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1. INTRODUCTION

The object of this study in this paper is the corner cut polyhedron, which
we define as follows:

P? = conv{A! + -« +A": AL, ..., A" are n distinct vectors in N9} < R4,

The following result demonstrates its significance in computational com-
mutative algebra.

THEOREM 5Q  The normal fan of the corner cut polyhedron P® equals the
Grobner fan of the vanishing ideal of the generic configuration of n points in
affine d-space. Therefore, the distinct reduced Grobner bases of this ideal are
in bijection with the vertices of P?.

A nonempty finite subset A of the set N of nonnegative integer vectors
is a staircase if u € A and v < u (coordinatewise) implies v € A. Let (¥*)

be the set of n-element subsets of N¢ and let (¥).. be its finite subset of

staircases. Staircases for d = 2 are partitions (or Ferrers diagrams), and
staircases of d = 3are plane partitions (cf. [Sta]). These play an important
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C0) ONN AND STURMFELS

role in algebraic combinatorics. We also introduce the staircase polytope

Q4 = conv{Z)\: e (Nd)stair} c COUV{ZA: A (Nnd)} =Pl

n

A staircase A is called a corner cut if it is linearly separable from its
complement Nd\/\, i.e., for some w € R? we have w-v < w-u for all

verand u € N\ A Let (V)

Planar and three-dimensional corner cuts appear in various contexts, such
as combinatorial number theory [BF 1] and computer vision [Bru, Ger]. In

¢ be the set of all n-element corner cuts.

this article we examine the set (N*),, of corner cuts and the corner cut

polyhedron P from four points of view: polyhedral geometry (Sect. 2,
computational complexity (Sect. 3), enumerative combinatorics (Sect. 4),
and commutative algebra (Sect. 5).

Section 2 concerns the facial structure and the normal fans of P¢ and
Q¢ We prove

THEOREM 2Q  The comner cut polyhedron satisfies P¢ = Q¢ + R, and
is hence indeed a polyhedron. The staircase polytope Q¢ has the same vertex
set as PY. The map X — L\ defines a bijection between the corner cuts and
the common vertex set of P and Q¢

For A € (Nnd) let M, be the ideal in k[x]=k[x,,..., x,] which is
generated by all monomials x" = x4t -+ x4¢ with u = (uy,...,uy) €
N“\ A. We may represent A by the set min(M,) of minimal generators of
M,. Dually, A can also be represented by its subset max(A) of coordinate-
wise maximal elements. They correspond to the socle monomials of
k[x]1/M,. For both representations the following computational complexity
result holds.

stair

THEOREM 3Q  There is a polynomial time algorithm for recognizing corner
cuts.

Here the point is that the dimension d is not fixed. A key observation is
that if A is a corner cut then M, is Borel fixed (Lemma 33). This ensures
that max(A) and min(M,) have roughly the same size (Corollary 36). For
d = 2 our algorithm can be specialized to the algorithm in [BF1] for
recognizing nonhomogeneous spectra of numbers.

The number of Borel fixed ideals grows exponentially in 7, even in the
plane d = 2 (Proposition 44). However, the number of corner cuts is
polynomial in any fixed dimension.
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THEOREM 4Q  For fixed d, we have #(¥"), = O(n®/(4=D/(@+ D),

Staircases in dimensions 2and 3are counted by the classical generating
functions

e} oo 1
2

S Iy g
ngo n ) stair z k:l(l_Zk)

[es} [es} 1

3
#(N ) = [ ————

n§0 n Jstair k=1(1_Zk)k

(see [Sta, Corollary 182). No such formulas are known for d > 4 We
raise the related question of determining ¥, _ ;#(¥*) - z", the generating

functions for corner cuts. An answer for the plane (d = 2 is given in
[CRST]. Section 4 also contains an efficient procedure for enumerating

(I‘L")Cth and hence all vertices of the corner cut polyhedron P¢.

In Section 5 we apply our combinatorial results to Grobner bases of
point configurations, starting with Theorem 50 We explicitly determine
the universal Grobner basis for any n points in d-space, and we show that
its cardinality is polynomial in » for fixed d.

The following example illustrates the objects of study. Let d = 2 n = 6

This is the first instance when the map (8*) .. — R% A~ XA is not

injective. The set of staircases (V.),,;, has 11 elements, corresponding to

stair
the 11 partitions of the integer & We list each partition A together with
the monomial ideal M, and its image YA in QZ.

I+ 1+ 1+14+1+1 (x%y) (150
2+ 14+ 1+ 1+ 1 (x° x,y%) (10, 1)
2+2+1+1 (x% x%y,y%) (7,2
24+ 2+ 2 (x3,y%) (63
3+1+1+1 (x% xy,y3) (63
3+2+1 (x3,x%, 9%, y% (449

3+ 3 (x%,y% (36

44+ 1+ 1 (x3 %9, 9% (36

4+ 2 (x?, xy%, y%) (27

5+ 1 (x%, xy,y%) (1,10

6 (x,y%) (0 15).
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The corner cut polyhedron PZ has six bounded edges and seven vertices,
one for each corner cut. Thus the generic configuration of six points in the
plane has seven distinct initial monomial ideals in M,. The four staircases
which are not corner cuts are those mapped to (3 6) or (6 3). The staircase
polygon QZ is obtained from PZ by erasing the unbounded edges on the
two coordinate axes and drawing the edge between (Q 195 and (150
instead.

