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It is well-known that for the integral group ring of a polycyclic group several decision
problems are decidable, in particular the ideal membership problem. In this paper we de-
fine an effective reduction relation for group rings over polycyclic groups. This reduction
is based on left multiplication and hence corresponds to left ideals. Using this reduction
we present a generalization of Buchberger’s Gröbner basis method by giving an appro-
priate definition of “Gröbner bases” in this setting and by characterizing them using the
concepts of saturation and s-polynomials. The approach is extended to two-sided ideals
and a discussion on a Gröbner bases approach for right ideals is included.
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1. Introduction

By introducing Gröbner basis theory for polynomial ideals into the theory of commutative
polynomial rings over fields, Buchberger (1965) established a rewriting approach to the
theory of polynomial ideals. He used polynomials as rules by giving an admissible term
ordering for the terms and using the largest monomial according to this ordering as the
left-hand side of the rule. “Reduction” defined in this way can be compared to division
of one polynomial by a set of finitely many polynomials or to special forms of Gaussian
elimination. A Gröbner basis is now a set of polynomials G such that every polynomial
in the polynomial ring has a unique normal form with respect to reduction using the
polynomials in G as rules (in particular the polynomials in the ideal generated by G
reduce to zero using G). Hence such bases enable many problems related to ideals (when
they can be computed) to be solved. For the polynomial ring Buchberger developed a
terminating procedure to transform the finite generating set of a polynomial ideal into a
finite Gröbner basis of the same ideal.

Since Gröbner basis theory turned out to be so important for polynomial rings, Buch-
berger’s ideas were extended to other algebras, for example free algebras (Mora, 1985,
1994), Weyl algebras (Lassner, 1985), enveloping fields of Lie algebras (Apel and Lassner,
1988), solvable rings (Kandri-Rody and Weispfenning, 1990; Kredel, 1993), skew poly-
nomial rings (Weispfenning, 1992), free group rings (Rosenmann, 1993) and monoid and
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group rings (Madlener and Reinert, 1993b). The results of this paper now complete our
claim that Gröbner basis methods can be successfully adapted to all group rings in which
the subgroup problem of the group is solvable using rewriting techniques (free groups,
plain groups, context-free groups, Abelian groups and nilpotent groups are discussed in
Reinert (1995)).

Group rings, in particular, are the subject of extensive studies in mathematics. In 1981
Baumslag, Cannonito and Miller showed that for an integral group ring of a polycyclic
group, i.e., a group with a finite subnormal series with cyclic factors, several decision
problems including the membership problem for submodules are computable (Baumslag
et al., 1981). Studying these ideas Sims (1994) described how the connections between
special submodule bases enable the membership problem and conventional Gröbner bases
to be solved.

In this paper we present our results which generalize reduction and Gröbner bases
to polycyclic group rings. We want to point out that instead of using the fact that
every group ring over a polycyclic group is Noetherian, our approach is oriented towards
rewriting which leads to a syntactical characterization of Gröbner bases in terms of s-
polynomials and a completion-based algorithm with which to compute them.

It is well-known that a polycyclic group G can be represented by a special form of the
confluent semi-Thue system (Wißmann, 1989; Sims, 1994). This type of presentations
includes the usual confluent presentations for finitely generated Abelian and nilpotent
groups. Due to this presentation we can define the concept of “commutative prefixes”
for group elements which captures the known fact that in the commutative polynomial
ring a divisor of a term is also a commutative prefix of this term. This concept was used
to define a Noetherian reduction in group rings over finitely generated nilpotent rings
in Madlener and Reinert (1996) and to generalize Gröbner basis algorithms for right
and two-sided ideals in this setting. Due to the fact that polycyclic groups represented
by convergent polycyclic power commutation systems have crucially different collection
properties from those of nilpotent groups represented by convergent nilpotent power
commutation systems, these generalizations no longer work. Nevertheless, they can be
applied when studying a special form of left reduction (called here left polycyclic reduc-
tion (lpc-reduction)) and, at first, left ideals. Later on we show how Gröbner bases of
two-sided ideals can be characterized using left Gröbner bases if, in addition, we require
that the generated left ideal coincides with the generated ideal. For Abelian groups the
latter is obvious and for polycyclic groups we can give additional conditions for when
this holds. Since we have no admissible ordering on the group elements, reduction steps
are not preserved under multiplication with group elements, i.e., if a polynomial p is re-
ducible using a polynomial f , a multiple w ∗ p for some group element w no longer needs
to be reducible using f . Remember that this was essential in Buchberger’s approach as
it implies that when p

∗−→F 0 we can conclude w ∗ p ∗−→F 0. Furthermore, lpc-reduction
does not capture left ideal congruence. To repair these defects we use a technique known
as saturation: F is said to be saturated if, for all f ∈ F , w ∈ G, the left-multiple w ∗ f is
lpc-reducible in one step to zero using F . Using this concept we give a characterization of
a left Gröbner basis using s-polynomials and present an algorithm to compute finite left
Gröbner bases. Then the approach is extended to compute Gröbner bases with two-sided
ideals. Contrary to expectation it is shown that right ideals cannot be treated in the same
fashion. Nevertheless by choosing the appropriate presentation of the polycyclic group a
similar result for right ideals can be presented.
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The proofs of the lemmata and theorems stated in this paper can be found in the
appendix unless they have been published elsewhere.

2. Basic Definitions

Let G be a group with binary operation ◦ and identity λ. The elements of a group
ring K[G] over a field K can be presented as polynomials f =

∑
g∈G αg · g where only

finitely many coefficients are non-zero. Addition and multiplication for two polynomials
f =

∑
g∈G αg · g and h =

∑
g∈G βg · g are defined as f + h =

∑
g∈G(αg + βg) · g and

f ∗ h =
∑
g∈G γg · g with γg =

∑
x◦y=g∈G αx · βy. For a subset F of K[G] we call the

set ideall(F ) = {
∑n
i=1 αi · wi ∗ fi | n ∈ N, αi ∈ K, fi ∈ F,wi ∈ G} the left ideal and

ideal(F ) = {
∑n
i=1 αi · ui ∗ fi ∗ wi | n ∈ N, αi ∈ K, fi ∈ F, ui, wi ∈ G} the two-sided ideal

generated by F .
As we are interested in constructing Gröbner bases for ideals in K[G], we need an

appropriate presentation of the group G in order to do the computations. Since G is
a polycyclic group, we have special group presentations using finite convergent semi-
Thue systems (e.g. see Wißmann (1989) and Sims (1994) for more information on this
subject). The generators of these presentations are directly related to the cyclic factors
of the polycyclic series. Next we give the technical details of such presentations which are
necessary to understand the proofs of the lemmata and theorems. It is important that
these presentations allow us to treat the elements of G as ordered group words and to
define a tuple ordering on these representatives which can be used to define particular
representations for polynomials and a Noetherian reduction.

Let Σ = {a1, a
−1
1 , . . . , an, a

−1
n } be a finite alphabet where a−1

i is called the formal
inverse of the letter ai. For 1 ≤ k ≤ n we define the subsets Σk = {ai, a−1

i | k ≤ i ≤
n}, Σn+1 = ∅ and the set of ordered group words ORD(Σ) = ORD(Σ1) recursively by
ORD(Σn+1) = {λ}, and ORD(Σi) = {w ∈ Σ∗i | w ≡ uv for some u ∈ {ai}∗ ∪ {a−1

i }∗, v ∈
ORD(Σi+1)}. Note that ≡ will be used to denote identity of elements as words.

Furthermore let the set P include those letters ai whose exponents are bounded by
natural numbersmi, corresponding to the generators of the finite cyclic factors. The semi-
Thue system T = TP ∪ TC ∪ TI over Σ where TP = {amii −→ z, a−1

i −→ ami−1
i v | ai ∈

P, z, v ∈ ORD(Σi+1), }, TC = {aδjaδ
′
i −→ aδ

′
i z | j > i, δ, δ′ ∈ {1,−1}, z ∈ ORD(Σi+1)},

TI = {aia−1
i −→ λ, a−1

i ai −→ λ | 1 ≤ i ≤ n} is a polycyclic power commutation (PCP)
presentation of a group G. By Wißmann (1989) there exist such presentations which
are convergent with respect to the syllable ordering (with status left) induced by the
precedence a−1

1 Â a1 Â · · · Â a−1
i Â ai Â . . . Â a−1

n Â an on Σ as defined below.
Multiplication of two elements u, v ∈ ORD(Σ), i.e., u ◦ v, then corresponds to computing
the normal form of the word uv.

Definition 2.1. Let Σ be an alphabet and Â a partial ordering on Σ∗. We define
an ordering Âlex on tuples over Σ∗ as follows: (u0, . . . , um) Âlex (v0, . . . , vm) if and
only if there exists 0 ≤ k ≤ m such that ui = vi for all 0 ≤ i < k and uk Â vk.
Let a ∈ Σ. Then every w ∈ Σ∗ can be uniquely decomposed with respect to a as w ≡
w0aw1 . . . awk, where |w|a = k ≥ 0 and wi ∈ (Σ \ {a})∗. Given a total precedence Â
on Σ we can then define u >syll(Σ) v if and only if |u|a > |v|a or |u|a = |v|a and
(u0, . . . , um) >lex

syll(Σ\{a}) (v0, . . . , vm) where a is the largest letter in Σ according to Â
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and (u0, . . . , um), (v0, . . . , vm) are the decompositions of u and v with respect to a when
|u|a = |v|a = m.

The irreducible elements representing the elements in G are ordered group words.
Restricting the syllable ordering to ordered group words we find that ai11 . . . ainn <syll

aj11 . . . ajnn if and only if for some 1 ≤ d ≤ n we have il = jl for all 1 ≤ l ≤ d − 1 and
id <Z jd with

α <Z β iff

{
α ≥ 0 and β < 0
α ≥ 0, β > 0 and α < β
α < 0, β < 0 and α > β

where ≤ is the usual ordering on Z. We then call the letter ad the distinguishing letter of
the two elements. Now the following lemma from Wißmann (1989) gives some insight into
how special multiples influence the representation of the word representing the product.

