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Gröbner bases, elimination theory and factorization may be used to perform calculations in elemen-
tary discrete probability and more complex areas such as Bayesian networks (influence diagrams).
The paper covers the application of computational algebraic geometry to probability theory. The ap-
plication to the Boolean algebra of events is straightforward (and essentially known). The extension
into the probability superstructure is via the polynomial interpolation of densities and log densities
and this is used naturally in the Bayesian application.
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1. Introduction

There have been two recent demonstrations of the usefulness of
computational algebraic geometry in statistics and probability,
the work of Diaconis and Sturmfels on contingency tables (see
Diaconis and Sturmfels 1998) and the introduction of Gröbner
basis techniques into the design of experiments, by Pistone and
Wynn (1996). In this paper we introduce the application to ele-
mentary probability and statistics.

The development of probability has two basic components,
the algebra of events and the superstructure of probability and
random variables. The algebra of events is, of course, the
Boolean algebra of ∩ and ∪, or ∧ and ∨ in logic, translated
into the algebra of indicator functions of events. The situation
of probability is harder if we want to incorporate it into the same
algebraic environment as the algebra of events. Following a liter-
ature review, it surprised the authors that George Boole himself
was concerned with the use of elementary algebra in probabil-
ity, trying to automatise calculations in probability in the same
way as he successfully had for logic (see Hailperin 1976). Of
course in areas such as quantum probability, algebraic structures
are used via projections and, for example, the idempotency of
projections P2= P uses the analogue of the idempotency of a
simple indicator function X2= X in elementary probability. For
an application of Gröbner bases to logic see Chazarain et al.
(1991).

We study here simple discrete probability, random variables
and applications to elementary discrete statistics. We first present
two basic approaches which are essentially duals of each other.
The most obvious method is to give every elementary event its
own indicator function so that probabilities can be manipulated
in an unambiguous way because of the disjointness of elemen-
tary events. The alternative is to interpolate discrete probability
functions or their logarithms with polynomial interpolators. The
interpolation method is powerful in its ability to cover the ter-
ritory of exponential families and Bayesian networks (influence
diagrams) and the conditional probability structures.

The algebraic calculations in this paper have been carried out
on Maple.

2. Boolean statements

Consider a set Ä and a ring of subsets (events) {Ai }ni=1 consist-
ing of all Ai , all complements Ac

i = Ä\Ai and all unions and
intersections. This gives 2n elementary events of the form

EJ =
⋂
i∈J

Ai

⋂⋂
i∈J c

Ac
i

where J ⊆{1, . . . , n} is a subset of indices and J c=
{1, . . . , n}\J (J can be the empty set of indices).
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For an outcome ω ∈ Ä we define the indicator function

IAi =
{

1 if ω ∈ Ai

0 otherwise

Note immediately that the IAi ’s form a Boolean algebra that
is in one-to-one correspondence with the quotient of the ring
R[x1, . . . , xn] with respect to the relationships xi (xi − 1) =
0, i = 1, . . . , n where xi represents IAi .

We should note that other representations have been used in
the literature. Thus for example

IAi =
{

1 if ω ∈ Ai

−1 otherwise

and the alternative

IAi =
{
−1 if ω ∈ Ai

0 otherwise

each of which has particular algebraic advantages. For example
the first turns the system into an Abelian group with all non-
unit elements of order 2: x2

i = 1. The second (sometimes called
the Stone representation) has the advantage of removing minus
signs in many computations for example A∩ B translates to IA+
IB+IA IB . However, we shall stick to the indicator representation
more familiar in probability and statistics.

Note that with our representation

IA∩B = IA IB

IA∪B = IA + IB − IA∩B

IAc = 1− IA

and

A ⊆ B → IA(IB − 1) = 0

These representations and their generalisations allow all state-
ments about events to be converted to Boolean algebra.

3. Gröbner bases

There are various ways to interpolate polynomials on a set of
points in an n dimensional space. For example the three points
(1, 1, 0), (0, 0, 0), (1, 0, 1) inR3 are interpolated by either of the
following sets of curves and surfaces

x − y − z = 0

y2 − y = 0

z2 − z = 0

yz = 0

or


z + y − x = 0

y2 − y = 0

yx − y = 0

x2 − x = 0.

