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Abstract 

We study different properties of the Nagata automorphism of the polynomial algebra in three 
variables and extend them to other automorphisms of polynomial algebras and algebras close 
to them. In particular, we propose two approaches to the Nagata conjecture: via the theory of 
Griibner bases and trying to lift the Nagata automorphism to an automorphism of the free asso- 
ciative algebra. We show that the reduced Grijbner basis of three face polynomials of the Nagata 
automorphism obtained by substituting a variable by zero does not produce an automorphism, 
independently of the “tag” monomial ordering, contrary to the two variable case. We construct 
examples related to Nagata’s automorphism which show different aspects of this problem. We 

formulate a conjecture which implies Nagata’s conjecture. We also construct an explicit lifting 
of the Nagata automorphism to the free metabelian associative algebra. Finally, we show that 
the method to determine whether an endomorphism of K[X] is an automorphism is based on a 
general fact for the ideals of arbitrary free algebras and works also for other algebraic systems 
such as groups and semigroups, etc. @ 1999 Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Class.: Primary 13B25; 13PlO; secondary 14E09 

1. Introduction 

Let K be a field and let K[X] := K[xl, . . . ,x,] be the polynomial algebra in n variables 

x1,. , . ,x, over K, where n is a fixed positive integer. In this paper we study the group 

of K-algebra automorphisms Aut K[xl , . . . ,xn], n > 2. (See Nagata [ 171 for a survey 

on facts about AutK[X].) 
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Since every map X := {xi,. . .,x,} -+K[X] induces an endomorphism of K[X], we 

identify the endomorphisms 4 E EndK[X] with the polynomial maps F = F(X) = 4(X) 

=(fi,..., fn), where JI: = &xi), i = I,. . . , n, and use both 4 and F to denote the endo- 

morphisms of K[X]. Sometimes we prefer to denote the elements of X by x, y,. . . ,z, 

etc. 

The group AutK[X] has two important subgroups. The first one is the group A(n,K) 

consisting of all affine automorphisms. The second one J(n,K) is generated by all 

triangular automorphisms defined as follows. Given invertible elements al,. . . , a, in K 

and polynomials J1 E K[xi+l, . . . ,x,J, i = 1,. . . , n (fn is a polynomial in zero variables, 

i.e. fn E K) then the map (~1x1 + fi, 4x2 + f2,. . . ,anxn + fn) is called a triangular 

automorphism of K[X]. The group generated by A(n,K) and J(n,K) is the group of 

tame automorphisms and is denoted by Z’(n,K). The automorphisms of K[X] which are 

not in T(n,K) are called wild. Similarly, one can define tame and wild automorphisms 

of K[X] when K is any commutative ring with identity. Now, we state the main 

question. 

Question 1.1. Is it true that Aut K[xl,. . .,x,1 = T(n,K), i.e., is every automorphism of 

WI,. . . , xn] tame? 

The case n = 2 of Question 1.1 has an affirmative answer. There are several known 

proofs of this result originally obtained by Jung [ 121 for K = C and by Van der 

Kulk [23] for any field K. 

Consider the Nagata automorphism v = N = (ni, n2, n3) of K[x, y,z] (see [ 171): 

ni = v(x) =x - 2y(y2 + xz) - z(y2 + xzy, 

n2 = v(y) = y + z(y2 + xz), 

723 = v(z) = z. 

Conjecture 1.2. For any Jield K the Nagata automorphism N = (nl, n2, n3) is not tame. 

Conjecture 1.2 was formulated by Nagata in 1972 [ 171 and is still open. 

Moreover, it is still unknown whether there exist wild (i.e., nontame) automorphisms, 

when K is an arbitrary field and n >2. The starting point of our research was to 

find some new evidences that the Nagata automorphism has some properties which 

distinguish it from most of the known tame automorphisms. In particular, we propose 

two approaches to the Nagata conjecture: via the theory of Grobner bases and trying 

to lift the Nagata automorphism to an automorphism of the free associative algebra. 

In Section 2 we consider Grijbner basis techniques. There is a well-known Grijbner 

bases algorithm deciding whether an endomorphism of K[X] is an automorphism and, 

if the answer is affirmative, finding the inverse. An automorphisms of K[X] can be 

reconstructed from all n2 face polynomials of its inverse. In the two variables case 

we prove that only two face polynomials are enough and this new result is closely 

related to the fact that every automorphism of K[x, y] is tame. Examples show that an 
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anology does not hold for n 2 3. We show that the reduced Griibner basis of three 

face polynomials of the Nagata automorphism obtained by substituting z = 0 does not 

produce an automorphism, under any “tag” monomial ordering, contrary to all examples 

of tame automorphisms of K[x, y, z] we have tested, which is similar to the two variable 

case. Based on these we formulate a conjecture which implies the Nagata conjecture. 

In Section 3 we try to lift the Nagata automorphism to an automorphism of the free 

associative algebra K(x, y,z). Obviously, every tame automorphism of K[X] can be 

lifted to an automorphism of K(X) . Therefore, although an automorphism of K[X] may 

be not tame, if it can be lifted to an automorphism of K(X), it may be regarded “not 

wilder” than the corresponding automorphism of the free algebra. If an automorphism 

of K[X] cannot be lifted to an automorphism of K(X), we may ask the question “how 

far” can it be lifted. The natural way to measure the “distance” is in the language of 

T-ideals, i.e. ideals of K(X) which are invariant under all endomorphisms of K(X). 
Martha Smith [21] has proved that the Nagata automorphism is stably tame, i.e. it 

becomes tame if we extend it to the polynomial algebra in four variables K[x, y,z, u] 
assuming that it fixes 21. Unfortunately, the procedure of Martha Smith does not give 

lifting to Aut K(x, y,z, u) which fixes u. We have not succeeded to lift the Nagata 

automorphism to an automorphism of K (x, y,z), but we give an explicit lifting to 

the algebra K(x, y,z)/Ck, where C is the commutator ideal of K(x, y,z) and k is any 

positive integer. By a result of Umirbaev [22], such liftings exist for any automorphism 

of K[X] but our lifting has the advantage that it fixes z as the Nagata automorphism 

itself. 