Lemma 2.1. Let G have a convergent PCP presentation (Σ, T ). Furthermore for some
1 ≤ i < n let w ∈ ORD(Σi+1). Then we have w ◦ ai ≡ aiz for some z ∈ ORD(Σi+1).

We can define a tuple ordering on G as follows. For two elements w ≡ ai11 . . . ainn ,
v ≡ aj11 . . . ajnn , we define w ≥tup v if for each 1 ≤ l ≤ n we have either jl = 0 or sgn(il) =
sgn(jl) and |il| ≥ |jl| where sgn(i) is the sign of the non-zero integer i. Furthermore we
define w >tup v if w ≥tup v and |il| > |jl| for some 1 ≤ l ≤ n and w ≥tup λ for all w ∈ G.
According to this ordering we call v a commutative prefix of w if v ≤tup w. Notice that
this ordering captures the fact that a divisor of a term in the ordinary polynomial ring is
also a commutative prefix of the term. The tuple ordering is not total on G but we find
that v ≤tup w implies v ¹ w.

In Madlener and Reinert (1996) this ordering is used to define so called quasi-commuta-
tive reduction with respect to right ideals. A polynomial p is quasi-commutatively re-
ducible at one of its monomials α · t by another polynomial f when t ≥tup HT(f). Then
the result of this reduction is p − (α · HC(f)−1) · f ∗ (inv(HT(f)) ◦ t and the term t is
replaced by smaller terms due to the following lemma:

Lemma 2.2. Let G be a group represented by a convergent nilpotent power commutation
system and w, v, ṽ ∈ G with w ≥tup v and v Â ṽ. Then for u ∈ G such that w = v ◦ u,
we get w Â ṽ ◦ u. Notice that since G is a group, u always exists and is unique, namely
u = inv(v) ◦ w.

Hence we have established some restricted kind of stability for special right multiples.
Unfortunately, the next example shows that for PCP presentations of groups this in
general no longer holds.

Example 2.1. Let Σ = {a, a−1, b, b−1, c, c−1} and T = {ca −→ abc, ca−1 −→ a−1b−1c,
c−1a −→ ab−1c−1, c−1a−1 −→ a−1bc−1, cδbδ

′ −→ bδ
′
cδ, bδaδ

′ −→ aδ
′
bδ | δ, δ′ ∈

{1,−1}} ∪ TI be a PCP presentation of the free nilpotent group with two generators.
Then for w ≡ a2b, v ≡ ab and ṽ ≡ ac we have w ≥tup v, v Â ṽ. Now for u ≡ a we find
v ◦ u = ab ◦ a ≡ a2b, but ṽ ◦ u = ac ◦ a = a2bc and hence ṽ ◦ u Â w.

This example also stresses the importance of the presentation chosen for the group, as
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the group is nilpotent. The ideas presented in Madlener and Reinert (1996) are applicable
when using the presentation Σ = {a, a−1, b, b−1, c, c−1} and T = {ba −→ abc, b−1a−1 −→
a−1b−1c, b−1a −→ ab−1c−1, ba−1 −→ a−1bc−1, cδbδ

′ −→ bδ
′
cδ, cδaδ

′ −→ aδ
′
cδ | δ, δ′ ∈

{1,−1}}.
However, a similar lemma can be proved if we restrict our attention to left-multiples

and hence left ideals.

Lemma 2.3. Let G be a group represented by a convergent PCP system and w, v, ṽ ∈ G
with w ≥tup v and v Â ṽ. Then for u ∈ G such that w = u ◦ v, we get w Â u ◦ ṽ. Notice
that since G is a group, u always exists and is unique, namely u = w ◦ inv(v).

This property motivates the following definition of special representations of polynomials,
which will later give rise to the definition of a special reduction called left polycyclic
reduction.

Definition 2.2. Let F be a set of polynomials and p a non-zero polynomial in K[G]. A
representation

p =
n∑
i=1

αi · wi ∗ fi, with αi ∈ K∗, fi ∈ F,wi ∈ G

is called an lpc-standard representation when for the respective head terms we have
HT(p) º wi ◦ HT(fi) = HT(wi ∗ fi) and HT(wi ∗ fi) ≥tup HT(fi) for all 1 ≤ i ≤ n.
A set F ⊆ K[G] is called an lpc-standard basis if every non-zero polynomial in ideall(F )
has an lpc-standard representation with respect to F .

A possible approach for right ideals which requires different representations of the poly-
cyclic group can be found in Section 4.

3. Reduction in Polycyclic Group Rings

Let G be a polycyclic group presented by a convergent PCP system as described in the
previous section. Given a non-zero polynomial p in K[G], the so called head term HT(p)
is the largest term in p with respect to Â, HC(p) is the coefficient of this term and the
head monomial is HM(p) = HC(p) · HT(p). T(p) is the set of terms occurring in p. The
total ordering º on G as introduced in the previous section can be extended to a partial
ordering on K[G] by setting p > q if and only if HT(p) Â HT(q) or (HM(p) = HM(q)
and p−HM(p) > q−HM(q)). Now using the head monomial of a polynomial as the left-
hand side of a rule, we can define reduction. Frequently in polynomial rings reduction is
defined when the head term of the polynomial is a divisor of the term of the monomial
to be reduced. Now in groups every element t is a divisor of every other element s since
t ◦ (inv(t) ◦ s) = (s ◦ inv(t)) ◦ t = s holds. But defining reduction as requiring only the
divisibility of the term to be reduced by the respective head term would not be Noetherian
as the following example shows.

Example 3.1. Let Σ = {a, a−1} and T = {aa−1 −→ λ, a−1a −→ λ} be a presentation
of a group G. Let Q denote the rational numbers. Suppose we simply require divisibility
of the head term to allow reduction. Then we could reduce the polynomial a2 + 1 ∈ Q[G]
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at the monomial a2 by the polynomial a−1 + a as a2 = a−1 ◦ a3. This would give

a2 + 1−→a−1+a a
2 + 1− (a−1 + a) ∗ a3 = −a4 + 1

and the polynomial −a4 + 1 likewise would be reducible by a−1 + a at the monomial −a4

causing an infinite reduction sequence.

Hence we will give additional restrictions on the divisibility property necessary to allow
reduction in order to avoid a monomial being replaced by something larger. Since G, in
general, is not commutative, we will restrict ourselves to left-multiples to define reduction.

Definition 3.1. Let p, f be two non-zero polynomials in K[G]. We say that f lpc-
reduces p to q at a monomial α · t of p in one step, denoted by p−→lpc

f q, if

(a) t ≥tup HT(f) and
(b) q = p− α · HC(f)−1 · (t ◦ inv(HT(f))) ∗ f .

Lpc-reduction by a set F ⊆ K[G] is denoted by p−→lpc
F q and is abbreviated to p−→lpc

f q
for some f ∈ F .

Notice that if f lpc-reduces p at α · t to q, then t is no longer a term in q and by
Lemma 2.3, p > q holds. This reduction is effective, as it is possible to decide whether
we have t ≥tup HT(f). Furthermore it is Noetherian and the translation lemma holds.

Lemma 3.1. Let F be a set of polynomials in K[G] and p, q, h ∈ K[G] some polynomials.

1. Let p − q−→lpc
F h. Then there are p′, q′ ∈ K[G] such that p ∗−→lpc

F p′, q
∗−→lpc
F q′ and

h = p′ − q′.
2. Let 0 be a normal form of p−q with respect to −→lpc

F . Then there exists a polynomial
g ∈ K[G] such that p ∗−→lpc

F g and q ∗−→lpc
F g.

Gröbner bases as defined by Buchberger (1965) can now be specified for left ideals in this
setting as follows.

Definition 3.2. A set G ⊆ K[G] is said to be a left Gröbner basis, if ∗←→lpc
G = ≡ideall(G),

and −→lpc
G is confluent.

Since for Buchberger’s reduction ∗←→G = ≡ideal(G) holds, in order to characterize a
Gröbner basis he only had to give a confluence criterion. However, we find that in our
setting we have to be more careful, as for lpc-reduction in general we have the situation
∗←→lpc

G 6= ≡ideall(G). One reason for this phenomenon is that a reduction step is not
preserved under left multiplication with elements of G.

Example 3.2. Let Q[G] be the group ring given in Example 3.1. Then for the polyno-
mials p = a2 +a and f = a+λ we find that p is lpc-reducible by f . This is no longer true
for the multiple a−2 ∗ p = a−2 ∗ (a2 + a) = λ+ a−1. Notice that since a−1 + λ ∈ ideall(p)
we have a−1 + λ ≡ideall(p)

0, but a−1 + λ
∗←→lpc

p 0 does not hold.
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We will now demonstrate how we can extend the expressiveness of lpc-reduction. We
start by enabling the reducibility of the monomial multiples of a polynomial by using not
only the polynomial itself but also a special set of multiples for lpc-reduction. First let us
take a look at which multiples will be appropriate for use later on to enable an effective
characterization of a left Gröbner basis. As our example shows, we have to pay attention
to the problem that different terms of a polynomial can come to the head position by
left multiplication with group elements. This is due to the fact that the well-founded
ordering on G is not compatible with left multiplication†. The next lemma is a basis for
finding left-multiples which bring other terms to the head position when they exist.

Lemma 3.2. Let p be a non-zero polynomial in K[G]. Then it is decidable whether for
t ∈ T(p) there exists an element w ∈ G such that HT(w ∗ p) = w ◦ t.

