorithm gamma.
(Remember: γ1 = γ1

2 and γ2 = γ1
3 .) We start this algorithm with the arguments B,

l = 2, Γ and Γ′. First, there will be a Gröbner basis computation of {γ1, γ2} in the ring
Q[X1, X2] where R = K[A] is the polynomial ring in the remaining indeterminates, and
Q its quotient field. The minimal denominator-free Gröbner basis from this computation
is: {A1

1 X2 −A1
2, A

1
1 X1 + A1

3}.
Referring to the notations of algorithm gamma, we now have u = 1, r1 = A1

1, and
ν1 = 2. That is, for all a ∈ Z(B) with coordinate a1

1 6= 0 there are x1, x2 ∈ K such that
γ1
2(x1, x2; a) = γ1

3(x1, x2; a) = 0. In order to cover such an a, therefore, it is sufficient to
look only for elements of Z(B) with vanishing coordinates in positions (1, 2) and (1, 3),
and later to apply the transformation given by Γ′. In this way, S1 will be determined.

It remains to describe the elements a ∈ Z(B) for which a1
1 = 0. This condition is

incorporated by determining a Gröbner basis of the enlarged set B ∪ {A1
1}. Thus, we

end up with a problem reduction in this case, too, since, practically, the Gröbner basis
computation is started with a smaller number of variables. In this way, the set S0 will
be calculated.

The result of gamma in our example is the following sets:

S0 = {({A1
1, A

2
2, A

3
2, A

1
2, A

3
3, A

2
3, 2A4

4 − 1}, {A1
3, A

4
4 − 1, A4

4}),
({A3

3, A
1
1, A

2
2, A

3
2, A

1
2, A

1
3 + A3

4A
2
3, A

4
4 − 1}, {A4

4}),
({A1

1, A
2
2, A

3
2, A

1
2, A

3
3, A

2
3A

1
3}, ∅)},

S1 = {({A1
2, A

1
3, A

3
2, A

3
4, A

2
4, (A

2
2)

2 −A1
1, A

3
3 −A2

2, A
4
4 − 1}, {A1

1})}.

Continuously Parameterized Symmetries and Buchberger’s Algorithm 53

The elements of S0 only give rise to non-invertible matrices, and thus do not describe
automorphisms, whereas S1 leads to the matrix

a2
1 0 0 a3

0 a1 a2 0
0 0 a1 0
0 0 0 1

 (a1, a2, a3 ∈ K, a1 6= 0).

Using Γ′ to determine the complete solution yields
a2
1 a2

1x2 −a2
1x1 −a2

1x1x2 − 1
2a2

1x
2
2 + a3

0 a1 a2 −a1x1 − a1x2 − a2x2

0 0 a1 −a1x2

0 0 0 1


depending on a1, a2, a3, x1, x2 ∈ K with a1 6= 0.

Although we obtained a different representation here than we did with groebfactor,
both representations can be transformed into each other.

Comparing both representations, we observe that with the first method four para-
meters, namely a1, a2, a4, a5, have to be extracted from the Gröbner basis. With the
second method, two parameters, namely x1 and x2, arise quite naturally from the trans-
formation Γ′. The parameter a3 comes from the fact that A1

4 does not occur in F ′.

6. Efficiency

In this section we present some other examples, but we mainly concentrate on the
running times for different inputs. We continue to examine the class of low-dimensional
Lie algebras and adopt the notation in Patera et al. (1976). However, we consider the
complexification of these Lie algebras.

In order to apply the algorithm as in the last example, we have to state which coor-
dinates we regard to be the first ones. The matrices Γ and Γ′ are for each Lie algebra
constructed in the same way as before. Hence, it is sufficient to indicate the row and
column indices of the entries of Γ for the first l coordinates:

A4,7: (1,2), (1,3) A′
4,7: (2,4), (3,4)

A4,8: (1,2), (1,3) A4,10: (1,2), (1,3)
A4,12: (1,3), (1,4) A5,2: (2,5), (3,4), (3,5)
A′

5,2: (1,2), (2,5), (3,5) A5,3: (3,4), (3,5)
A5,5: (2,3), (2,5) A′

5,5: (1,2), (2,5)
A5,6: (1,2), (2,5) A5,22: (1,2), (2,5)
A5,37: (1,2), (1,3), (1,4) A5,40: (5,4), (4,2), (4,3), (4,5)
A6,1: (3,1), (3,2) A6,2: (3,1), (3,2), (4,1), (5,1)
A6,22: (3,1), (3,2), (4,2), (5,2)

Some of the Lie algebras are written with a prime to express that we use the same Lie
algebra, but different coordinates.

The running times† for computing the sets S0 and S1 by the algorithm gamma
(implemented in REDUCE), and the time for solving the same problem by means of
groebfactor are put together in the following table.