(1)

Gröbner basis theory deals with this issue. A basic reference
is Cox, Little and O’Shea (1996). The above points to the fact
that there are various equivalent ways to represent a given set
of polynomials according to different orderings on the mono-
mials. Let P ={p1, . . . , ps} be a set of polynomials in the

indeterminates x = (x1, . . . , xn). Let k[x] be the set of all poly-
nomials in the indeterminates x with coefficients in the field k.
A monomial in k[x] is a polynomial of the form xα1

1 , . . . , xαn
n

with α = (α1, . . . , αn), a vector with non negative integer com-
ponents. A term ordering, τ , is a total ordering relation among
monomials such that 1 < xα for all α ∈ Zn

+ and for all α, β,
γ such that xα < xβ we have xαxγ < xβxγ , that is compatibility
with the division of monomials. A monomial ordering allows
us to define the leading (monomial) term for any polynomial. A
polynomial ideal I is a subset of k[x] such that for all f , g ∈ I
and for all m, n ∈ k[x] also m f + ng ∈ k[x]. A monomial ideal
is a polynomial ideal that admits a basis of monomials. The set
of polynomials G = {g1, . . . , gk} is a Gröbner basis for a poly-
nomial ideal I with respect to τ if the monomial ideal generated
by the leading terms of G, with respect to τ , is equal to the
monomial ideal formed by all the leading terms of the elements
of the ideal generated by I .

The most interesting property of Gröbner bases, for us, is that
given a term ordering and a corresponding G-basis {g1, . . . , gk},
for all polynomials f ∈ k[x] there exists a unique polynomial r
whose leading term is not divisible by the leading terms of the
gi ’s such that

f (x) =
k∑

i=1

si (x)gi (x)+ r (x)

Let us consider a full factorial design in n factors and with
levels 0, 1, . . . ,Ni − 1 in the i th-factor, namely the product set

D =
n∏

i=1

{xi,0, . . . , xi,Ni−1}

There is a unique interpolator for any set of observations attached
(as “y-values”) to the design D. In fact the G-basis for the design
D above with respect to any term-ordering is given by{

Ni−1∏
j=0

(xi − xi j ), i = 1, . . . , n

}
and the interpolator is always of the form

r (x) =
∑

0≤α≤ᾱ
θαxα

and 0 ≤ α ≤ ᾱ, where ᾱ = (N1 − 1, . . . , Nn − 1), means
0 ≤ αi ≤ Ni − 1 for i = 1, . . . , n. The polynomial r is simply
the full factorial model over a full factorial design, in statistical
terminology.

For a general design, it is not true in general that the interpola-
tor is unique. This is discussed in detail in Caboara et al. (1997).
In general the monomial terms in r are {xα, α ∈ L} consisting of
all monomials not divisible by the leading terms of the G-basis
elements. Moreover the number of such terms is precisely the
same as the number of design points. Note that L is an order
ideal: α ∈ L ⇒ β ∈ L for all 0 ≤ β ≤ α.

The Gröbner basis method can be used to construct an interpo-
lator for values y j = y(x ( j)) for each x ( j) = (x j,0, . . . , x j,N j−1)
in a general design, D. This is done by constructing a Gröbner
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basis for the combined ideal given by{
x − x ( j)

y − y j

for the points (x ( j), y j ), x ( j) ∈ D, in the extended space of vari-
ables (x1, . . . , xn, y). If this is done for example with respect
to the term ordering plex with y highest in the initial ordering
then the Gröbner basis will exhibit the interpolator as one of the
G-basis elements

g = y − f (x)

for which y j − f (x ( j)) = 0 for x ( j) ∈ D. In this case we shall
write a general interpolator in the form

f (x) =
∑
α∈L

φαxα

Gröbner bases can be used to carry out Boolean operations.
We give only a brief description here relevant to the rest of
our discussion. Note first that in the binary case the statements
xi (xi − 1) = 0 (i = 1, . . . , n) constitute an algebraic variety
with corresponding ideal

I0 = 〈xi (xi − 1) : i = 1, . . . , n〉
In fact I0 is already a total G-basis, that is a Gröbner basis
whose leading terms are the same with respect to any ordering.
Any complex Boolean statement can be reduced by taking the
quotient with respect to this ideal. The remainder is the reduction
we seek. Since the leading terms of I0 are all of the form x2

i the
remainder will be multi-linear in the xi by the nature of the
remainder r described above. Of course the same result will be
achieved by multiplying out the Boolean expression substituting
x2

i = xi wherever it occurs and collecting terms in the usual way.
This is the standard Boolean reduction of logic.