Notice that the proof of this lemma gives details on the form of a possible candidate
for w. Now we can enrich a polynomial by the set of those multiples which bring other
terms of the polynomial to the head position. However, cases of multiples which are not
lpc-reducible by this set of polynomials still remain due to the fact that the “divisibility”
criterion for the head term does not hold. Just take a look at the polynomial p = a2 + a
in our example. Then the head term of the multiple a−1 ∗ p = a + λ results from the
head term a2 of p, but still a+λ is not lpc-reducible by p. Therefore, we have to consider
further multiples and, in fact, a minimal polynomial among all multiples which bring the
same term to the head position exists. For a polynomial p and a term t ∈ T(p) we call
the term s in a multiple w∗p the t-term if s = w◦t. The following lemma states that if in
two left-multiples of a polynomial the head terms result from the same term t, then there
is also a left-multiple of the polynomial with a t-term as head term which is, in some
sense, a common commutative prefix of the head terms of the original two multiples. In
Example 3.2 for λ ∗ p = a2 + a and a−1 ∗ p = a + λ, both head terms result from the
same term a2 and the head term a of a−1 ∗ p is a commutative prefix of the head term
a2 of λ ∗ p.

Lemma 3.3. For u, v ∈ G, let u∗p and v∗p be two left-multiples of a non-zero polynomial
p ∈ K[G] such that for some term t ∈ T(p) the head terms are t-terms, i.e., HT(u ∗ p) =
u ◦ t ≡ ai11 . . . ainn and HT(v ∗ p) = v ◦ t ≡ aj11 . . . ajnn . Then there exists a term t̃ ≤tup

aρ1
1 . . . aρnn where

ρl =
{

sgn(il) ·min{|il|, |jl|} sgn(il) = sgn(jl)
0 otherwise

and an element z̃ ∈ G such that HT(z̃ ∗p) = z̃ ◦ t = t̃. In particular, we have u∗p−→lpc
z̃∗p 0

and v ∗ p−→lpc
z̃∗p 0.

These two lemmata now state that given a polynomial, we can construct additional
polynomials, which are in fact left-multiples of the original polynomial, such that every
left-multiple of the polynomial is lpc-reducible to zero in one step by one of them. Such
a property of a set of polynomials is called being (lpc-)saturated. In Example 3.2 the
multiples a−1 ∗ p = a+ λ and a−2 ∗ p = a−1 + λ give us a saturating set for p = a2 + a.

† Notice that no total, well-founded ordering with this property can exist for a non-trivial group due
to the existence of inverses.
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Definition 3.3. A set S ⊆ {w ∗ p | w ∈ G} is called an (lpc-)saturating set for a non-
zero polynomial p in K[G] if, for all w ∈ G, w ∗ p−→lpc

S 0. A set of polynomials F ⊆ K[G]
is called (lpc-)saturated if, for all f ∈ F and for all w ∈ G, w ∗ f −→lpc

F 0.

A further consequence of the previous lemmata is that finite saturating sets exist and
they can be computed as follows.

Procedure Saturation

Given: A non-zero polynomial p ∈ K[G].
Find: Sat(p), a saturating set for p.

for all t ∈ T(p) do
St := ∅;
if t can be brought to head position

then compute q = w ∗ p with HT(w ∗ p) = w ◦ t
Ht := {s ∈ G | HT(q) ≥tup s};
% These are candidates for “smaller” polynomials with t-head terms

q := min{(s ◦ inv(t)) ∗ p | s ∈ Ht,HT((s ◦ inv(t)) ∗ p)) = s};
St := {q};

endif
endfor
Sat(p) :=

⋃
t∈T(p) St % S contains at most |T(p)| polynomials

Notice that this is only a naive procedure and for implementation more structural
information should be used, e.g. to rule out unnecessary candidates from the sets Ht.

Lemma 3.4. For a saturated set F of polynomials in K[G], ∗←→lpc
F = ≡ideall(F ) holds.

Let us now proceed to characterize left Gröbner bases by so-called s-polynomials cor-
responding to lpc-reduction.

Definition 3.4. For p1, p2∈K[G] such that HT(p1)≡ai11 . . . ainn and HT(p2)≡aj11 . . . ajnn
with either il = 0 or jl = 0 or sgn(il) = sgn(jl) for 1 ≤ l ≤ n we can define an
s-polynomial, and setting

ρl =
{

sgn(jl) il = 0
sgn(il) otherwise

the situation a
ρ1·max{|i1|,|j1|}
1 . . . a

ρn·max{|in|,|jn|}
n = w1 ◦ HT(p1) = w2 ◦ HT(p2) for some

w1, w2 ∈ G gives us

spol(p1, p2) = HC(p1)−1 · w1 ∗ p1 − HC(p2)−1 · w2 ∗ p2.

Notice that HT(pi) ≤tup a
ρ1·max{|i1|,|j1|}
1 . . . a

ρn·max{|in|,|jn|}
n for i ∈ {1, 2} holds when

such an s-polynomial exists. Furthermore, if there exists a term t such that t ≥tup

HT(p1) ≡ ai11 . . . ainn and t ≥tup HT(p2) ≡ aj11 . . . ajnn , an s-polynomial always exists
since then the condition for the existence of an s-polynomial is fulfilled as the tuple-
ordering requires that the exponent of a letter ai in the tuple-smaller term is either
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zero or has the same sign as the exponent of ai in the tuple-larger term. We even have
t ≥tup a

ρ1·max{|i1|,|j1|}
1 . . . a

ρn·max{|in|,|jn|}
n .

We now can give a characterization of a left Gröbner basis in a familiar way using the
concept of saturation.

Theorem 3.1. For a saturated set G ⊆ K[G] the following statements are equivalent:

1. For all polynomials g ∈ ideall(G) we have g ∗−→lpc
G 0.

2. For all polynomials fk, fl ∈ G we have spol(fk, fl)
∗−→lpc
G 0.

It is also possible to give a characterization of left Gröbner bases in terms of standard
representations.

Corollary 3.1. For a set G ⊆ K[G] the following statements are equivalent:

1. For all polynomials g ∈ ideall(G) we have g ∗−→lpc
G 0.

2. Every g ∈ ideall(G) has an lpc-standard representation.
3. G is an lpc-standard basis.
4. G is a left Gröbner basis.

Now, using the characterization given in Theorem 3.1 we can state a procedure which
enumerates left Gröbner bases in polycyclic group rings.

Procedure Left Gröbner Bases in Polycyclic Group Rings

Given: A finite set of polynomials F ⊆ K[G].
Find: Gbl(F ), a left Gröbner basis of ideall(F ).

G :=
⋃
g∈G Sat(g); % G is saturated and ideall(F ) = ideall(G)

B := {(q1, q2) | q1, q2 ∈ G, q1 6= q2};
while B 6= ∅ do % Test if statement 2 of Theorem 3.1 is valid

(q1, q2) := remove(B); % Remove an element using a fair strategy

if h := spol(q1, q2) exists
then h′ := normalform(h, −→lpc

G ); % Compute a normal form

if h′ 6= 0 % The s-polynomial does not reduce to zero

then G := G ∪ Sat(h′);
% G is saturated and ideall(F ) = ideall(G)

B := B ∪ {(f, g) | f ∈ G, g ∈ Sat(h′)};
endif

endif
endwhile
Gbl(F ) := G

The set G enumerated by this naive procedure fulfils the requirements of Theorem 3.1,
i.e., the set G at each stage generates ideall(F ) and is saturated. Using a fair strategy
to remove elements from the test set B ensures that for all polynomials entered into
G the s-polynomials are considered when they exist. Hence, when the procedure termi-
nates, it computes a left Gröbner basis. The next theorem states that every left Gröbner
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basis contains a finite one and hence this procedure must terminate since as soon as
all the polynomials in the contained Gröbner basis have been added to G all further
s-polynomials will reduce to zero and hence nothing more will be added to the set B.

Theorem 3.2. Every left Gröbner basis contains a finite one.

Notice that although polycyclic group rings are Noetherian, this does not imply the
existence of finite Gröbner bases. In the proof finiteness can be shown using Dickson’s
lemma (as in the ordinary polynomial ring), as lpc-reduction is related to “commutative
prefixes”. Let us now continue to show how (as in the case of solvable polynomial rings or
skew polynomial rings in Kredel (1993) and Weispfenning, (1992)), Gröbner bases of two-
sided ideals can be characterized by left Gröbner bases which have additional properties.
We will call a set of polynomials a Gröbner basis of the two-sided ideal it generates, if it
fulfils one of the equivalent statements in the next theorem.

Theorem 3.3. For a set of polynomials G ⊆ K[G], assuming that G is presented by
(Σ, T ) as described above, the following properties are equivalent:

1. G is a left Gröbner basis and ideall(G) = ideal(G).
2. For all g ∈ ideal(G) we have g ∗−→lpc

G 0.
3. G is a left Gröbner basis and for all w ∈ G, g ∈ G we have g ∗ w ∈ ideall(G).
4. G is a left Gröbner basis and for all a ∈ Σ, g ∈ G we have g ∗ a ∈ ideall(G).

Statement 4 provides a constructive approach to using the procedure Left Gröbner
Bases in Polycyclic Group Rings in order to compute Gröbner bases of two-sided
ideals and Statement 2 states that such bases can be used to decide the membership
problem for the two-sided ideal by using lpc-reduction. The following corollary, similar
to Theorem 3.1, can be used as the foundation of a procedure to compute two-sided
Gröbner bases.

Corollary 3.2. For a saturated set G ⊆ K[G] the following statements are equivalent:

1. For all polynomials g ∈ ideal(G) we have g ∗−→lpc
G 0.

2. (a) For all polynomials fk, fl ∈ G we have spol(fk, fl)
∗−→lpc
G 0.

(b) For all a ∈ Σ, g ∈ G we have g ∗ a ∗−→lpc
G 0.

Again the existence of finite Gröbner bases is a consequence of Dickson’s lemma.

Corollary 3.3. Every Gröbner basis contains a finite one.

Notice that so far we have only characterized lpc-saturated Gröbner bases. Of course
Gröbner bases which are not lpc-saturated also exist. It is even possible to introduce inter-
reduction for lpc-reduction and to compute reduced Gröbner bases which are unique if
we demand that the polynomials are monic, i.e. they have head coefficient 1.

Definition 3.5. We call a set of polynomials F ⊆ K[G] inter-reduced or reduced with
respect to −→lpc , if no polynomial f in F is lpc-reducible by the other polynomials in
F \ {f}.
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Theorem 3.4. Every (left) ideal in K[G] contains a unique monic finite reduced (left)
Gröbner basis.