Finally, in Section 4 we show that the method to determine whether an endomor- 

phism of K[X] is an automorphism which was the starting point of the study in Section 

2, is based on a general fact for the ideals of arbitrary free algebras and, with some 

modifications, works also in the case of other algebraic systems as groups, semigroups 

etc. The advantage in the polynomial case is that the ideals of K[X] are finitely gen- 

erated and there exist effective procedures (as the Grijbner bases techniques) to find a 

minimal system of generators of a given ideal. 

2. Griibner bases and face functions 

A Grobner basis is a (finite) set of special generators of an ideal of a polynomial 

algebra. Fixing some ordering of the monomials in K[xl, . . . ,x,1, the leading term of any 

element from the ideal is divisible by a leading term of some element from the Griibner 

basis. The basis is reduced, if no term of its elements is divisible by the leading term 

of another element. The Griibner bases have many attractive computational properties. 

The method is widely used in computational commutative algebra and in computational 

algebraic geometry. The reader is referred to [3]. The theory of Grobner bases was 

used for deciding when a polynomial map F = (fi, . . . , fn) is an automorphism. The 

algorithm uses “tag” variables in a fashion related to the method for finding the relations 

among the J’s We introduce tag variables, indeterminates ~1,. . . , yn, one for each fi. 
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Let K[xi ,...,&,YI,..., yn] have a monomial ordering, where 

M-V ,...,;c,l~K[yl,...,y,l 

which means that each monomial in K[xl , . . . ,x,J is larger than any monomial which 

lies in K[yl,. . . , y,J. We call it a “tag” monomial ordering. 

Proposition 2.1. Let F = (fi, . . . ,fn) be an endomorphism of K[xl,. . . ,x,1. Then F is 

an automorphism if and only if the ideal Z of K[xl, . . . ,x,, yl, . . . , yn] generated by 

{VI -ficv 3. ..,X,),...,Yn_fn(Xl,.. .,&z>) 

has a generating set 

{Xl -gl(Yl,...,Yn),...,xn -Bn(yl?...,Yn)). 

Moreover, G:=G(X):=(gl(X),...,g,(X)) is the inverse ofF=(fi,...,f,) and the 
reduced Griibner basis of the ideal Z with respect to any “tag” monomial order- 

ing + such that K[xl,. . .,x,1 + K[yl,. . . , yn] is precisely {xl - gl(yl,. . ., m),. . . ,xn - 

Sn(Yl>...?Yn)I. 

There are several proofs of this result, by van den Essen [9] and Shannon and 

Sweedler [20] for fields and Abhyankar and Li [l] for arbitrary commutative rings K. 
It has been proved by several authors (see [ 10, 14, 16,241, that a polynomial map 

F=(fi,..., fn> E Aut K[xi , . . . ,x,] is completely determined by its n2 face polynomials 

fi(O,~Z,...,~,),...,fi(~l,...,~n-l,O), 

. . . 

.h(O,x2 ,...,X,),...,fn(Xl,...,Xn-l,O). 

Now we present a new result concerning the reduced Grobner bases of its face func- 

tions. It is more general than that by van den Essen [9]. 

Proposition 2.2. Let K be any field and F = (fi,. . . , fn) E Aut K[xl,. . . ,x,1. Let 

G={xl -g1(y1,...,yn),...,xn-~n(Y1,...,yn)} 

be the reduced Griibner basis of the ideal Z = (~1 -fi (xl,. . . ,x,,), . . . , y,,-fn(x1, . . . ,x,,)) 

in K[xl , . . .,x,,, ~1,. . . , yn] with respect to any “tag” monomial ordering + such that 

K[xl ,...,xnl+K[yl,..., y,,]. Then, for any integer j = 1,. . . ,n, the set 

H={x1 -gl(Yl,...,Yn),...,xj-1 -sj-l(Yl,...,y,),gj(Yl,...,Yn), 

xj+1 -Sj+l(Yl,...,yn)...,Xn -Sn(Yl~...,Yn)) 

is a Griibner basis of the ideal J generated by 

{Yl -hh ~...,~j-l,O,~j+l,...,t),...,yn-fn(Xl,...,-Xj-l,O,~j+l,~~~,~~)}. 
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In general, H is not the reduced Grobner basis. The reduced Griibner basis is obtained 

after reduction of all polynomials gi(y1,. . . , y,), i = 1,. . . ,j,. . . ,n, by gj(yl,. . . , y,,). 

(Here j^ means that the corresponding number j does not participate in the expres- 

sion.) 