The quotient operation can be used effectively when the state-
ment is intersected with (conditioned on) several others. Thus
let F(x) be a Boolean function and let

{G j (x) = 0 : j = 1, . . . ,m}
be several simultaneous statements. Let

〈g j (x) : j = 1, . . . , k〉
be the G-basis for the combined ideal

I = 〈G j (x) : j = 1, . . . ,m〉 ∩ I0

with respect to a suitable monomial ordering. Expanding

F(x) =
k∑

j=1

s j (x)g j (x)+ r (x)

we can claim that on the variety {G j (x) = 0 : j = 1, . . . ,m} it
holds that

F(x) ≡ r (x)

A somewhat more general version is to insert the value of the
G j (x) by writing the variety as G j (x) = v j or G j (x)− v j = 0

( j = 1, . . . ,m). Then, recompute the G-basis considering the v j

as unknown coefficients and the remainder r will be a function
also of these values

r (x, v1, . . . , vm) (2)

As an example consider

F(x) = (1− x1 − x4 + x1x4)(x1 + x2 − x1x2)x3

G1(x) = x1(1− x4)

G2(x) = x1x3

where F corresponds to the Boolean statement (A1∪ A2)∩ A3\
(A1 ∪ A4). Then {G1(x),G2(x), xi (xi − 1), i = 1, . . . , 4} is
already a total G-basis. Using the normalf procedure in Maple,
which computes the remainder, we obtain

F(x) ≡ r (x) ≡ x2x3(1− x4)

on G1 = G2 = 0.

4. Attaching the probability: Binary
random variables

As mentioned, any elementary event takes the form

EJ =
⋂
i∈J

Ai

⋂⋂
j∈J c

Ac
j

for an index set J . It is enough to assign to each such event a
probability

P(EJ ) ≥ 0 (for all J )

such that ∑
J

P(EJ ) = 1

Additivity is then used to extend this to all Boolean expressions.
Thus, suppose we have an expression F written in canonical
form

F(x) = ψ0 +
n∑

i=1

ψi xi +
∑
i< j

ψi j xi x j

+ · · · + ψ12,...,n x1, . . . , xn =
∑
α

ψαxα

where α = (α1, . . . , αn) is the binary string indexing the ele-
mentary monomial term andψα is the corresponding parameter.
Under P(·), each indicator function of the sets Ai (i = 1, . . . , n),
that is each xi , can be considered as a random variable and we
write Xi (i = 1, . . . , n). Then the corresponding random vari-
able is

F(X ) = ψ0 +
n∑

i=1

ψi Xi +
∑
i< j

ψi j Xi X j

+ · · · + ψ12,...,n X1, . . . , Xn =
∑
α

ψαXα
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Also since F(x) = 0 or 1, because of the indicator property

Prob(F(X ) = 1) = E(F(X )) =
∑
α

ψαE(Xα)

Thus if α = (α1, . . . , αn) and we define Jα so that αi = 1 for
i ∈ Jα and αi = 0 otherwise then

Xα =
∏
i∈Jα

Xi

and

mα = E(Xα) = Prob

(
ω ∈

⋂
i∈Jα

Ai

)
is the moment corresponding to the index set α. However, this
development does not have the complete algebraic flavour we
require. The probability seems very much an addition, not par-
ticularly to be manipulated automatically.

We introduce two other methods of representing the proba-
bility. The first method concentrates on elementary events. Thus
define an indicator function on the power set of indices {J }

YJ =
{

1 if ω ∈ EJ

0 otherwise

where EJ is an elementary event. Note that for all J{
YJ (YJ − 1) = 0

6J YJ = 1

The second expression forces the events EJ to be disjoint. Now
attach the probabilities by defining

l(ω) =
∑

J

P(EJ )YJ

This implies that when ω ∈ EJ we capture l(ω) = P(EJ ).
The second method carries out essentially the same interpo-

lation but using the indicator variables {xi } for the random vari-
ables Xi . This is equivalent to fitting the (complete) multi-linear
function

p(x) =
∑
α

ψαxα (3)

to the values P(E J ). Note that p(x) can be decomposed uniquely
into the weighted sum of special interpolators, one over each J .
Thus

p(x) =
∑

J

P(EJ )pJ (x)

where

pJ (x) =
∏
i∈J

xi

∏
i∈J c

(1− xi )

Considering the lattice of indices α under the usual partial
ordering of set inclusion (Jα ⊂ Jβ ⇒ α ≤ β) the relationship
between the P(EJ ) and the ψα is that of Möbius inversion (see

for example Constantine 1987, Chapter 9). Thus we have

P
(
EJβ

) = ∑
0≤α≤β

ψα
∏
i∈Jα

xi =
∑

0≤α≤β
ψα

and

ψβ =
∑

0≤α≤β
(−1)|β|−|α|P

(
EJα

)
where |α| is the number of elements in Jα . We have a similar
expression for moments in terms of P(EJ )

mβ = E(Xβ) =
∑

0≤α≤β
P
(
EJα

)
P
(
E Jβ

) = E
(

pJβ (X )
) = ∑

0≤α≤β
(−1)|β|−|α|mα

One of the benefits of the polynomial representation is that
the structure of the joint distribution is intimately connected to
the structure of the interpolator (3). For example if the random
variables Xi (and the events Ai ) are independent then

Prob

(
n∏

i=1

Xi = 1

)
=

n∏
i=1

Prob{Xi = 1}

=
n∏

i=1

pi , say

Then by the uniqueness of the interpolator, which follows by the
G-basis theory, we have

p(x) =
n∏

i=1

(1− pi + (2pi − 1)xi )

We shall return to the notation of factorisation in more detail in
Section 6.