Such reduced Gröbner bases can be computed by incorporating inter-reduction into the
respective procedures.

4. Concluding Remarks

Let us close this paper with some remarks on right ideals in polycyclic group rings. It
is known from the work of Baumslag et al. (1981) and Sims (1994) that the membership
problem for right submodules of a polycyclic group ring is decidable. Using a consistent
polycyclic presentation of the group in terms of a polycyclic sequence of generators, the
proofs give an inductive argument to lift the property of having a decidable submodule
problem. This process, however, is no procedure on its own. Solving membership problems
using Gröbner bases provides a direct concept for implementation. So far in this paper we
have shown how Gröbner bases can be introduced for left and two-sided ideals and we have
provided descriptions of procedures which—after adding knowledge and strategies for
more efficiency—are a good basis for an implementation. We have used convergent PCP
systems to represent polycyclic groups and one has to keep in mind that the respective
collection processes will have great influence on the efficiency when group multiplication
is implemented.

As seen in Section 2, the concept used to describe left ideal congruences by reduction
and Gröbner bases cannot be carried over to right ideal congruences. This is due to
the fact that when the group is represented by a convergent PCP system (also called a
consistent polycyclic presentation in Sims (1994)), Lemma 2.2 no longer holds. It is even
true that right ideals cannot be treated using the notions of Gröbner bases presented
here unless the representation of the group is changed. This arises from the fact that
right ideals in group rings (as well as left ideals) are related to the subgroup problem of
the respective group.

Theorem 4.1. (see 5.1.2 in Reinert (1995)) Let S be a finite subset of G and K[G]
the group ring corresponding to G. Further let PS = {s−1 | s ∈ S} be a set of polynomials
associated to S. Then the following statements are equivalent:

1. w ∈ 〈S〉.
2. w − 1 ∈ idealr(PS).
3. w − 1 ∈ ideall(PS).

Wißmann (1989) gives a completion-based approach to solving the subgroup problem for
polycyclic groups: Given a convergent polycyclic presentation of a group G and a finite
generating set U , decide whether some g ∈ G is in the subgroup 〈U〉 = {u1 ◦ . . . ◦ un |
n ∈ N, ui ∈ U ∪U−1} generated by U . He solves this problem by introducing a reduction
as follows: For g, h ∈ G, g =⇒U h iff there exists u ∈ U ∪ U−1 such that h = u ◦ g and
h <syll g. Then he gives a completion procedure which computes a finite λ-confluent basis
B of 〈U〉, i.e., for all g ∈ 〈U〉 we have g ∗=⇒B λ. Furthermore, Wißmann (1989) states that
for =⇒-reduction no finite confluent basis need exist (cf. Theorem 3.6.9). By Theorem 4.1
we know how a subgroup is related to a right ideal and such a right ideal congruence can
be described by reduction. For example this can be done using so called strong reduction:
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For p, f ∈ K[G], let HT(f ∗w) = t for some t ∈ T(p), w ∈ G, then p−→s
f p−α · f ∗w = q,

where α ∈ K such that t 6∈ T(q). Now =⇒-reduction and strong reduction are comparable
as follows: For g, h ∈ G, let g =⇒U h, i.e., h = u ◦ g and h <syll g. Then for the
polynomials f = u − 1 and p = g we get HT(f ∗ (inv(u) ◦ g)) = HT(g − u ◦ g) = g,
as h = u ◦ g <syll g, and hence p−→s

f g − (g − u ◦ g) = u ◦ g = h. Furthermore, the
existence of a finite Gröbner basis for the right ideal generated by PU = {u− 1 | u ∈ U}
implies the existence of a finite Gröbner basis of the form G = {u − v | u, v ∈ G}
and then the set {u ◦ inv(v), v ◦ inv(u) | u − v ∈ G} is a finite subgroup basis which
is a convergent basis with respect to =⇒-reduction as defined by Wißmann. To see
this assume that for the polynomials f = u − v and p = g we have that f strongly
reduces p, i.e., there exists x in G such that HT(f ∗ x) = g. We have to distinguish
two possible cases. If g = HT(f ∗ x) = u ◦ x >syll v ◦ x we get g =⇒v◦inv(u) v ◦ x
as (v ◦ inv(u)) ◦ g = (v ◦ inv(u)) ◦ (u ◦ x) = v ◦ x and u ◦ x >syll v ◦ x. Similarly,
g = HT(f ∗ x) = v ◦ x >syll u ◦ x implies g =⇒u◦inv(v) v ◦ x. Now since as stated above
such finite convergent bases of the subgroup do not, in general, exist if G is represented
by a convergent PCP system, Gröbner bases of right ideals will, in general, not be finite.
A thorough study of these connections can be found in Reinert (1996).

Notice that the subgroup membership problem can still be solved using Gröbner basis
methods related to lpc-reduction, since for the lpc-Gröbner basis B of ideall(PU ) we have
g ∈ 〈U〉 iff g ∗−→lpc

B 0.
We close this section by outlining how Gröbner basis methods can be introduced to

describe right ideals in polycyclic group rings provided that the groups are represented in
a slightly different way. So far we have used convergent PCP presentations with a syllable
ordering with status left as completion ordering. If we now change this ordering into a
syllable ordering with status right, i.e., the syllables will be compared from the right to
the left, completion again will halt with a system containing power and commutation
rules with similar properties except that now the ordered group words are of the form
ainn . . . ai11 , since the commutator rules will have the form aδl a

δ′

k −→ zaδl where l < k,δ, δ′ ∈
{1,−1} and z ≡ ainn . . . a

il+1
l+1 . Then the results of Section 3 are symmetric when using

multiplication from the right and we can introduce right polycyclic reduction, i.e., a
polynomial p is reducible at a monomial α · t by a polynomial f when t ≥tup HT(f) and
the result of the reduction will be p− (α · HC(f)−1) · f ∗ (inv(HT(f)) ◦ t. Gröbner bases
can be defined and computed as in the case of left polycyclic reduction.

Acknowledgement: The second author wants to thank Joachim Neubüser for his
steady encouragement to continue working on this particular subject.
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A. Appendix

This section contains two auxiliary lemmata and the proofs of the lemmata and theo-
rems presented in this paper.

Lemma A.1. Let a, b, c ∈ Z. Then a >Z b and a · c ≥ 0 imply a+ c >Z b+ c.

Proof. When a > 0 we find b ≥ 0 (since a >Z b) and c ≥ 0 (as a · c ≥ 0). This
immediately implies a+ c > b+ c ≥ 0 and hence a+ c >Z b+ c.

On the other hand, a < 0 gives us c ≤ 0 (since a · c ≥ 0) and depending on b either
a+ c < b+ c < 0 or a+ c < 0 ≤ b+ c, again implying a+ c >Z b+ c. 2

Lemma A.2. Let a, b, c ∈ Z. Then a >Z b, a ≥Z c, and the existence of an element
x ∈ Z such that a + x <Z b + x and c + x ≤Z b + x implies b − a ≥Z c − a. When
c+ x <Z b+ x holds we get b− a >Z c− a.

Proof. First let us look at the case b − a = c − a. This implies b = c and hence
b+ y = c+ y for all y ∈ Z. Therefore the existence of an x ∈ Z such that c+ x <Z b+ x
implies b− a 6=Z c− a.

Now it remains to prove that the case b − a <Z c − a is not possible. First suppose
c−a < 0. Let us distinguish the two possible cases: If a > 0 we get a ≥ c ≥ 0 (as a ≥Z c)
and a > b ≥ 0 (as a >Z b). Since then b − a ≥ 0 is not possible, b − a <Z c − a implies
that we have c − a < b − a < 0 and hence a > b ≥ c ≥ 0 must hold. We now show that
in this case no x as described in the lemma can be found. For a > b ≥ 0 we get that for
all y ≥ −b we have b+ y <Z a+ y and for all y < −b we have b+ y >Z a+ y. Similarly,
for b ≥ c ≥ 0 we find that for all z ≥ −c we have c + z ≤Z b + z and for all z < −c,
c+ z ≥Z b+ z holds. Hence for x such that a+x <Z b+x and c+x ≤Z b+x to hold, we
must have x < −b and x ≥ −c, contradicting −b ≤ −c. On the other hand, a < 0 leads
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to a contradiction c − a ≥ 0 as a ≥Z c either implies c ≥ 0 or a ≤ c < 0. Hence let us
suppose c− a > 0 and therefore c− a > b− a ≥ 0 implying c > b ≥ a (and hence a >Z c
must hold as a 6= c). Furthermore, a >Z b implies a < 0. Let us analyse the remaining
cases. If c ≤ 0 we find b < 0 as well (since c > b ≥ a). Since the equation a+ x <Z b+ x
holds for x ≥ −a > 0 only and c+x ≤Z b+x for 0 ≤ x < −b < −a only, no x as required
can exist. Hence suppose c > 0. Then depending on b the equation c+ x ≤Z b+ x holds
either for 0 ≤ x < −b < −a (when b < 0) only or for x < −b ≤ 0 (when b ≥ 0), and as
further x ≥ −a > 0 must hold again no such x can exist. 2

Proof. (of Lemma 2.3) Let ad be the distinguishing letter between v and ṽ, i.e.,
v ≡ xavdd yv, ṽ ≡ xa