Proof. The sets 

{yi-A(X*,...,Xn) 1 i=l,..., n}, {Xi -Si(Yl~...,.Yn) I i= L...,n) 

generate the same ideal I of K[xi,. . .,x,, yi,. . . , yn]. Substituting xj = 0, we obtain that 

the set H generates in K[xi, . . . ,ij,. . . ,x,, yi, . . . , yn] the same ideal as 

{Yl -f1@1 ~.~.,Xj-l,O,Xj+l,...,X,),...,Yn-fn(Xl,.~.,Xj-l, ,Xj+l,.*~,xn)}~ 0 

Hence, these two sets generate also the same ideal in K[xi, . . . ,x,, yi, . . . , yJ. The set H 
is a Grijbner basis, because every element from the ideal J is a linear combination of 

polynomials with leading term containing xi,. . . ,ij, . . . , x, and of polynomials divisible 

by gj(yI,..., yn). After reduction of all polynomials gi(yi, . . . , yn), i = 1,. . . ,j? . . . , n, 

by gj(yt,. . . , y,), we obtain a set fi such that no monomial of an element from fi 

is divisible by a leading term of another polynomial, i.e. g is the reduced Grobner 

basis. q 

In others words, our result states that the specialization of the Griibner basis works 

for this particular kind of ideals J, but in general the specialization is not the reduced 

Griibner basis. In the case n = 2, we prove the following stronger result. 

Theorem 2.3. Let K be any field and let F = (fl(x, y), f2(x, y)) E Aut K[x, y]. Then 
the reduced Griibner bases of its face functions produce automorphisms, where the 
Griibner bases are computed with respect to any “tag” monomial ordering + such 

that K[x, y] + K[s, t], i.e. 

Gbasis(s-fi(O,~),t-f2(0,~)) = {a(s,t),y - gdS,t)), 

Gbasis(s-fi(x,O),t-f2(x,O))= {h(.ct),x - h(s,t)}, 

where (gl(s, t>, gds, 9) and @l(s, t>, hz(s, t)) are elements of the group Aut K[s, t]. 
Conversely, let p(t),q(t) E K[t] such that one of them is nonconstant and the reduced 
GrGbner basis G of the ideal I = (p(t) - x, q(t)-y) with respect to an ordering + 
such that K[t] + K[x, y] is 

Then (fi, ,A) is an automorphism, (p(t),q(t)) are face functions of an automorphism 
(gl,g2) whose inverse is exactly (fi,f2), and in this case K[p(t),q(t)]=K[t]. 

Proof. Let P=(pl(x, y), p2(x,y)) be the inverse of F. Since 

(s-fi(x, y), t-JXx, Y)) = (x - Pl(& t), Y - $72(&t)), 
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substituting x = 0, we obtain that {(pi (s, t), y - pz(s, t))} is a Grobner basis of the ideal 

(s-fi(0, y), t-f2(0, y)) in K[s, t, y] under any ordering which satisfies K[y] F K[s, t]. 

If {Plh t>,v - P2cst)l is already reduced, the uniqueness of the reduced Grijbner 

basis gives that 

If there are further reductions, the only possibility is to reduce pz(s,r) modulo pi(s,t). 

We apply the algorithm for decomposing an automorphism into a product of elementary 

automorphisms (see [6, Theorem 6.85, p. 3481). It follows from this algorithm that 

the reduction 

{Pl(&~),PZ(~,~)) + {Pl(s,t)>g2@?t)) 

gives an automorphism (pi,gz) of K[s, t]. Hence, the reduced Griibner basis of the 

ideal (pl(s,O,y - I&O) is {~l(s,t),y - g&t)) and again 

(sl(S,t),g2(S,t))=(pl(s,t),g2(S,t)) E AutKb,tl. 

Conversely, since 

I=(p(t) -x,q(t)-Y)=(fi(x,Y),t-f2(X,Y)), 

there exist polynomials Ui, ai E K[x, y, t], i = 1,2, such that 

.fi(X,Y)=(P(f) -xhcGy,f) + (d+Yhz(x,Y,t), 

t-./x& Y> = (p(t> - xh(x, Y, t) + (df)--Y)~2(X, Y, t>. 

Substituting x = p(t), y = q(t), we obtain 

fi(p(t),q(t)) = 0, f2(p(t),q(t)) = t. 

By [3, Theorem 2.3.41, {fi(x,y)} is the Grijbner basis of the ideal of K[x,y] 

1 n K[x> VI = LOX, Y) ~0, VI I f(At), q(t)) = 0). 

On the other hand, at least one of the polynomials p(t) and q(t) essentially depends 

on t and In K[x, y] is a principal ideal generated by an irreducible polynomial. Hence 

fi(x, y) is irreducible. By the Abhyankar-Moh Theorem [2], there exists a polyno- 

mial h(x, y) E K[x, y] such that Fi = (fi, ff + hfi ) is an automorphism of K[x, y]. Let 

Fi-’ = (pi@, y),ql(x, y)) be the inverse of F1 . We have 

(Pl(fi,f2),4l(fi,f2))=(x,Y) 

and 

(PluJ th 41(0, f>) = (p(t),dt)). 

By Proposition 2.2, {J (x, y), t-f2(x, y) - h(x, y)fi (x, y)} is a (nonreduced) Griibner 

basis of the ideal (p(t) - x,q(t)-y) under any ordering that satisfies K[t] + K[x, y], 
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the reduced Griibner basis under the same ordering is {fi(x, y), t-f2(x, y)}. Arguing 

as in the first part of the proof, i.e., applying again the algorithm for decomposing of 

Fi into a product of elementary automorphisms we obtain that F = (fl, fz) is also an 

automorphism with F-‘(0, t) = (P(t),q(t)). 0 

It is important to remark that, even if Question 1.1 has a positive answer for n 2 3, 

the above proof of Theorem 2.3 holds only for two variables. 

Example 2.4. We consider the Nagata automorphism N = (ni, n2, n3), where 

ni=x-2y(zx+y2)-z(zx+y2)2, 

n2=y+z(zx+y2), n3 =z. 