We can summarise the joint distribution of Xi by the variety{
xi (xi − 1) = 0 (i = 1, . . . , n)

t − p(x) = 0
(4)

where t is a new indeterminate. This will be the standard form
of expression for distributions.

5. Discrete random variables

5.1. Univariate case

The above dual approach carries over to general discrete random
variables with finite support. We first study the case of a single
univariate variable Z taking values z0, . . . , zN−1 with probabil-
ities p0, . . . , pN−1 respectively (pi > 0, i = 0, . . . , N − 1,∑N−1

i=0 pi = 1).
First take indicators Zr for the values zr{

Zr (Zr − 1) = 0 (r = 0, . . . , N − 1)∑N−1
r=0 Zr = 1
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Then we can express Z as

Z =
N−1∑
r=0

zr Zr

and interpolate the probabilities by

l =
N−1∑
r=0

pr Zr

The alternative is to interpolate directly the probabilities pr .
We can use the G-basis method of constructing the interpolator
described in Section 3 and the result will simply be the usual
Lagrange interpolator

p(z) =
N−1∑
i=0

pi

∏
j 6=i (z − z j )∏
j 6=i (zi − z j )

Notice that the individual terms p j (z) = ∏
j=i (z − z j )/

∏
j 6=i

(zi−z j ) are simply the polynomial interpolators of the individual
indicator functions of the points z0, . . . , zN−1 that is Zr . Thus
in analogy to equation (4) the variety{∏N−1

j=0 (z − z j ) = 0

t − p(z) = 0
(5)

holds all the information about the distribution.
The discrete finite nature of the support implies many rela-

tionships between moments and similar quantities. The follow-
ing simple example illustrates this. Let the support for a random
variable Z be S = {0, 1, 2} which is held by the solution to

z(z − 1)(z − 2) = 0

or equivalently

z3 = 3z2 − 2z

Multiplying by zr (r > 0, integer) we have

z3+r = 3z2+r − 2z1+r

Now this same relationship holds for the random variable Z
itself, so replacing z by Z and taking expectation we have

m3+r = 3m2+r − 2mr+1 (r = 1, 2, . . .)

where mr = E(Zr ) is the non-central moment of Z . We refer to
this property as moment aliasing.

Now consider the general case in (5) with support S =
{z0, . . . , zN−1}. We can capture the moment aliasing by inter-
polating e sz

esz =
N−1∑
j=0

b j (s)z j

Again taking Z random with support S we have the moment
generating function

MZ (s) = E(e s Z ) =
∞∑

r=0

mr
sr

r !
=

N−1∑
j=0

b j (s)mr

This expresses all higher order moments in terms of m0= 1,
m2, . . . ,m N−1.

We may also consider a rational version

1

1− sz
=

N−1∑
j=0

c j (s)z j

giving

HZ (s) = E

(
1

1− sz

)
=
∞∑

r=0

m j s
r =

N−1∑
j=0

c j (s)m j

Any function g(·) taking values on the support S={z0, . . . ,

zN−1} can be interpolated on the support so that

g(z) =
∑
α∈S

ψαzα z ∈ S

Now again consider Z as random and we have a representation
for any random variable which is function of Z as

G(Z ) =
∑
α∈S

ψαZα

Taking expectations we have

E(G(Z )) =
∑
α∈S

ψαmα

an expression for expectations in terms of the moments of Z
which generalises moment aliasing.

5.2. Multivariate case

The extension to several random variables continues the ideas
of the last two sections. We assume first that Z = (Z1, . . . , Zn)
have a joint distribution on the product support

S =
n∏

i=1

{zi,0, . . . , zi,Ni−1} (6)

which can be written in ideal form{
Ni−1∏
j=0

(zi − zi j ) = 0 (i = 1, . . . , n)

}
We have the two methods of interpolating the distribution

p j1 j2... jn = Prob(Zi = zi ji , i = 1, . . . , n)

First define for each Zi

Zi =
Ni−1∑
j=0

zi j Zi j

where {
Zi j (1− Zi j ) = 0∑Ni−1

j=0 Zi j = 1

(i = 1, . . . , n, j = 0, . . . , Ni−1). Then the multivariate random
variable Z can be written as