ṽd
d yṽ with x ∈ ORD(Σ \Σd), yv, yṽ ∈ ORD(Σd+1) and vd >Z ṽd. Then

for u ≡ au1
1 . . . aunn we get u◦v = au1

1 . . . aunn ◦xavdd yv = au1
1 . . . a

ud−1
d−1 ◦x′◦a

ud+vd+z1
d ◦yv ′ =

x′′ ◦ aud+vd+z2
d ◦ y′′v with x′, x′′ ∈ ORD(Σ \ Σd), yv ′, y′′v ∈ ORD(Σd+1) and similarly

u◦ ṽ = x′′ ◦aud+ṽd+z2
d ◦y′′ṽ with y′′ṽ ∈ ORD(Σd+1). Furthermore, w ≥tup v gives us, for the

exponent wd of the letter ad in w, wd ≥Z vd, sgn(wd) = sgn(vd) and ud + vd + z2 = wd
or (ud + vd + z2) mod md = wd when ad is bounded by md. To show that u ◦ ṽ ≺ w
we now have to distinguish two cases. If the letter ad has unbounded exponents, we
can apply Lemma A.1 since vd >Z ṽd and vd · (ud + z2) ≥ 0 hold (the latter follows
as w ≥tup v). Hence let us assume the letter ad is bounded, i.e., we know 0 ≤ ṽd <
vd ≤ wd < md, and since 0 ≤ ud < md must also hold, we get 0 ≤ ṽd + ud < vd + ud
and (vd + ud + z2) mod md = wd. Now when vd + ud + z2 = wd we are done, as then
ud + z2 ≥ 0 implies vd + ud + z2 > ṽd + ud + z2. Else, as vd ≤ wd, for y = wd − vd we
know ud + z2 = l ·md + y with 0 ≤ y < md and hence 0 ≤ (ṽd + ud + z2) mod md =
(ṽd + l ·md + y) mod md = ṽd + y < vd + y = wd and the proof is complete. 2

Proof. (of Lemma 3.1)

1. Let p− q−→lpc
F h = p− q − α ·w ∗ f , where α ∈ K∗, f ∈ F,w ∈ G and w ◦HT(f) =

t ≥tup HT(f), i.e. α · HC(f) is the coefficient of t in p − q. We have to distinguish
three cases:

(a) t ∈ T(p) and t ∈ T(q): Then we can eliminate the term t in the polynomials
p respectively q by lpc-reduction. We then get p−→lpc

f p − α1 · w ∗ f = p′ and
q−→lpc

f q − α2 ·w ∗ f = q′, with α1 − α2 = α, where α1 ·HC(f) and α2 ·HC(f)
are the coefficients of t in p respectively q.

(b) t ∈ T(p) and t 6∈ T(q): Then we can eliminate the term t in the polynomial p
by lpc-reduction and get p−→lpc

f p− α · w ∗ f = p′ and q = q′.
(c) t ∈ T(q) and t 6∈ T(p): Then we can eliminate the term t in the polynomial q

by lpc-reduction and get q−→lpc
f q + α · w ∗ f = q′ and p = p′.

In all cases we have p′ − q′ = p− q − α · w ∗ f = h.
2. We show our claim by induction on k, where p− q k−→lpc

F 0. In the base case k = 0

there is nothing to show. Hence, let p − q−→lpc
F h

k−→lpc
F 0. Then by (1) there are

p′, q′ ∈ K[G] such that p ∗−→lpc
F p′, q

∗−→lpc
F q′ and h = p′ − q′. Now the induction

hypothesis for p′ − q′ k−→lpc
F 0 yields the existence of a polynomial g ∈ K[G] such

that p ∗−→lpc
F p′

∗−→lpc
F g and q ∗−→lpc

F q′
∗−→lpc
F g.

2
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Proof. (of Lemma 3.2) We show that for a finite set of terms T = {t1, . . . , ts}, where
without loss of generality t1 is the greatest term, the following holds: If there exists w ∈ G
such that for some ti ∈ T \ {t1} we have w ◦ ti Â w ◦ tj for all tj ∈ T \ {ti}, then we can
effectively construct v ∈ G such that v ◦ ti Â v ◦ tj for all tj ∈ T \ {ti} also holds without
knowing w. This will be done by induction on k where T ⊆ ORD(Σn−k).

In the base case k = 0 we get T ⊆ ORD(Σn), hence t1 ≡ a1n
n , ti ≡ ainn and 1n >Z in.

By our assumption there exists w ∈ G with w ≡ w′awnn , w′ ∈ ORD(Σ \ Σn) such that
w ◦ ti Â w ◦ tj must hold for all tj ∈ T \ {ti}. We have to consider two cases. First let
us assume that the letter an is not bounded. Then let us set v ≡ a−1n

n . We have to show
that for all tj ∈ T \ {ti} we have −1n + in >Z −1n + jn. The case tj = t1 is trivial
and for each tj ∈ T \ {t1, ti} the equation is a consequence of Lemma A.2 as we have
1n >Z in, 1n >Z jn and, as seen above, there exists an element x, namely wn, such that
1n + x <Z in + x and jn + x <Z in + x. Now when an is bounded by mn ∈ N we can set
v ≡ amn−in−1

n . We find that since for all tj ∈ T \{ti}, we have in 6= jn and v◦ti ≡ amn−1
n ,

for all other multiples v ◦ tj ≡ axjn , xj < mn − 1 must hold.
In the induction step let us assume k > 0 and again without loss of generality t1 is

the largest term in T ⊆ ORD(Σn−k). By our assumption there exists w ∈ G such that
w ◦ ti Â w ◦ tj for all tj ∈ T \ {ti}. Let ad be the distinguishing letter between t1 ≡
a

1n−k
n−k . . . a

1n
n and ti ≡ a

in−k
n−k . . . a

in
n , and let w ≡ w′w′′awdd w′′′ with w′ ∈ ORD(Σ \ Σn−k),

w′′ ∈ ORD({an−k+1, . . . , ad−1}), w′′′ ∈ ORD(Σd+1). As before let us first consider the
case that the letter ad is not bounded. Then there exist ln−k, . . . , ld−1, x ∈ Z, z1, zi ∈
ORD(Σd+1) such that w ◦ t1 = w′w′′awdd w′′′ ◦a1n−k

n−k . . . a
1n
n ≡ w′a

ln−k
n−k . . . a

ld−1
d−1 a

wd+1d+x
d z1,

w ◦ ti ≡ w′a
ln−k
n−k . . . a

ld−1
d−1 a

wd+id+x
d zi. Now let us set vd = (a1n−k

n−k . . . a
1d−1
d−1 ) ◦ a−1d

d ◦
inv(a1n−k

n−k . . . a
1d−1
d−1 ). Since vd ◦ t1 = (a1n−k

n−k . . . a
1d−1
d−1 )◦a−1d

d ◦ inv(a1n−k
n−k . . . a

1d−1
d−1 )◦a1n−k

n−k . . .

a1n
n ≡ a

1n−k
n−k . . . a

1d−1
d−1 y1 and vd ◦ ti = a

1n−k
n−k . . . a

1d−1
d−1 a

−1d+id
d yi with y1, yi ∈ ORD(Σd+1),

vd ◦ ti Â vd ◦ t1 holds. It remains to study vd ◦ tj for all tj ∈ T \ {t1, ti}. When the dis-
tinguishing letter between ti and tj has index s ≤ d we must have tj ≺ ti, as tj ≺ t1 and
therefore js <Z is = 1s respectively jd <Z id <Z 1d must hold. Then ti ≡ xiaiss yi and tj ≡
xia

js
s yj with xi ∈ ORD(Σ\Σs), yi, yj ∈ ORD(Σs+1) and vd ◦tj = (a1n−k

n−k . . . a
1d−1
d−1 )◦a−1d

d ◦
inv(a1n−k

n−k . . . a
1d−1
d−1 ) ◦ xiajss yj = (a1n−k

n−k . . . a
1d−1
d−1 ) ◦ a−1d

d ◦ inv(ais+1
s+1 . . . a

id−1
d−1 ) ◦ a−is+jss yj =

(a1n−k
n−k . . . a

1d−1
d−1 )◦a−is+jss zj = a

1n−k
n−k . . . a

1s−1
s−1 a

is−is+js
s z̃j ≡ a1n−k

n−k . . . a
1s−1
s−1 a

js
s z̃j with zj , z̃j

∈ ORD(Σs+1) and and similarly vd ◦ ti = a
1n−k
n−k . . . a

1s−1
s−1 a

is−is+is
s z̃i ≡ a1n−k

n−k . . . a
1s−1
s−1 a

is
s z̃i

with z̃i ∈ ORD(Σs+1) thus implying vd ◦ ti Â vd ◦ tj . Otherwise let T ′ = {yj | tj ∈ T, tj ≡
a
in−k
n−k . . . a

id
d yj , yj ∈ ORD(Σd+1)}. Then T ′ ⊆ ORD(Σd+1) ⊂ ORD(Σn−k) and still for w ∈

G from above we can conclude (w◦ain−kn−k . . . a
id
d )◦yi Â (w◦ain−kn−k . . . a

id
d )◦yj for the terms

yj ∈ T ′ \ {yi}. Hence by our induction hypothesis vd+1 ∈ G can be constructed such that
vd+1◦yi Â vd+1◦yj . Now we can combine vd and vd+1 in order to construct v as follows: let
us set v = vd ◦(a1n−k

n−k . . . a
1d−1
d−1 )◦aidd ◦vd+1 ◦a−idd ◦ inv(a1n−k

n−k . . . a
1d−1
d−1 ) = (a1n−k

n−k . . . a
1d−1
d−1 )◦

a−1d
d ◦ inv(a1n−k

n−k . . . a
1d−1
d−1 ) ◦ ((a1n−k

n−k . . . a
1d−1
d−1 ) ◦ aidd ◦ vd+1 ◦ a−idd ◦ inv(a1n−k

n−k . . . a
1d−1
d−1 )) =

(a1n−k
n−k . . . a

1d−1
d−1 )◦a−1d+id

d ◦vd+1 ◦a−idd ◦ inv(a1n−k
n−k . . . a

1d−1
d−1 ). Then we get v ◦ ti Â v ◦ tj for

all tj ∈ T \{ti} since v◦ tj = (a1n−k
n−k . . . a

1d−1
d−1 )◦a−1d+id

d ◦vd+1 ◦a−idd ◦ inv(a1n−k
n−k . . . a

1d−1
d−1 )◦

a
1n−k
n−k . . . a

1d−1
d−1 a

id
d yj = (a1n−k

n−k . . . a
1d−1
d−1 )◦a−1d+id

d ◦vd+1◦yj ≡ a1n−k
n−k . . . a

1d−1
d−1 a

−1d+id
d zj and

similarly vd ◦ ti ≡ a1n−k
n−k . . . a

1d−1
d−1 a

−1d+id
d zi with zj , zi ∈ ORD(Σd+1) and by the definition

of vd+1 we also know vd+1 ◦ yj = zj ≺ zi = vd+1 ◦ yi proving our claim.
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Now it remains to check the case where ad is bounded bymd. We can set vd = (a1n−k
n−k . . .

a
1d−1
d−1 ) ◦ amd−id−1

d ◦ inv(a1n−k
n−k . . . a

1d−1
d−1 ), and, as above, an element v can be constucted

such that v ◦ ti Â v ◦ tj for all tj ∈ T \ {ti}. 2

Proof. (of Lemma 3.3) Let p, p ∗u and p ∗ v be as described in the lemma and let the
letters corresponding to our representation be Σ = {a1, . . . , an, a

−1
1 , . . . , a−1

n }.
We show the existence of z̃ by constructing a sequence z1, . . . , zn ∈ G, such that

for 1 ≤ l ≤ n we have HT(zl ∗ p) = zl ◦ t ≡ as11 . . . asll rl with rl ∈ ORD(Σl+1) and
as11 . . . asll ≤tup a

ρ1
1 . . . aρll . Then for z̃ = zn our claim holds.