Using MAPLE 5.2 we have computed the reduced Grobner bases of all its face func- 

tions, i.e. the reduced Grobner basis of the ideals 

L =(s - ni(O,y,z),t - n2(0,y,z),u - n3(0,y,z)), 

ZY=(s - nl(x,O,z),t-n2(x,O,z),u-n3(x,O,z)), 

L =(s - nl(x, y,O),t -112(x, y,O),u - n3ky,O)), 

with respect to the lexicographic ordering x > y >.a > s > t > u. We obtain that 

Gbasis (IX) = {y - t + ut2 + u2s,z - u, --s - 2t3 - 2tus + ut4 + 2u2t2s + u3s2} 

= {y - (t - u(t2 + us)),z - 24, -(s + 2t(t2 + us) - u(t2 + us)‘)}, 

Gbasis(Z,) = {x - s - tus - t3,z - u, -t + ut2 + u2s} 

= {x - (s + t(t2 + us) ,z - 24, -(t - u(t2 + us))}, 

Gbasis (Zz) = {x - s - 2 t3, y - t, u} = {x - (s + 2t3), y - t, u}. 

Hence, the Grijbner basis of Z, produces the inverse of the Nagata automorphism 

N-l = (x + 2y(zx + y2) - z(zx + y2)2, y - z(zx + y2),z). 

The Grobner basis of Z, produces the automorhism (x+2y3, y,z), but the Griibner basis 

of Zy produces the endomorphism 

(x + Y(Y2 + xz), y - 4Y2 + =),.a) 

which is NOT an automorphism because its Jacobian matrix is not invertible. Moreover, 

it is also very easy to check that the above Grobner bases are independent of the “tag” 

ordering of the monomials + , such that K[x, y,z] + K[s, t, u]. 

The above example shows that the case n = 3 differs from the case n = 2. One may 

suggest the following problem. 

Question 2.5. Let K be a field and F = (fi , . . . , fn) E T(n, K). Do the reduced Grobner 

bases for any “tag” monomial ordering of its face functions give rise to automorphisms? 
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By Theorem 2.3 this question has a positive answer if n = 2. If n > 3 the answer is 

negative because Martha Smith [21] showed that the Nagata automorphism is stably 

tame. If we extend it to K[x, y,z, u], assuming that it acts identically on the new vari- 

able v, it becomes tame, i.e. (nl,n2,n3, u) is a tame automorphism. The computations 

in K[x, y,z, v] give the same result as in K[x, y,z] and in this way the Nagata auto- 

morphism gives a counterexample to our question for n > 3. The following example 

shows that the answer is negative also for n = 3. The automorphism we consider below 

was discovered by Freudenburg [I l] and is an example of a tame automorphism with 

nonlinear base locus. There was a conjecture that all such automorphisms are wild. So, 

although the automorphism from [ 1 I] is tame, it has some “wild” properties. 

Example 2.6. Let K be a field of characteristic zero and let L = (y,x,z), A = (x, y,z + 

x3-y2), B= (x, y + x2,z + x3 + (3/2)xy) be elements of T(3,K). We consider the 

automorphism F = A o L o B o L-l, the functional composition of the polynomial maps 

A,L,B and L-l, the inverse ofL. Then, F=(f f f) 1, 2, 3 IS an element of T(3,K), where 

fi =x+z2, f2=y+z3+(3/2)xz, 

A =z +x3-y2 - 3xyz + (1/4)z2(3x2 - Syz). 

We compute the reduced Grobner bases of all its face functions, i.e. the reduced 

Griibner bases of the ideals 

4c =(s-fi(O,Y,z),t--f2(0,Y,Z),~--f3(0,Y,Z)), 

1, = (s-.fi(x, O,z), t-“#xx, O,z), u-.txx,O,z)), 

L = (s-“A@, Y, 01, t-m, y, 01, u-.m, Y, 0)) 

with respect to the lexicographic ordering x > y >z > s > t > u. Wez get that all Grobner 

bases produce tame automorphisms and one of them is the inverse of F. 

NOW, we consider Fe1 = G = (gl,g2, g3), the inverse of F, which is also in T(3, K): 

gl=-x6+x-z2+2zx3-2zy2+2x3y2-y4, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+3x4 + 3x6y2 - 3x3y4 - 3xy2 + y6), 

g3=z-x3+y2. 

We also compute the reduced Grijbner bases of all its face functions, i.e. the reduced 

Grijbner bases of the ideals 

L = (s - g1(0, YJ), t - 92(0, Y,Z), ZJ - g3(0, YJ)>, 

zy =(s - g1(x,O,z),t - g2(x,O,z),u - 93(x,O,z)), 

L = (s - Sl(X, y, 01, t - $72(x, y, 01, u - g3(x, Y, O)), 
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with respect to the same lexicographic ordering x > y >z >s > t > u. As a result we 

obtain 

Gbasis (1,) = { -2 t + 2 y + u3, -4u+4z+4t2-4tu3+u6,s+uZ}, 

Gbasis (Z,) = {--s + x-U*,3z-3s3-4tz-2ttU3-U~-33u,2t+2U3+3us}, 

Gbasis(I,)={-sfx-u2,2y-2t-2u3-3us,4u+4s3 

+3s2u2 -4t* - 8tu3 - 12tus). 

Again, it turns out that Gbasis(1,) gives F, the inverse of G. Besides, Gbasis(IX) 

produces an automorhism, but Gbasis(I,) does NOT correspond to an automorphism. 