Z =
∑

j1,..., jn

(z ji , . . . , z jn )
n∏

i=1

Zi ji
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The first interpolation of the distribution takes the form

l =
∑

j1,..., jn

p ji ,..., jn

n∏
i=1

Zi ji

The second interpolation uses as a basis all monomials of the
form

zα = zα1
1 , . . . , zαn

n

with 0 ≤ αi ≤ Ni − 1. This can be written in the compact form

p(z) =
∑

0≤α≤ᾱ
φαzα

(see Section 4 Equation (3)).
Let β = ( j1, . . . , jn), then the quantity

∏n
i=1 Zi ji appearing

in the first interpolator is simply the indicator function for the
point (z j1 , . . . , z jn ). Each such indicator function can itself be
interpolated

pβ(z) =
∑
α

θ(α,β)z
α

and

p(z) =
∑
β

pβ pβ(z)

Conversely each zα has an expansion in terms of the pβ(z)

zα =
∑
β

ψ(α,β) pβ(z)

Taking expectations we have a relationship between moments
and the probabilities pβ = p j1 j2... jn

mα = E(Zα) =
∑
β

ψ(α,β) E(pβ(Z ))

=
∑
β

ψ(α,β) pβ

and

pβ =
∑
α

θ(α,β)mα

These transformations can be expressed in terms of the special
matrix

X = [xα]x∈S,0≤α≤ᾱ

Thus, if [m], [φ] and [p] are the vectors corresponding to mα ,
θα and pβ respectively we see easily that

[m] = Xt [p] = Xt X [φ]

Thus, [ψ(α,β)]= Xt and [θ(α,β)]= (Xt )−1. The matrix X is fa-
miliar as the X -matrix for the product support design and full
factorial model. It is instructive to recapture the binary case of
Section 4 using this notation. It also points to simplifications in
this case using the indicator function with values {−1, 1} rather
than {0,1}. In that case Xt X = 2nI and [m] = 2n[φ].

One of the benefits of the G-basis approach is that all this
generalises to the case of arbitrary support, S, using the general

version of the interpolation and the monomial terms for a par-
ticular monomial ordering τ {xα : α ∈ L} with corresponding
X -matrix, X = [xα]x∈S,α∈L .

The moment aliasing of the last section also generalises to
completely arbitrary supports again using the generalised inter-
polation based on τ and L .

Thus interpolate e
∑

si zi

e
∑

si zi =
∑
α∈L

bα(s)zα

where α = (α1, . . . , αd ) and zα = zα1
1 , . . . , zαd

d . Then the full
moment generating function is

MZ (s) = E
(
e
∑

si zi
) =∑

β≥0

mβ

sβ

β!
=
∑
α∈L

bα(s)mα

where β = (β1, . . . , βd ), mβ = E(Zβ1
1 , . . . , Zβd

d ), s = (s1, . . . ,

sd ), sβ = sβ1
1 , . . . , sβd

d and β! = β1!. . .βd !.
The rational version is given first from the interpolation

1∏d
i=1(1− si zi )

=
∑
α∈L

cα(s)zα,

giving

HZ (s) = E

(
1∏d

i=1(1− si zi )

)
=
∑
β≥0

mβsβ =
∑
α∈L

cα(s)mα

In both cases we can express any higher order moment in terms
of lower order moments in a unique way, given s and the chosen
monomial ordering τ . The parameters bα(s) and cα(s) depend
only on the support not otherwise on the distribution. These then
are general forms of moment aliasing.

5.3. Conditioning

In Section 4 we saw how in the Boolean-binary case G-basis
methods can be used to express conditioning statements. This
extends to general supports.

Let J and K be two disjoint index sets with J∪K = 1, . . . , d.
Let Z (1) represent the random variable z j for a j in J and Z (2)

represents zk , k ∈ K . The conditional distribution of Z (1) given
Z (2) = z(2) is

f
(
z(1)

∣∣ z(2)
) = f

(
z(1), z(2)

)
m2
(
z(2)
)

where f (·, ·) is the joint distribution on support S and m2(z(2)) is
the marginal distribution. For fixed z(2)= c the pair (z(1), z(2)) lies
on a sub-support given by restricting the support to the section,
z(2) = c. Suppose now that we have an interpolator

p(z) =
∑
α∈L

φαzα

of the joint distribution. Then we may simply set z(2) equal
to a constant. Alternatively we may adjoin z(2)= c to the
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representation of the support and interpolate

p
(
z(1), c

) = ∑
α∈L(c)

φα(c)zα

It is possible to show that L(c) ⊆ L so that the restricted form
uses a subset of the original monomial terms (provided the same
monomial ordering is used).