Let us start by constructing an element z1 ∈ G such that HT(z1 ∗ p) = z1 ◦ t ≡ as11 r1,
r1 ∈ ORD(Σ2) and as11 ≤tup aρ1

1 . When i1 = j1 or j1 = 0 we can set z1 = v and
s1 = j1 = ρ1 since HT(v ∗ p) = v ◦ t ≡ aj11 . . . ajnn . Similarly when i1 = 0 we can set
z1 = u and s1 = i1 = 0 = ρ1 since HT(u ∗ p) = u ◦ t ≡ ai22 . . . ainn ∈ ORD(Σ2). Hence let
us assume i1 6= j1 and both are non-zero.

First suppose that sgn(i1) = sgn(j1). Notice that the proof does not depend on whether
a1 is bounded or not. Then if |i1| ≥ |j1| we again set z1 = v since for s1 = j1 = ρ1 our
claim holds. When |j1| > |i1| we set z1 = u because for s1 = i1 = ρ1 our claim holds.

Now let us proceed with the case sgn(i1) 6= sgn(j1), hence a1 cannot be bounded. We
construct z1 ∈ G such that HT(z1 ∗ p) = z1 ◦ t ∈ ORD(Σ2) as ρ1 = 0. We claim that
the letter a1 has the same exponent for all terms in T(p), say b. When this holds, no
term in the polynomial a−b1 ∗ p will contain the letter a1 and the distinguishing letter
between HT(a−b1 ∗ p) and the term a−b1 ◦ t is at least of index 2. Furthermore we know
HT((v ◦ab1)∗ (a−b1 ∗p)) = HT(v ∗p) = v ◦ t. Thus by the construction given in the proof of
Lemma 3.2 there exists an element r ∈ ORD(Σ2) such that HT(r∗(a−b1 ∗p)) = r◦a−b1 ◦t ∈
ORD(Σ2) and thus we can set z1 = r ◦ a−b1 and s1 = 0 = ρ1.

Hence it remains to prove that the exponents of a1 have the desired property. Suppose
we have the representatives s′ ≡ abs′1 xs′ , bs′ ∈ Z, xs′ ∈ ORD(Σ2) for the terms s′ ∈ T(p)
and HT(p) = s ≡ abs1 xs. Then we know bs ≥Z bt since t ∈ T(p).

Hence in showing that the case bs >Z bt is not possible we find that the exponents of
a1 in s and t are equal. To see this, let us study the possible cases. If bs > 0 we have
bs > bt ≥ 0 and hence there exists no x ∈ Z such that bt + x > bs + x ≥ 0. On the other
hand bs < 0 either implies bt > 0 or (bt ≤ 0 and |bs| > |bt|). In both cases there exists no
x ∈ Z such that bt + x < 0 and |bt + x| > |bs + x|. Hence bt = bs must hold as we know
that t can be brought to head position by u, respectively v, such that the exponents of
a1 in HT(u ∗ p), respectively HT(v ∗ p), have different signs.

It remains to show that there cannot exist a term s′ ∈ T(p) with bs′ <Z bs = bt.
Let us assume such an s′ exists. Since HT(u ∗ p) = u ◦ t ≡ ai11 . . . ainn and HT(v ∗ p) =
v ◦ t ≡ aj11 . . . ajnn there then must exist x1, x2 ∈ Z such that bs′ + x1 <Z bt + x1 = i1
and bs′ + x2 <Z bt + x2 = j1. Without loss of generality let us assume i1 > 0 and
j1 < 0 (the other case is symmetric). When bt < 0 we get that bt + x1 = i1 > 0 implies
x1 > |bt| > 0. Now, as bs′ <Z bt either implies bs′ > 0 or (bs′ ≤ 0 and |bs′ | < |bt|), we
find bs′ + x1 > bt + x1 contradicting bs′ + x1 <Z bt + x1. On the other hand, when bt > 0
we know bt > bs′ ≥ 0. Furthermore, bt + x2 = j1 < 0 implies x2 < 0 and |x2| > bt. Hence
we get bs′ + x2 < 0 and |bs′ + x2| > |bt + x2| contradicting bs′ + x2 <Z bt + x2.

Thus let us assume that for the letter ak−1 we have constructed zk−1 ∈ G such that
HT(zk−1 ∗ p) = zk−1 ◦ t ≡ as11 . . . a

sk−1
k−1 rk−1 ≡ as11 . . . a

sk−1
k−1 a

lk
k r
′ with rk−1 ∈ ORD(Σk),

r′ ∈ ORD(Σk+1) and as11 . . . a
sk−1
k−1 ≤tup aρ1

1 . . . a
ρk−1
k−1 . We now show that we can find
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zk = w̃ ◦ zk−1 ∈ G such that HT(zk ∗ p) = zk ◦ t ≡ as11 . . . askk rk with rk ∈ ORD(Σk+1)
and as11 . . . askk ≤tup a

ρ1
1 . . . aρkk .

This will be done in two steps. First we show that for the polynomials u∗p and zk−1 ∗p
with head terms ai11 . . . ainn respectively as11 . . . a

sk−1
k−1 a

lk
k r
′ we can find an element w1 ∈ G

such that HT(w1 ∗ zk−1 ∗ p) = w1 ◦ zk−1 ◦ t ≡ as11 . . . a
sk−1
k−1 a

s̃k
k r̃, r̃ ∈ ORD(Σk+1) and

as̃kk ≤tup a
ρ̃k
k with

ρ̃k =
{

sgn(ik) ·min{|ik|, |lk|} sgn(ik) = sgn(lk)
0 otherwise.

Then when aρ̃kk ≤tup a
ρk
k we are finished and set zk = w1 ◦ zk−1 and sk = s̃k. Otherwise

we can similarly proceed for the polynomials v ∗ p and w1 ∗ zk−1 ∗ p with head terms
aj11 . . . ajnn and as11 . . . a

sk−1
k−1 a

s̃k
k r̃ respectively and find an element w2 ∈ G such that for

zk = w2 ◦ w1 ◦ zk−1 we have HT(zk ∗ p) = zk ◦ t ≡ as11 . . . askk rk, rk ∈ ORD(Σk+1) and

askk ≤tup a
ρ̃′k
k with

ρ̃′k =
{

sgn(jk) ·min{|jk|, |s̃k|} sgn(jk) = sgn(s̃k)
0 otherwise.

Then we can conclude askk ≤tup a
ρk
k as in the case sk = 0 the proof is immediately com-

plete and otherwise we get sgn(jk) = sgn(s̃k) = sgn(ρ̃k) = sgn(ik) and min{|ik|, |s̃k|, |jk|}
≤ min{|ik|, |jk|}.

Let us hence show how to construct w1. Remember that HT(u ∗ p) = u ◦ t ≡ ai11 . . . ainn
and HT(zk−1 ∗ p) = zk−1 ◦ t ≡ as11 . . . a

sk−1
k−1 a

lk
k r
′ for some r′ ∈ ORD(Σk+1). In the case

ik = lk or lk = 0 we can set w1 = λ and s̃k = lk = ρ̃k as HT(zk−1 ∗ p) = zk−1 ∗ t ≡
as11 . . . a

sk−1
k−1 a

lk
k r
′. Hence let ik 6= lk and lk 6= 0.

First let us assume that sgn(ik) = sgn(lk). Without loss of generality we can assume
that ak is not bounded†. Then in the case |ik| ≥ |lk| we can complete the proof by setting
w1 = λ as again HT(zk−1 ∗ p) = zk−1 ◦ t ≡ as11 . . . a

sk−1
k−1 a

lk
k r
′ will do with s̃k = lk = ρ̃k.