However, if we change the “tag” monomial ordering, e.g. consider the lexicographic 

ordering x > y >z > t >s >u, the reduced GrGbner bases of I,, IY or I, produce tame 

automorphisms. 

The above example indicates that the Grobner bases of the faces functions of a 

tame automorphism F with respect to a “tag” monomial ordering may produce tame 

automorphisms, but with the same “tag” monomial ordering, the inverse F-’ may not. 

It also suggests to modify slightly Question 2.5 for the case n = 3. 

Conjecture 2.7. Let F = (fi, f2, A) E T(3,K), i.e., F is a tame automorphism. There 
exists at least one “tag” monomial ordering which satisfies the condition K[x, y,z] t- 
K[s, t,u] such that the reduced Grcibner bases of the face functions of F under this 

ordering produce automorphisms. 

It is clear that the positive answer to Conjecture 2.7 implies that the Nagata automor- 

phism is not tame. We have made a lot of experiments with tame automorphisms of 

K[x, y,z], with different length of the decomposition into a product of affine and trian- 

gular automorphisms. In all the cases we have obtained confirmations of the conjecture. 

The above computations also suggest to study the following problems. 

Question 2.8. Let F = (fi, . . . , fn) E Aut K[X]. Fixing a “tag” monomial ordering, then: 

(i) Does at least one of the reduced Griibner bases of the face functions of F give 

the inverse of the automorphism F? 
(ii) Does at least one of the reduced Grobner bases of its face functions give an 

automorphism? 

Just taking any linear automorphism involving all variables in the image of every 

variable, we obtain a negative answer to Question 2.8(i). Another non-trivial coun- 

terexample is the following automorphism from the book by Cohn [6]: 

c = (x + Y(XY-YZ),Y,Z + Y(XY-YZ)). 
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We have checked that no reduced Grijbner bases of its face functions produce the in- 

verse of C. Moreover, C is a tame automorphism, in fact, it is the composition of tame 

automorphisms LoGoL, where L=(x,y,x-z)EA(~,K) and G=(~+zy~,y,z)~J(3,K). 

Finally, Question 2.8(ii) is still an open problem for n>2. 

3. Lifting the Nagata automorphism 

Let K(X) be the free associative algebra freely generated by the set X = {xi,. . . ,x,}. 

One may consider this algebra as the algebra of polynomials in IE noncommuting 

variables. The notion of tame and wild automorphisms of K(X) is introduced as in the 

case of K[X]. Every automorphism of K(X) induces an automorphism of K[X] and 

every tame automorphism of K[X] can be obtained in this way, i.e. can be lifted to 

an automorphism of K(X). 

The result of Makar-Limanov [ 151 and Czemiakiewicz [7] states that every auto- 

morphism of K(x, u) is tame. Again, the answer is still unknown for n >2. There- 

fore, if an automorphism of K[X] can be lifted to an automorphism of K(X), it 

may be regarded “not wilder” than the corresponding automorphism of the free 

algebra. 

Problem 3.1. Can every automorphism 4 of K[X] be lifted to an automorphism $ 

of K(X)? If 4 fixes the variables xi,. . . ,x,, can the lifting 11/ be chosen in such 

a way that to fix the same variables in K (Xx)? Can the Nagata automorphism be 

lifted? 

If an automorphism 4 of K[X] cannot be lifted to an automorphism of K(X), we 
may ask the question “how far” can be lifted 4. The natural way to measure the 

“distance” is in the language of T-ideals. 

Definition 3.2. An ideal of K(X) is called a T-ideal if it is invariant under all endo- 

morphisms of K(X) . 

The T-ideals of K(X) have important properties which make them very convenient 

for applications to automorphisms. 

Proposition 3.3. (i) For every T-ideal U of K(X) there exists an algebra R such 

that U coincides with the ideal T(R) of all polynomial identities in n variables of R, 
i.e. f(xl,... ,x~)EU zfand only tf f(rl,...,r,,)=O for all rl,...,r,ER. The factor 
algebra F(R) = K&Q/T(R) is called the relatively free algebra of rank n in the variety 
of algebras generated by R. 

(ii) Every automorphism of K(X) induces an automorphism of K(X)/U. 

Problem 3.4. For a given automorphism 4 of K[X] find the T-ideals U with the 

property that 4 can be lifted to K(X)/U. 



V. Drensky et al. I Journal of Pure and Applied Algebra 135 (1999) 135-153 145 

For a background on PI-algebras see the book by Rowen [19]. The theorem of 

Amitsur that over an infinite field the ideals T(M,(K)) of polynomial identities of the 

m x m matrix algebra M,(K) are the only prime T-ideals and the Razmyslov-Kemer- 

Braun theorem [5,13,18] for the nilpotence of the radical of a finitely generated PI- 

algebra give that, over infinite fields, for every T-ideal U there exist positive integers 

m and k such that 

Since our final purpose is to see whether an automorphism of K[X] can be lifted to an 

automorphism of K(X), it is natural to consider liftings to K(X),@(M,(K)) only. The 

following statement shows that the difficult part of the lifting is to K(X)/T(M,(K)) 

and K(X)/T2(M,(K)) only. 

Proposition 3.5. For k>2 every endomorphism of K(X)/Tk(M,,,(K)) which induces 
an automorphism of K(X)/T’(M,(K)) is an automorphism. 