To represent m2(z(2)) we take the projection of the original
support into the z(2) hyper-plane. This can be carried out using
elimination (plex). In this case it is necessary to capture the
marginal probabilities at the values of z(2).

Let Ic(z(1), z(2)) be the indicator polynomial function which
takes the value unity whenever z(2) = c and is zero at other
values. Then

m2(c) = E
(
Ic

(
z(1), z(2)

))
where expectation is with respect to the full joint distribution.

6. Factorisation and exponential families

In several places in the above analysis we have seen that for
the uniqueness of the interpolation of the joint distribution a
product support is critical. The description of a support that is
not of product form depends on G-basis theory: with respect to
any term ordering the representation of the distribution in the
quotient ring with respect to the support ideal is unique. It is this
uniqueness which allows us to switch backwards and forwards
between discrete distributions and their interpolators.

The uniqueness is particularly valuable for expressing inde-
pendence: factorisation of the probability carries over perfectly
to factorisation of the interpolating polynomials. Thus in two
dimensions if we express the joint distribution as

∏N1
i=1(z1 − z1i ) = 0∏N2
i=1(z2 − z2i ) = 0

t − p(z1, z2) = 0

and if Z1 and Z2 are independent random variables

p(z1, z2) = m1(z1)m2(z2)

then the marginal distributions have the representations{∏N1
i=1(z1 − z1i ) = 0

s − m1(z1) = 0{∏N2
i=1(z2 − z2i ) = 0

t − m2(z2) = 0

both of which are themselves unique representations.
Rewrite the product support as

S = S1 × · · · × Sn

where the variable z j takes values in Sj ( j = 1, . . . , n) and
for simplicity Si = {0, 1, 2, . . . , Ni − 1} so that |Si | = Ni and

|S| = ∏N
i=1 Ni . Let { f (z) > 0, z ∈ S} be the discrete probabil-

ity function of the random variable Z , with support S. Then,
in fact, there are two interpolators of interest in statistics: the
interpolator of f (z), discussed in the previous section, and of
log f (z). Thus let

p(z) =
∑
α∈S

φαzα

with p(z) = f (z) (z ∈ S) and

p̃(z) =
∑
α∈S

θαzα

with p̃(z) = log f (z), (z ∈ S). Here log f (z) is well defined be-
cause f (z) > 0 for all z ∈ S. In this section we concentrate on
p̃(z) and its relationship to the exponential family.

If we exponentiate p̃(z) we obtain

f (z) = exp( p̃(z))

= exp

( ∑
α∈S

α 6=(0, . . . , 0)

θαzα − K (θ )
)

(z ∈ S) (7)

Here the constant term exp(θ(0,...,0)) has been replaced by the
exponential term exp(−K (θ )). We call such a model a saturated
exponential model. As we range over all possible f (z) we obtain
a full exponential family with the zα as sufficient statistics. The
term K (θ ) is the cumulant generating function of the random
variables

Zα = Zα1
1 , . . . , Zαn

n (α ∈ S\(0, . . . , 0))

with respect to the base distribution, in this case the uniform.
Model (7) is the largest exponential model which can be built
on the support S. It has N − 1 parameters as one would expect
because of the restriction

∑
z∈S p(z) = 1.

From exponential family theory (or by direct evaluation) al-
lowing θα to vary we have that

Eθ (Zα) = ∂K (θ )

∂θα (8)

Covθ (Zα, Zβ) = ∂2 K (θ )

∂θα∂θβ

for α, β ∈ S̃ = S\(0, . . . , 0), where these moments are with
respect to the distribution (7).

The variance function of an exponential family relates the
variance-covariance terms above directly to the expectation
terms. The first contribution of the interpolation method is a
short method for expressing this.

Let

{g1(z), . . . , gk(z)}
be a G-basis for the support S under a monomial ordering τ and
write

Covθ (Zα, Zβ) = Eθ (Zα+β)− Eθ (Zα)Eθ (Zβ)
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With S of product form two situations arise

α + β ∈ S or α + β /∈ S

When α + β ∈ S we can write

Covθ (Zα, Zβ) = Eθ (Zα+β)− Eθ (Zα)Eθ (Zβ)

When α + β /∈ S we instead interpolate Zα+β . Thus suppose

zα+β =
k∑

i=1

si (z)gi (z)+ r (z)

where r (z) = ∑δ∈S ψδz
δ . That the remainder uses monomials

from the set used to interpolate, is critical and follows from the
algebraic theory. But

zα+β = r (z) for z ∈ S

since by construction gi (z) = 0 for z ∈ S (i = 1, . . . , t). Thus,
applying the interpolator directly to the random variables

Covθ (Zα, Zβ) = Eθ (Zα+β)− Eθ (Zα)Eθ (Zβ)

= Eθ

(∑
δ∈S

ψδZ δ
)
− Eθ (Zα)Eθ (Zβ)

=
∑
δ∈S

ψδEθ (Z δ)− Eθ (Zα)Eθ (Zβ)

we have thus obtained the variance function, namely an expres-
sion of the covariance in terms of the means of Zα’s with α ∈ S.
Note also that the relationship is multi-linear. We collect this
result in the following theorem.