Therefore, let us assume that |lk| > |ik|. Then we consider the multiple y ∗ zk−1 ∗ p,
where y = (as11 . . . a

sk−1
k−1 ) ◦ a−lk+ik

k ◦ inv(as11 . . . a
sk−1
k−1 ), i.e., the exponent of the letter

ak in the term y ◦ zk−1 ◦ t will be ik. If HT(y ∗ zk−1 ∗ p) = y ◦ zk−1 ◦ t we are done
because then y ◦ zk−1 ◦ t ≡ as11 . . . a

sk−1
k−1 a

ik
k r̃k for some r̃k ∈ ORD(Σk+1) and we can

set w1 = y and s̃k = ik = ρ̃k. Otherwise we show that the t-term y ◦ zk−1 ◦ t in this
multiple can be brought to the head position using an element r ∈ G such that we have
HT((r ◦ y) ∗ zk−1 ∗ p) = r ◦ y ◦ zk−1 ◦ t = r ◦ y ◦ as11 . . . a

sk−1
k−1 a

lk
k r
′ ≡ as11 . . . a

sk−1
k−1 a

ik
k r̃,

where r̃ ∈ ORD(Σk+1), thus allowing to set s̃k = ik = ρ̃k and w1 = r ◦ y. This follows
immediately if we can prove that the exponent of ak in the term HT(y ∗ zk−1 ∗ p) is also
ik. Then we can apply Lemma 3.2 to the polynomial y ∗zk−1 ∗p and the term y ◦zk−1 ◦ t.
Note that HT(y ∗ zk−1 ∗ p) and y ◦ zk−1 ◦ t have then a distinguishing letter of at least
index k+1 and further HT(inv(y)∗(y∗zk−1 ∗p)) = HT(zk−1 ∗p) = zk−1 ◦ t. Therefore, we
show that the exponent of ak in the term HT(y ∗zk−1 ∗p) is also ik. Let as11 . . . a

sk−1
k−1 a

bk
k r
′′

with r′′ ∈ ORD(Σk+1) be the term in zk−1 ∗ p that became the head term (note that a
candidate in T(zk−1∗p) for the head term in y∗zk−1∗p must have prefix as11 . . . a

sk−1
k−1 since

HT(zk−1∗p) ≡ as11 . . . a
sk−1
k−1 rk−1) and multiplication with y gives us y◦as11 . . . a

sk−1
k−1 a

bk
k r
′′ ≡

as11 . . . a
sk−1
k−1 a

ck
k x Â as11 . . . a

sk−1
k−1 a

ik
k w ≡ y◦zk−1◦t for some x,w ∈ ORD(Σk+1) and we have

† When ak is bounded we can still use negative powers of ak in the computations, as from the point
of view of the collection process it does not matter at what time the power rules for ak are applied.
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ck ≥Z ik. Then there exist z1, z2 ∈ G such that z1 ◦as11 . . . a
sk−1
k−1 a

ik
k y ≡ ai11 . . . a

ik−1
k−1 a

ik+fk
k z

for some z ∈ ORD(Σk+1) and z2◦ai11 . . . a
ik−1
k−1 a

ik+fk
k z ≡ ai11 . . . ainn and z2 = (ai11 . . . a

ik−1
k−1 )◦

a−fkk ◦z′2◦inv(ai11 . . . a
ik−1
k−1 ) for some z′2 ∈ ORD(Σk+1). Note that the t-term in y∗zk−1∗p is

brought to head position by multiplication with z2 ◦z1. Now multiplying HT(y ∗zk−1 ∗p)
by z2 ◦ z1 we find z2 ◦ z1 ◦ as11 . . . a

sk−1
k−1 a

ck
k x = ai11 . . . a

ik−1
k−1 a

ck+fk−fk
k x̃ ≡ ai11 . . . a

ik−1
k−1 a

ck
k x̃

for some x̃ ∈ ORD(Σk+1). This gives us ck ≤Z ik and thus ik ≤Z ck yields ck = ik.
Finally, we have to check the case that sgn(ik) 6= sgn(lk) and lk 6= 0. Notice that in

this case the letter ak is not bounded. Let us take a look at the polynomial y ∗ zk−1 ∗ p
where y = (as11 . . . a

sk−1
k−1 ) ◦ a−lkk ◦ inv(as11 . . . a

sk−1
k−1 ), i.e., the exponent of the letter ak in

the term y ◦zk−1 ◦ t will be 0. Suppose HT(y ∗zk−1 ∗p) ≡ as11 . . . a
sk−1
k−1 a

ck
k x, for some term

s ≡ as11 . . . a
sk−1
k−1 a

bs
k xs ∈ T(zk−1∗p), x, xs ∈ ORD(Σk+1), i.e., ck = bs−lk. When this head

term is already the corresponding t-term y ◦ zk−1 ◦ t, the proof follows and we set w1 = y
and s̃k = 0 = ρ̃k. Now if we can show ck = 0, by Lemma 3.2 the t-term y ◦zk−1 ◦ t can be
brought to the head position by using an element such as that constructed in Lemma 3.2
since the distinguishing letter between HT(y ∗ zk−1 ∗p) and the term y ◦ zk−1 ◦ t then has
at least index k + 1 and we know HT(inv(y) ∗ (y ∗ zk−1 ∗ p)) = HT(zk−1 ∗ p) = zk−1 ◦ t.
Hence, in showing that ck = 0 the proof follows. As before there exist z1, z2 ∈ G such that
z1 ◦ y ◦ zk−1 ◦ t ≡ ai11 . . . a

ik−1
k−1 a

fk
k z for some z ∈ ORD(Σk+1) and z2 ◦ ai11 . . . a

ik−1
k−1 a

fk
k z ≡

ai11 . . . ainn , i.e., z2 = (ai11 . . . a
ik−1
k−1 )◦a−fk+ik

k z′2◦inv(ai11 . . . a
ik−1
k−1 ) for some z′2 ∈ ORD(Σk+1).

Remember that this multiplication brings the t-term in y∗zk−1∗p to head position. Hence
multiplying HT(y∗zk−1∗p) by z2◦z1 we find z2◦z1◦as11 . . . a

sk−1
k−1 a

ck
k x ≡ ai11 . . . a

ik−1
k−1 a

ck+ik
k x̃

for some x̃ ∈ ORD(Σk+1). Thus we know ck+ ik ≤Z ik. To see that this implies ck = 0 we
have to distinguish three cases. Remember that ck = bs − lk and since our head term is
an s-term y ◦ s for some s ∈ T(zk−1 ∗p) we know bs ≤Z lk. When ik = 0, we have ck ≤Z 0
implying ck = 0. When ik > 0 then ck+ik = bs−lk+ik ≤Z ik implies 0 ≤ bs−lk+ik ≤ ik.
Furthermore, as lk < 0 we have −lk + ik > ik implying bs < 0 and hence |bs| ≤ |lk|. But
then bs − lk ≥ 0 and 0 ≤ bs − lk + ik ≤ ik yields ck = bs − lk = 0. On the other hand,
ik < 0 and lk > 0 imply 0 ≤ bs ≤ lk and hence bs− lk+ik < 0 yielding |bs− lk+ik| ≤ |ik|.
Since bs − lk ≤ 0 this inequality can only hold when ck = bs − lk = 0. 2

Proof. (of Lemma 3.4) ∗←→lpc
F ⊆ ≡ideall(F ) is an immediate consequence of the defi-

nition of lpc-reduction. To show that the converse also holds, let p− q ∈ ideall(F ). Then
p = q +

∑m
i=1 αi · ui ∗ fi, αi,∈ K, fi ∈ G, ui ∈ G and we show that p ∗←→lpc

G q by in-
duction on m. Without loss of generality we can assume that for every multiple ui ∗ fi,
HT(ui ∗ fi) = ui ◦ HT(fi) ≥tup HT(fi) holds. When m = 0 the lemma holds as then
p = q. Hence let p = q +

∑m
i=1 αi · ui ∗ fi + αm+1 · um+1 ∗ fm+1. Then the induction

hypothesis yields p ∗←→lpc
G q + αm+1 · um+1 ∗ fm+1. Now let t = HT(um+1 ∗ fm+1) and

t ≥tup HT(fm+1). Furthermore, let β1, respectively β2, be the coefficient of t in q, respec-
tively q+αm+1 ·um+1∗fm+1. Then when t 6∈ T(q) we get q+αm+1 ·um+1∗fm+1−→lpc

fm+1
p.

When t 6∈ T(p) we similarly get p− αm+1 · um+1 ∗ fm+1−→lpc
fm+1

q. As p− αm+1 · um+1 ∗
fm+1 = q+

∑m
j=1 αj ·uj∗fj the induction hypothesis yields p−αm+1 ·um+1∗fm+1

∗←→lpc
F q

and hence we are done. Otherwise let β1 6= 0 be the coefficient of t in q+αm+1·um+1∗fm+1

and β2 6= 0 the coefficient of t in q.
This gives us the lpc-reduction step

q + αm+1 · um+1 ∗ fm+1−→lpc
fm+1

q + αm+1 · um+1 ∗ fm+1
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−β1 · HC(fm+1)−1 · um+1 ∗ fm+1

= q − (β1 · HC(fm+1)−1 − αm+1) · um+1 ∗ fm+1

eliminating the occurrence of t in q + αm+1 · um+1 ∗ fm+1.
Then obviously β2 = (β1 · HC(fm+1)−1 − αm+1) · HC(fm+1) and, therefore, we have

q−→lpc
fm+1

q− (β1 ·HC(fm+1)−1−αm+1) ·um+1 ∗ fm+1, i.e., q and q+αm+1 ·um+1 ∗ fm+1

are joinable. 2

Proof. (of Theorem 3.1)
1 =⇒ 2 : By Definition 3.4 when for fk, fl ∈ G the s-polynomial exists we get

spol(fk, fl) = HC(fk)−1 · w1 ∗ fk − HC(fl)−1 · w2 ∗ fl ∈ ideall(G),

and then spol(fk, fl)
∗−→lpc
G 0.