Proof. We repeat the arguments from [8] for K(X)/Ck, where C is the commutator 

ideal of K(X). Let U = T(M,(K)), A = K(X>,f@. We use the same symbols (e.g. X, 

U, etc.) for the images of objects from K(X) in A. Let A= AjU2. If 4 E EndA induces 

an automorphism on 2, then there exists an endomorphism II/ of A such that 4 o $ and 

I,!I o 4 both induce the identity map on 2. Therefore, it is sufficient to prove that every 

endomorphism 0 of A which induces the identity map on k, is an automorphism. Let 

e(xj)=xi+h, J;:EU2, i=l,..., n. 

Consider any element g E Up. Since fi E U2, it is easy to see that O(g) - g E Up+‘. 

Hence, Q induces the identity map on the factors UJ’lUJ’f’, p = 0, 1, . . . , k - 1. Since 

Uk = 0 in A, as a vector space A is isomorphic to 

A@ V/u3 $. . . @ lJk-yUk 

and 9 acts identically on all these factors. Hence 8 is invertible, i.e., an automor- 

phism. Cl 

Umirbaev has shown that every automorphism of K[X] can be lifted to an auto- 

morphism of the “free metabelian” associative algebra. This is the algebra K(X)/C2, 
where C = T(Ml(K)) = T(K) is the commutator ideal of K(X). Therefore it can be 

also lifted to K(X)/Ck for any k >2. If the answer to Problem 3.1 is negative, we may 

ask its more precise version. 

Problem 3.6. Can every automorphism 4 of K[X] be lifted to AutK(X)/T(M,(K)) 

and Aut K(X)/T2(M,,,(K)) for m > l? If 4 fixes xi,. . . ,x,, can the lifting be chosen 

with the same property? How far can the Nagata automorphism be lifted with and 

without fixing one of the variables? 
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The construction of Martha Smith [21] showing that the Nagata automorphism is 

stably tame, is the following. 

A derivation a of K[X] is called locally nilpotent if for any f E K[X] there exists a pos- 

itive integer p such that P(f) = 0. The derivation d is triangular, if a(xi) = f(xi+i, . . . , 
xn), i= l,..., II. For d locally nilpotent (and if the characteristic of K is equal to 0), 

the map exp d : K[X] --+ K[X] defined by 

expd(f)=f+ Af+$f+..., f EKWI, 

is an automorphism of K[X]. If w E K[X] is in the kernel of 8, then A = ~8 is also a 

locally nilpotent derivation. 

The Nagata automorphism is equal to exp A, for the locally nilpotent derivation 

A = w(x, 

y,z)d, where 8 is the derivation of K[x, y,z] defined by 

a(x) = - 2y, d(y) = z, a(z) = 0, 

and w(x, y,z) = y2 +xz is from the kernel of 8. We extend the action of 8 to K[x, y,z, u] 

by a(u) = 0. Then the automorphism exp(w8) of K[x, y,z, v] acts identically on u and 

is tame because 

exp(wd) = r-l 0 exp-‘(23) 0 r 0 exp( va), 

where r is the tame automorphism fixing x, y,z and z(u) = u + w(x, y,z). Besides, 

exp(ud) is also tame and acts on X, y, z, u by 

exp(ud)(x) =x - 2uy - u*z, exp(d)(y) = y + vz, 

exp(tf3)(z) = z, exp( ud)( u) = u. 

Considering the same automorphisms of K(x, y,z, u), we see that exp(ud) is not anymore 

an automorphism because u does not commute with the variables. But we replace 

exp(ud) with the tame automorphism 8 of K(x, y,z, u) defined by 

0(x) =x - 2vy - 2122, B(y) = y + uz, e(z) =z, e(u) = u. 

Considering the automorphism r = (x, y,z, u + w) of K(x, y,z, u) with w = y* + xz, we 

obtain the automorphism tj = 7-l o 8-l o r o 0 which induces an automorphism 4 of 

K[x, y,z, u] acting as the Nagata automorphism on x, y, z and 4 fixing u. Unfortunately, 

we are not able to restrict $ to an automorphism of K (x, y, z) because the variable u is 

not fixed by $ and the images of x and y involve u. For example, if [a, b] = ab - ba 

denotes the commutator of a and b, then 

$(u) = u + (u - w)[y,z] + [u - w, y]z - (u - w)[u - w,z]z. 

Our problem would be solved if we are able to find an automorphism p of K(x, y,z, u), 

which induces the identity map on K[x, y,z, u] and acts on u as rl/, Then p-’ o$ will also 

induce the Nagata automorphism and will fix u. Therefore, if we factorize K(x, y, z, u) 
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modulo the ideal generated by u we will obtain a lifting of the Nagata automorphism 

to an automorphism of K(x, y,z). Hence, it is worthy to try to find a better lifting for 

the Nagata automorphism to Aut K (x, y, z, u) . 
We have succeeded to give an explicit lifting of the Nagata automorphism to 

K(x, y,z)/C2 which still fixes z. We hope that this lifting will be useful for further 

attempts to lift the Nagata automorphism to an automorphism of K(x, y, z). We have 

followed the procedure from the proof of the result of Umirbaev [22]. 

We work in the free metabelian algebra M(X)=K(X)/C2. We fix two sets of 

variables Y = { yi , . . . , y,} and Z = {zi , . . . ,z,} and consider the polynomial algebra 

K[ Y U Z]. Changing a little the notation of Umirbaev, we define formal partial deriva- 

tives a/dxi assuming that 

aXi 

x,=” , 2 = 0, j # i, 

and, for a monomial u = xi, . . . xi,,, E M(X) 

The Jacobian matrix of an endomorphism 4 of M(X) is 

which is a matrix with entries from K[Y UZ]. One of the main results in [22] is that 

the Jacobian matrix J(4) is invertible (as a matrix with entries from K[Y U Z]) if and 

only if 4 is an automorphism of M(X). Clearly, the invertibility of J(4) is equivalent 

to 0 # det(J( 4)) E K. 