Theorem 1. For a discrete distribution expressed as a satu-
rated exponential model with respect to a uniform distribution
on a product set S = S1 × · · · × Sn, the variance function for
monomials Zα, α ∈ S̃ = S\(0, . . . , 0) is multi-linear in E(Zα).

Now consider the more difficult case of an arbitrary discrete
support S. We may still use an interpolator but in general the
remainder r (Z ) is not unique and hence the construction of the
interpolator is also not unique. We can, however, define the ex-
ponential model, that is the interpolator p̃(z), in a consistent way.
Thus, following the design theory, select a monomial ordering τ
and construct the G-basis G = {gi : i = 1, . . . , k} for the zero-
dimensional ideal corresponding to S, which is now general.
The quotient ring is generated (spanned) by a set of monomials
{zα : z ∈ L} where we recall that L is an order ideal, that is
zα ∈ L ⇒ zβ ∈ L (β ∈ L) whenever zβ divides zα . All such
ideals satisfy the divisibility condition. Note in particular that 1
is included since 1 = z0

1, . . . , z0
n . We can then define both types

of interpolator which use terms zα(α ∈ L)

p(z) =
∑
α∈L

φαzα

p̃(z) =
∑
α∈L

θαzα

and by construction

f (z) = p(z), log f (z) = p̃(z) (z ∈ S)

Now we are in a position to generalise the exponential family
model to

f (z) = exp

(∑
α∈L̃

θαzα − K (θ )

)

where L̃ = L\(0, . . . , 0), absorbing the constant term into K (θ ).
Now (8) holds with S̃ replaced by L̃ . Again we can interpolate

Zα+β over S

Covθ (Zα, Zβ) =
∑
δ∈L

ψδEθ (Z δ)− Eθ (Zα)Eθ (Zβ) (9)

where zα+β =∑δ∈L ψδz
δ(z ∈ S). Theorem (1) thus extends to

general support.

Theorem 2. A discrete distribution expressed as a saturated
exponential model on an arbitrary support with respect to the
uniform distribution in Rn has a (possibly non–unique) multi-
linear variance function.

We should re-emphasize the important point that the form (9)
depends on the choice of monomial ordering. Only for certain
supports will the interpolator r (z) be unique, that is L is unique.

Consider as an example the distribution on the five points
(±1,±1) and (2, 2) with saturated exponential model. Under
the tdeg(z1 > z2) ordering the G-basis for this support is

z2
1 − z2

2, z3
2 − 2z2

2 − z2 + 2, z1z2
2 − 2z2

2 − z1 + 2

It follows that to interpolate we use the terms{
1, z1, z2, z1z2, z2

2

}
so that

L = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2)}
Thus the saturated exponential model is

exp
(
θ1z1 + θ2z2 + θ3z1z2 + θ4z2

2 − K (θ )
)

First we compute the quadratic variance function. For this we
need to compute the interpolators of the higher order monomials,
E(Zα+β) which will appear in the covariance terms. We do this
by computing the remainder using the normalf command in
Maple

z2
1 = z2

2

z2
1z2 = 2z2

2 + z2 − 2

z1z2
2 = 2z2

2 + z1 − 2

z3
2 = 2z2

2 + z2 − 2

z2
1z2

2 = 5z2
2 − 4

z1z3
2 = 4z2

2 + z1z2 − 4

z4
2 = 5z2

2 − 4

from which the variance function can easily be computed as
described.
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The reduction of zα+β used in the above analysis is in effect
the same as that used in the construction of the moment gen-
erating function of the last section. A version more tailored to
the exponential family development is useful. Thus, the moment
generating function (mgf) of the quantities Zα, α ∈ L̃ under the
full exponential model f (z) = exp(

∑
α∈L̃ θαzα − K (θ )) is

Mθ (s) =
∑
z∈S

exp

(∑
α∈L̃

sαzα +
∑
α∈L̃

θαzα − K (θ )

)

= M0(θ )−1 M0(s + θ )

where M0(·) is the mgf at θ = 0.
Again interpolating

exp

(∑
α∈L̃

θαzα
)
=
∑
β∈L

eβ(θ )zβ (x ∈ S)

and taking expectation (at θ = 0) we have

M0(θ ) =
∑
β∈L

eβ(θ )m0
β

where m0
β are the moments at θ = 0. We thus have a complete

development of all moments in terms of quantities eβ,mβ which
depend only on the support, S, and the monomial ordering τ .