†in milliseconds as reported by REDUCE

54 R. Hemmecke

A4,7 40 360 330 730 450
A′

4,7 70 340 150 560 440
A4,8 30 380 210 620 260
A4,10 40 310 630 980 1080
A4,12 70 6060 4810 10940 11460
A5,2 50 600 250 900 2620
A′

5,2 50 630 320 1000 2650
A5,3 40 90 530 660 4100
A5,5 50 1170 460 1680 2110
A′

5,5 60 1590 340 1990 2100
A5,6 60 1600 330 1990 2110
A5,22 60 1570 330 1960 2100
A5,37 160 166570 2590 169320 175730
A5,40 860 199610 7150 207620 224850
A6,1 80 22290 700 23070 21830
A6,2 140 4340 390 4870 2730
A6,22 180 10600 850 11630 12760

The second to fifth columns refer to the algorithm gamma, and the sixth column
contains the running time of groebfactor.

The second column denotes the time for the decision whether or not γ1, . . . , γl could
be used for a problem reduction. The third column shows the computation time for the
set S0, and the fourth for S1. In the fifth column the total running time of gamma is
shown, i.e. the sum of the columns 2, 3, and 4.

Comparing the last two columns, we observe that in many cases the algorithm gamma
is faster. However, even when the computation time is not noticeably better, gamma
has a certain advantage. Namely, in case we look for a presentation of the variety by
parameters, the applicability of the transformation Γ already yields a part of the usable
parameters in a natural way.

7. Conclusion

The algorithm gamma can readily be extended to use an additional set of polynomials
to be used to describe constraints. In fact, an examination of the chosen examples has
also been done with such an algorithm. This results (not surprisingly) in a faster algo-
rithm. However, no advantage to groebfactor can be seen if this procedure is invoked
with this additional parameter.

Therefore, and because of the fact that this paper is dedicated to the principal ap-
plicability of symmetries depending on free parameters in solving systems of polynomial
equations, we presented gamma only in its simple form.

In some cases transformations arise which do not depend on parameters in a polynomial
way. Despite this, for some of these transformations we can arrive at a splitting of the
problem. The idea is to investigate “parameters” which are constrained by polynomial
conditions. In this way, we try to increase the number of usable parameters. For example,
the transformation is given by polynomials in sinx and cos x, which is no polynomial
situation w.r.t. x. The parameter x could not be used. After replacing sinx by s, cos x
by c, where s and c are considered parameters, and adding the condition c2 + s2 = 1,
everything is polynomial again. However, the polynomial c2 + s2− 1 has to be taken into

Continuously Parameterized Symmetries and Buchberger’s Algorithm 55

account when the Gröbner basis of ∆ is computed in gamma, since s and c are not free
parameters.

A combinatorial difficulty is choosing which coordinates should vanish after the trans-
formation has been applied. This difficulty has not been taken into consideration in this
article. In our examples the coordinates could be determined without much effort by
hand. For larger problems, however, there is need for an efficient algorithm which finds
such coordinates automatically. Such an algorithm could, for example, factor the polyno-
mials of B to divide the problem into smaller ones, and then look for relevant coordinates
in the sub-problems.

Looking more closely at the examples shows also another method. Namely, it turns out
that most of gamma’s time is spent computing the set S0. It therefore seems reasonable
to look for a possibility to apply the transformation also to this part of Z(B) which, in
our consideration, appears to be an exceptional case.

References

Becker, T., Weispfenning, V. (1993). Gröbner Bases. A Computational Approach to Commutative
Algebra, volume 141 of Graduate Texts in Mathematics. New York, Springer.

Buchberger, B. (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In Bose,
N. K. ed., Recent Trends in Multidimensional Systems Theory, chapter 6, pp. 184–232. Dordrecht,
Reidel.

Gräbe, H.-G. (June 1995a). CALI—A REDUCE Package for Commutative Algebra. Version 2.2.1, June
1995, Available via WWW from http://www.informatik.uni-leipzig.de/~compalg/software/cali.

Gräbe, H.-G. (1995b). On factorized Gröbner bases. In Fleischer, J., Grabmeier, J., Hehl, F. W., Küchlin,
W. eds, Computer Algebra in Science and Engineering: 28–31 August 1994. Bielefeld, Germany,
pp. 77–89. Singapore, World Scientific Publishing.

Hearn, A. C., Melenk, H. (1991). REDUCE User’s Manual, Version 3.4. Santa Monica, The RAND
Corporation.

Hemmecke, R. (1996). Lösen von Gleichungssystemen mit kontinuierlichen Symmetrien. Diplomarbeit,
Universität Leipzig, Augustusplatz 10–11, 04109 Leipzig, Germany, February 1996. (in German).

Hietarinta, J. (1992). Solving the constant quantum Yang-Baxter equation in 2 dimensions with massive
use of factorizing Gröbner basis computations. In Wang, P. S. ed., ISSAC’92: Proceedings of the
1992 International Symposium on Symbolic and Algebraic Computation, July, Berkeley, California,
pp. 350–357. New York, NY 10036, USA, ACM Press.

Humphreys, J. E. (1980). Introduction to Lie Algebras and Representation Theory, Number 9 in Grad-
uate Texts in Mathematics, 3rd edn, New York, Springer.

Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H. (June 1976). Invariants of real low dimension
Lie algebras. J. Math. Phys., 17, 986–994.

Received 5 September 1996
Accepted 13 June 2001

http://www.informatik.uni-leipzig.de/~compalg/software/cali

	Introduction
	Preliminaries
	Grober Bases and Specialization
	Un Nouvel Algorithme
	Example
	Efficiency
	Conclusion
	References