Proposition 3.7. The following endomorphism (T of K(x,y,z)/C2 is an automorphism 
which induces the Nagata automorphism of K[x,y,z]: 

0(x)=x - (y2 +xz)y - y(y2 +xz) - (y2 +xz)2z,a(y)==y + (y2 +xz)z,cr(z)=z. 

Proof. For simplicty of notation we assume that 

x = {x2 YJ), y={xl,Yl,zl), z={x2,Y2J2}. 

Clearly, the endomorphism cr of M(X) induces the Nagata automorphism of K[X]. In 

order to show that r~ is an automorphism it is sufficient to calculate the determinant of 

its Jacobian matrix. The partial derivatives of c(x), a(y) and (T(Z) are 

w-4 
- = 1 - (Yl + Y2b2 - CY: +xlzl + y; +xzz2)& ax 

a+) 
-= -(Y1+Y2)2-(1+(Y1+Y2)z2)(Y:.+~lzl+Y~+x2z2), 

aY 
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WY) 
wy) -=z,‘, -= 

ax ay 
1 + (Yl + Yz)Z2, 

ao(z)=w)=o a@) 1 
ax ~ >az=. 

ay 
Hence, the Jacobian determinant /J(g)1 is equal to 

1-(Yl+.?J2)z2-~z; 4 

4Yl + Y212 - (1 + (Yl + y*)zz)u 1 + (y1 + y2)z2 
= 1, 

where u = y: + XIZI + yi + XZZ~, and o is an automorphism. q 

We sketch how, using the proof in [22], we have found the lifting of the Nagata 

automorphism. We hope that our considerations may be useful for attemps to lift 

other automorphisms suspected to be wild. Let Y = (Jr(X), f2(X),z) be the Nagata 

automorphism, where 

j-i(X) =x - 2(y2 + xz>y - ( y2 + xz)2z, b(X) = y + ( y2 + xz>z. 

Tracing the proof in [22], we know that the ideals of K[Y UZ] generated by 

fi(Y) - fi(Z), MY) - MZ), ~1 - ~2 and XI - ~2, YI - ~2, ~1 - ~2 

coincide and there is an invertible matrix R = (rij) E K[ Y U Z] such that 

(fi(Y) - fi(Z),fi(Y> - _MZ),z1 -z2)=61 -x2,y1 - ~23~1 -z2)R. 

We do not know if there is an algorithm to find the matrix R but nevertheless we have 

found one matrix with this property, 

( 

1 - Z2(Yl + Y2) - + 4 0 

R= -(Y1 + Y212 - (1 +zz(Yl + Y2)b 1 +zzcy1 + Y2) 0 . 

-Xl(Yl +Y2HYT+wd2 --1z2u Y:+xlh +z2j 1 1 

The next step in the proof is to calculate the Jacobian matrix of any endomorphism 4 

of M(X) which induces v on K[X] and to compute R - J(4). We start with 

( 

Z*(Y2 - Yl) 0 0 

R-J(4)= XlZl - xzz* 0 0 . 

%(Y2-Yl) 0 0 ) 

Again, by the proof in [22], there exist elements wi, ~2, w3 from the commutator ideal 

of M(X) such that their derivatives are exactly the columns of R - J(4). In our case 

Wl = [x, y]z + x[z, y] = xzy - yxz, w2 = w3 = 0 
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and one automorphism o of M(X) which lifts the Nagata automorphism is 

c = (4(x) + Wl? KY) + w2, 4(z) + w3>. 

Starting with the automorphism G we can find a better lifting of the Nagata automor- 

phism to an automorphism of K(x, y,z, u). Let 8*, t E Aut K(x, y, z, v), where 

B* = (x - vy - yv - l?z, y + 21z,z, v), 

z=(x,y,z,v+w), w=y* +xz. 

Concrete calculations show that 

II/*=r-‘O(~*)-‘oro~* 

is also a lifting of the Nagata automorphism which fixes the variable v modulo the 

commutator ideal and 

$*(u)= v + (0 - w>[y,z]. 

Again, the elements $*(x) and $*(y) depend on v, for example, 

$*(y) = y + wz + (U - w)[y,z]z. 

Although the expression for $*(u) is simpler than $(v), obtained above, we do not 

know how to fix the variable v in K(x, y,z, v). 
The effective lifting of the automorphisms of K[X] to automorphisms of the free 

metabelian algebra M(X) depends on a result of Artamonov [4] on ideals of polynomial 

algebras: If the ideals (pi,. . . , pk) and (41,. . . , qk) of K[X] coincide, then there exists 

an invertible k x k matrix R with entries from K[X] such that the following matrix 

equality holds 

(PI,..., Pk)=(ql ,...,qk)R. 

We expect that the following stronger version of the theorem of Artamonov holds. 

Conjecture 3.8. Let {PI,. . . , f&q,. . . ,&} and (41,. . . ,qk,x1,. . . ,x,} generate the 
same ideal of the polynomial algebra K[X]. Then there exists an invertible matrix 
R E Mk+m(K[X]) such that 

(PI ,...,Pk,X1,...,X,)R=(ql,...,qk,Xl,...,Xm) 

and R has the block form 

where 0 is the k x m matrix with zero entries and E is the m x m identity matrix. 

Problem 3.9. Can the matrix R from the paper by Artamonov and from above 

conjecture be found effectively? 
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If Conjecture 3.8 is true, this would imply a stronger version of the theorem of 

Umirbaev [22], which we state as another conjecture. 