2 =⇒ 1: We have to show that every non-zero element g ∈ ideall(G) is −→lpc
G -reducible

to zero. Without loss of generality we assume that G contains no constant polynomials,
as then the theorem immediately holds. Remember that for h ∈ ideall(G), h−→lpc

G h′

implies h′ ∈ ideall(G). Thus as −→lpc
G is Noetherian it suffices to show that every g ∈

ideall(G) \ {0} is −→lpc
G -reducible. Let g =

∑m
j=1 αj · wj ∗ fj be a representation of

a non-zero polynomial g such that αj ∈ K∗, fj ∈ F,wj ∈ G. Since G is saturated by
Definition 3.3 we can assume g =

∑m
j=1 αj · vj ∗ gj , where αj ∈ K∗, gj ∈ G, vj ∈ G and

HT(vj ∗ gj) = vj ◦ HT(gj) ≥tup HT(gj). Depending on this representation of g and our
well-founded total ordering on G we define t = max{HT(vj ◦ gj) | j ∈ {1, . . .m}} and
K is the number of polynomials vj ∗ gj containing t as a term. Then t º HT(g) and in
the case HT(g) = t this immediately implies that g is −→lpc

G -reducible. Otherwise we
show that g has an lpc-standard representation where all terms are bounded by HT(g),
as this implies that g is top-reducible using G. This will be done by induction on (t,K),
where (t′,K ′) < (t,K) if and only if t′ ≺ t or (t′ = t and K ′ < K). Note that this
ordering is well-founded since ≥syll is and K ∈ N. In the case t Â HT(g) there are
two polynomials gk, gl in the corresponding representation such that t = vk ◦ HT(gk) =
vl ◦HT(gl) and we have t ≥tup HT(gk),t ≥tup HT(gl). Hence by Definition 3.4 there exists
an s-polynomial spol(gk, gl) = HC(gk)−1 · z1 ∗ gk − HC(gl)−1 · z2 ∗ gl and vk ◦ HT(gk) =
vl ◦ HT(gl) = w ◦ z1 ◦ HT(gk) = w ◦ z2 ◦ HT(gl) ≥tup z1 ◦ HT(gk) = z2 ◦ HT(gl) for
some z1, z2, w ∈ G. Let us assume spol(gk, gl) 6= 0 since when spol(gk, gl) = 0, we can
just substitute 0 for

∑n
i=1 δi · v′i ∗ hi in the equations below. Hence, spol(gk, gl)

∗−→lpc
G 0

implies spol(gk, gl) =
∑n
i=1 δi · v′i ∗ hi, δi ∈ K∗, hi ∈ G, v′i ∈ G, where the hi are due to

the lpc-reduction of the s-polynomial and all terms occurring in the sum are bounded
by HT(spol(gk, gl)). By Lemma 2.3, since t = w ◦ z1 ◦ HT(gk) ≥tup z1 ◦ HT(gk) and
z1 ◦ HT(gk) Â HT(spol(gk, gl)), we can conclude that t is a proper bound for all terms
occurring in the sum

∑n
i=1 δi · w ∗ v′i ∗ hi. Since w ∈ G and G is saturated, without loss

of generality we can assume that the representation has the the required form. We now
have:

αk · vk ∗ gk + αl · vl ∗ gl
= αk · vk ∗ gk + α′l · βk · vk ∗ gk − α′l · βk · vk ∗ gk︸ ︷︷ ︸

= 0

+α′l · βl · vl ∗ gl

= (αk + α′l · βk) · vk ∗ gk − α′l · (βk · vk ∗ gk − βl · vl ∗ gl)︸ ︷︷ ︸
=w∗spol(gk,gl)
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= (αk + α′l · βk) · vk ∗ gk − α′l ·
( n∑
i=1

δi · w ∗ v′i ∗ hi
)

(A.1)

where βk = HC(gk)−1, βl = HC(gl)−1 and α′l · βl = αl. By substituting (A.1) in our
representation of g either t disappears or when t remains maximal among the terms
occurring in the new representation of g, K is decreased. 2

Proof. (of Theorem 3.2 and Corollary 3.3) Let F be a subset of K[G] and G
a Gröbner basis (the proof for the existence of a finite left Gröbner basis for ideall(F )
is similar) of ideal(F ), i.e., ideal(F ) = ideal(G) = ideall(G) and for all g ∈ ideal(F ) we
have g ∗−→lpc

G 0. We can assume that G is infinite as otherwise the proof is complete.
Furthermore let H = {HT(g) | g ∈ G} ⊆ G. Then for every polynomial f ∈ ideal(F )
there exists a term t ∈ H such that HT(f) ≥tup t. For each element u ∈ H the element
u can then be viewed as an n-tuple over Z as it is represented by an ordered group
word. But we can also view it as a 2n-tuple over N by representing each element u by an
extended ordered group word u ≡ a−i11 aj11 . . . a−inn ajnn , where il, jl ∈ N and is represented
by the 2n-tuple (i1, j1, . . . , in, jn). Notice that at most one of the two exponents il and
jl is non-zero. Now H can be seen as a (possibly infinite) subset of a free commutative
monoid T2n with 2 ·n generators. Thus by Dickson’s lemma there exists a finite subset B
of H such that for every w ∈ H there is a b ∈ B with w ≥tup b. Now we can use the set
B to distinguish a finite Gröbner basis in G as follows. To each term t ∈ B we can assign
a polynomial gt ∈ G such that HT(gt) = t. Then the set GB = {gt | t ∈ B} is again
a Gröbner basis since for every polynomial f ∈ ideal(F ) there still exists a polynomial
gt, now in GB , such that HT(f) ≥tup HT(gt) = t. Hence all polynomials in ideal(F ) are
lpc-reducible to zero using GB . 2

Proof. (of Theorem 3.3)
1 =⇒ 2: Since g ∈ ideal(G) = ideall(G) and G is a left Gröbner basis, the proof follows.

2 =⇒ 3: To show thatG is a left Gröbner basis we have to prove ∗←→lpc
G = ≡ideall(G) and

for all g ∈ ideall(G), g ∗−→lpc
G 0. The latter follows immediately since ideall(G) ⊆ ideal(G)

and hence for all g ∈ ideall(G) we have g ∗−→lpc
G 0. The inclusion ∗←→lpc

G ⊆ ≡ideall(G) is
obvious. Hence let f ≡ideall(G) g, i.e., f − g ∈ ideall(G). But then we have f − g ∗−→lpc

G 0
and hence by Lemma 3.1 there exists a polynomial h ∈ K[G] such that f ∗−→lpc

G h and
g
∗−→lpc
G h, yielding f ∗←→lpc

G g. Finally, f ∗w ∈ ideal(G) and f ∗w ∗−→lpc
G 0 implies f ∗w ∈

ideall(G).
3 =⇒ 4: This follows immediately.
4 =⇒ 1: Since it is obvious that ideall(G) ⊆ ideal(G) it remains to show that ideal(G) ⊆

ideall(G) holds. Let g ∈ ideal(G), i.e., g =
∑n
i=1 αi ·ui∗gi∗wi for some αi ∈ K, gi ∈ G and

ui, wi ∈ G. We will show by induction on |wi| that for wi ∈ G, gi ∈ G, gi ∗wi ∈ ideall(G)
holds. Then g also has a representation in terms of left-multiples and hence lies in the
left ideal generated by G as well. When |wi| = 0 we are immediately done. Hence let us
assume wi ≡ aw for some a ∈ Σ and by our assumption we know that gi ∗ a ∈ ideall(G).
Let gi ∗ a =

∑m
j=1 βj · vj ∗ g′j for some βj ∈ K, g′j ∈ G and vj ∈ G. Then we get

gi ∗ wi = gi ∗ aw = (gi ∗ a) ∗ w = (
∑m
j=1 βj · vj ∗ g′j) ∗ w =

∑m
j=1 βj · vj ∗ (g′i ∗ w) and by

our induction hypothesis g′j ∗w ∈ ideall(G) holds for every 1 ≤ j ≤ m. Therefore, we can
conclude gi ∗ wi ∈ ideall(G). 2
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Proof. (of Theorem 3.4) The theorem can again be proved using standard techniques
as in the case of ordinary polynomial rings. Let G be a finite Gröbner basis of the ideal
ı which must exist by Theorem 3.2 (the proof for the existence of a unique reduced left
Gröbner basis for ideall(F ) is similar). Then similar to a characaterization of Buchberger’s
Gröbner bases by head terms the following equation holds:

{t ∈ G | t ≥tup HT(g), g ∈ G} = HT(ı \ {0}).
The sets HT(G) and HT(ı\{0}) depend on the presentation of the chosenM, especially on
the ordering induced onM. As the set HT(G) is finite, there exists a subset H ⊆ HT(G)
such that

(a) for all m ∈ HT(G) there exists an element m′ ∈ H such that m ≥tup m
′,

(b) for all m ∈ H there exists no element m′ ∈ H \ {m} such that m′ <tup m, and
(c) {t ∈ G | t ≥tup HT(g), g ∈ H} = {t ∈ G | t ≥tup HT(g), g ∈ G} = HT(ı \ {0}).

Since for each term t ∈ H there exists at least one polynomial in G with head term t
we can choose one of them, say gt, for every t ∈ H. Then the set G′ = {gt | t ∈ H}
is a Gröbner basis as we still have that for every g ∈ ı, g ∗−→lpc

G′ 0 holds. Furthermore
all polynomials in G′ have different head terms and no head term is lpc-reducible by
the other polynomials in G′. Hence, if we lpc-inter-reduce G′ giving us another set of
polynomials G′′, we know HT(G′) = HT(G′′) and this set is also a Gröbner basis of ı
since for every g ∈ ı, g ∗−→lpc

G′′ 0 still holds.
It remains to show the uniqueness of the reduced Gröbner basis if we restrict ourselves

to sets of monic polynomials. Let us assume S is another monic reduced Gröbner basis
of ı. Furthermore let f ∈ S 4 G′′ = (S \ G′′) ∪ (G′′ \ S) be a polynomial such that
HT(f) is minimal in the set of terms HT(S 4 G′′). Without loss of generality we can
assume that f ∈ S \ G′′. As G′′ is a Gröbner basis and f ∈ ı there exists a polynomial
g ∈ G′′ such that HT(f) ≥tup HT(g). We can even state that g ∈ G′′ \ S as otherwise
S would not be lpc-inter-reduced. Since f was chosen such that HT(f) was minimal in
HT(S 4 G′′), we get HT(f) = HT(g). Otherwise HT(f) Â HT(g) would contradict our
assumption. As we assume f 6= g this gives us f − g 6= 0, HT(f − g) ≺ HT(f) = HT(g)
and HT(f − g) ∈ T(f) ∪ T(g). But f − g ∈ ı implies the existence of a polynomial h ∈ S
such that HT(f − g) ≥tup HT(h), implying that f is not lpc-reduced. Hence we get that
S is not lpc-interreduced, contradicting our assumption. 2
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