We can make the above analysis a little more general by chang-
ing the base distribution to a more general distribution than
uniform

f (z) = exp( p̃(z))

= exp

(∑
α∈L̃

θαzα − K (θ )

)
f0(z)

where f0(z) is the distribution at θ = 0 and K (θ ) is its cumulant
generating function. Taking logs we see that this is equivalent to
interpolating

log f (z)− log f0(z)

We may also interpolate log f0(z) separately so that p̃0(z) =
log f0(z) (z ∈ S) and f0(z) = exp( p̃0(z)) (z ∈ S). Theorems 1
and 2 are thus extended to this case, replacing the uniform dis-
tribution by the general f0(z).

7. Bayes and submodels

In Bayesian theory, and particularly Bayes networks, conditional
independence plays an important role. Thus

Z1 ⊥ Z2 | Z3

gives the factorisation of densities

f (z1, z2, z3) = f (z1, z3) f (z2, z3)

m(z3)

where m(z3) is the marginal distribution of Z3. We have seen
above that pure independence carries over nicely to factorisation
of densities. The situation with conditional independence is more
complex, but considerable progress can be made by considering
the exponential family representation of the last section. The

conditional independence structure is held by the non-zero θα in
the structure of the interpolator p̃(z) = exp(

∑
α∈L̃ θαzα−K (θ )).

We say that zi and z j (i 6= j) appear together in an interaction
term in p̃(z) if there is an α with θα 6= 0 such that αi , α j > 0.
This is by direct analogy with polynomial regression.

Now construct an undirected graph G in which a node j is
associated with each random variable. Draw an edge i ↔ j if
zi and z j appear together in at least one interaction term. This
graph is then precisely the usual undirected graph developed in
Bayes networks and all conditional independence structures can
be read off it. Thus

Z1 ⊥ Z2 | Z3

is equivalent to node 3 (dis)connecting node 1 and node 2 in
the sense that if node 3 is removed (together with all its edges)
nodes 1 and 2 are disconnected.

This corresponds to conditional additivity in the exponential
term ∑

α∈L̃

θαzα =
∑
α∈L̃1

θαzα +
∑
α∈L̃2

θαzα

where the first term on the right hand side has all appropriate
monomials in z1 and z3 but not z2 and the second term in z2

and z3 but not z1. The computations under conditioning can
be carried out by adapting the arguments in Section 5.3 to the
log-interpolation case.

All the usual properties hold provided f (z)> 0 for all z in the
product support. For example G has the global Markov property
with respect to Z1, . . . , Zn (defined in the previous sections) and
the Hammersley-Clifford theorem relating the pairwise Markov
property applies (see Lauritzen 1996, Chapter 3).

A more complex question is whether a pure polynomial repre-
sentation, p(z), of the conditional independence is possible gen-
eralising the easier factorisation for simple independence men-
tioned in the last section. One way of proceeding is to interpolate
each term in the exponential representation with a polynomial

pα(z) = exp(θαzα) (z ∈ S)

(for θα 6= 0). Then we can construct an interpolator p?(z) of
f (z)

f (z) = p?(z) = c
∏
{α:θα 6=0)

pα(z) (z ∈ S, c > 0)

Note that since p(z) of the last section also interpolates f (z) we
have

p(z) = p?(z) (z ∈ S)

It is important to note that this is a factorisation of p(z) on S
rather than on Rn (where the factorization would be unique) and
typically p?(z) has higher degree than p(z). To summarize, it
is possible to construct polynomial factorisations of p(z) which
hold on S, and reflect the conditional independence structure,
which may not hold on Rn .

A more complex theory arises when we have both θα = 0
for some α and also f (z)= 0 for some z ∈ S. This happens
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when we consider special submodels or for example when we
have structural zeros in contingency tables. This impacts both on
the usual maximum likelihood theory which may be developed
from the exponential family representation in the last section
and the existence of, and manipulations with, the conditional
independence structure. The challenge is to extend both theories
using the general support and the interpolation theory based on
the order ideal of monomials, L , of the last section. Exponential
submodels are exhibited as submodels L ′ ⊂ L in which certain
θα = 0 for α in L . The benefit of the algebraic theory is that once
a term-ordering is specified the basic order ideal L is unique,
so that the starting point for such a theory is well-defined. This
submodel theory will appear in a forthcoming monograph by
the authors.
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