Conjecture 3.10. Let C be the commutator ideal of K(X). Every automorphism of 
K[X] jxing the variables x1 ,. . . ,xm can be lifted to an automorphism of K(X)/C2 
also jxing xl,. . . ,x,. 

4. Ideals and automorphisms 

In this section we show that the method given in Proposition 2.1 which determines 

whether an endomorphism of K[X] is an automorphism and which was the starting 

point of the study in Section 2, is based on a general fact for the ideals of arbitrary 

free algebras and, with some modifications, works also in the case of other algebraic 

systems as groups, semigroups, etc. 

Let K be an arbitrary field. We consider associative K-algebras, not necessarily 

finitely generated. For a subset X of the K-algebra R, we denote by RX the subalgebra 

of R generated by X. 

Lemma 4.1. Let X = {xi 1 i E I} c R and Y = {yi 1 i E I} c R be subsets of the same 
cardinality such that R = Rx u y and let 

4:Rx + RY, &xi)=.h(Y), iEZ, 

+:RY -Rx, rl/(Yi)=gdxh iEZ, 

be homomorphisms of K-algebras. Let U and V be the ideals of R generated, respec- 
tively, by {xi - h(Y) 1 i EZ}, {yi - gi(X) 1 i EZ}. 

(i) Zf 4 and II/ are isomorphisms and II/ = qF’, then U = V. 
(ii) Zf U = V and & = Rxl(Rx f’ U), ky = Ry/(Ry n V) are, respectively, the factor 

algebras of Rx and RY modulo the ideals U and V, then 4 and II/ induce isomorphisms 
W 

&&+I?y,*:l?y4x, 

and $=4-l. 

Proof. (i) Let 4 and Ic/ be isomorphisms and let $=4-l. Working modulo U we 
denote by x and F the images of X and Y in RjU. We have 

xk=fk(~)=fk(yj,,...,~“), kEZ, 

gi(Xkl2 * . . > Xk,)=gi(fk,(~),...,fk,(~)), iEZ. 

Since $ o 4 is the identity map of Ry, 

~=~o~(Yi>=gi(fk,(~),...,fk,(y))=gi(~~l,...,~~~)=gi(~), 

and Ji = gi(x?) implies that V 2 U. Similarly we obtain that U C V, i.e. U = V. 
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(ii) Let U = V. Then, in RJU = RjV 

Ji=fi(G,,..., Xk,)=fi(gk,(~),...,gk,(X)), 

4 O $(.Yi)=Ji, iEr3 

similarly 

$0 C$(Xi)=Xi, iCi.l. 

If ids is the identity map of a set S, the equalities 

4 o 6 = idEy, $ o C$ = idEx 

give that C$ and $ are isomorphisms and J = 4-l. 0 

We apply the above lemma to endomorphisms of relatively free algebras K(X)/T(R). 

The same statement holds if we consider relatively free Lie or other K-algebras. 

Theorem 4.2. Let X = {xi 1 i E I} and Y = {yi 1 i E I} be two disjoint sets of the same 
cardinality and let T(R) be the ideal of K(X U Y) consisting of the polynomial iden- 
tities of an associative algebra R. Let 4 and $ be endomorphisms of the relatively 

free algebra K (X)/(K (X) n T(R)), 

4%) = J;:(x) = _A(xjj, 2.. f ,Xj, 19 $(Xi) = SAX) = Cli(%i,. . . ~X!f,h i EZ. 

Then 4 is an automorphism and $ = 4-l ifand only if the ideals U = (xi-fi( Y) 1 i E Z) 

and V = (vi - gi(X) ( i E I) of K(X U Y)/T(R) coincide. 

Proof. It is sufficient to show that 

K(Y) EK(Y)/(K(Y) n U), K(X) =K(X)/(K(X) n V) 

and to apply Lemma 4.1. The homomorphism p: K(X U Y)/T(R) + K(X U Y)/T(R) 

defined by 

&Xi)=% - .Oy), P(Yi)=Yi, i E I, 

is a triangular automorphism. Hence p(X) U p(Y) is a system of free generators of 

K(X U Y)/T(R) and the endomorphism 0 defined by 

e(-G)=h(Y), o(Yi)=Yi, iEI, 

maps the generators p(X) to 0 and p(Y) identically to p(Y). Hence, the ideal U is the 

kemelof8, andKerenK(Y)/(K(Y)nT(R))=(O),i.e.,K(Y)”K(Y)/(K(Y)nU). q 

Replacing relatively free algebras with relatively free groups and ideals with normal 

subgroups, we obtain a result similar to Theorem 4.2. For semigroups we have to 

replace ideals with congruences. We state the result for free groups only. 
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Corollary 4.3. Let G(X) be the free group freely generated by a set X = {xi / i E I}. 
An endomorphism 4 of G(X) such that Cp(xi) = j&Y) = h(xk, , . . . ,xim ) is an automor- 
phism if and only $ there exists an endomorphism $ of G(X) such that $(xi) = gi(X) 

= $7i(-Qf~~~ . .Y xk,,, ) and the elements {xi’ J(Y) 1 i E I} and { yil gi(X) 1 i E I} generate 
the same normal subgroup of the free group G(X U Y). 

Remark 4.4. For some relatively free algebras the problem whether the ideal generated 

by the elements Xi-J;:(Y), i E I, has a set of generators of the form yi -gi(X), i E I, can 

be solved algorithmically. For example, in the case of the polynomial algebra K[X], 

1X1= n < CO, we can solve this problem effectively by the Griibner basis method. 
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