In this article we consider only finite staircases A; i.e., we assume that
M, is Artinian. With suitable care, many of our results can be extended to
the infinite situation as well.

2 THE CORNER CUT POLYHEDRON AND THE
STAIRCASE POLYTOPE

For any subset & C (I‘L") we abbreviate ©7 = {L A € N%: A € &}. In this
section we describe the facial structure and the normal fan of the corner
cut polyhedron P, = convi(¥’) and the staircase polytope Qff =

d
convZ(M )i

We start with a lemma. We denote by u’ the corner cut {i-e;:
i=Ql...,n— 1.

LEMMA 21. For every staircase A € (N')g..., the sum of the coordinates
of the vector L\ is at most (). Equality holds if and only if A € {u?,

u@, .. @Dy,
Proof. We use induction on n. The case n < 2 is trivial. Choose
u=(uy,...,uy) € X such that A\{u} is a staircase of cardinality n — 1.

There are IT{_ (u; + 1D — 1 nonnegative vectors strictly below u. Each of
them must lie in A\{u}. Hence
d
n>[T(u;+ 1) >u +u,+ - +u, + 1. (21)
i=1

By induction, the coordinate sum of Y A\{u} is at most (" 3 !), and hence

the desired inequality follows from (21 and (* ') + n — 1 = (%). Finally,
equality holds in (21) if and only if all but one coordinate of u is zero. ||

We now prove Theorem 20and show that P¢ deserves its name.

Proof of Theorem 20 Let w € R  be a vector whose coordinates are
Q-linearly independent. We sort the nonnegative integer vectors according
to their w-value, say, N = {u; = Quy, tig u,, ...}, so that w-u; <w-u; if
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and only if i <j. The unique minimum of the map () » R: A » w - XA

is attained at the corner cut A = {u,,..., u,}. Hence the point YA is the
common vertex of P¢ and Q¢ at which the linear functional R¢ — R:

u — w - u attains its minimum. Every corner cut A € (V) arises this way

for some w € R% , and hence defines a common vertex of P and QY.
Next consider w € R‘\R% . Then w is not bounded below over P/.

This shows that the map A — YA is a bijection between (¥*),, and the

vertex set of P, and proves that P = Q¢ + R (. Suppose now a = w,
< Ois uniquely the smallest coordinate of w. Then

d

WA= Tw(TA) = a-i_il(m)i > a (’;) (22)

i=1

holds for any staircase A, with equality if and only if A = u, by Lemma
21. Hence the map u — w - u attains its minimum over Q¢ at the vertex
Y u of P4 We conclude that every vertex of Q¢ is also a vertex of P,
and so Q¢ and P have the same vertex set. |l

Next, we describe the facial structure and the normal fans of P? and
Q% Foreach n € N and w € R% ,, we construct a polytope P as follows.
Let w, be the smallest real number such that #{v € N“:w-v <wg} > n.
Let L={veN:w-v<wg let H={v eN:w-v=wg, let h:=n

—|LI>= 1, and let A :=={L UM: M < ()} c(¥'). We define the poly-
tope P to be

P :=conv) A=Y L+ convZ(IZ) c R4,

The following theorem shows that every bounded face of P¢ equals P
for some w € R%

THEOREM 22 Let w € RY and let F* be the face of the corner cut
polyhedron Pnd at which the linear functional x — w - x is minimized. Then,
(@ If w is positive then F* = P". If h = |H| then P is the point
Y(L U H), hence a vertex, and L U H is a corner cut in (Nn") If h <|H|
then dim(P)) = dim(H) > 1.

(b) If wis nonnegative and I = {i € [d]: w; = Q is nonempty then F*
is the unbounded |I|\-dimensional face Pnd N RY, which is isomorphic to the
corner cut polyhedron P)'\.

cut*

(©) If w has a negative coordinate then w is unbounded below; hence

F" =(.
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Proof. First, suppose w is positive. Let L, H, h, A be determined by w
as described above. Then w-a <w-b <w-c forall a € L, b € H, and
c € N\(L U H), and w is constant over H. Therefore, w is minimized at
YA if and only if A contains L and any % elements from H, which holds
precisely when A € A. This shows that F* = P". Now, P is a point if
and only if X(#) is, which holds if and only if 4 =|H|. In this case
(LUH)e (™), and P’ = X(L U H). Suppose next i < |H|. Then the
affine span of (/) is a translate of the affine span of H; hence dim(P)") =
dim(H ). This proves (a).

Next, suppose w is nonnegative and [ = {i € [d]:w; = G # . Clearly,
PN R! is a face of P? isomorphic to the unbounded |I|-dimensional
corner cut polyhedron P). Now, consider any A € (3*). Then w - XA = O
if A € R/, whereas w - A > Ootherwise. This shows that w is minimized
at YA precisely when YA € P? N R’. Hence (b) follows.

Finally, (c) holds since if w has a negative coordinate then it is
unbounded over P¢. |

We similarly describe the facial structure and normal fan of the stair-
case polytope.

THEOREM 23 Let w € R and let F" be the face of the staircase
polytope Q¢ at which the linear functional x — w - x is minimized. Then

(@) If w is positive then F" is the polytope P, as in Theorem 24a).

(b) If w is nonnegative and the set I == {i € [d]:w;, = Q is nonempty
then F" is the |I|l-dimensional face Q¢ N R', which is isomorphic to the
staircase polytope Q1.

© If a=min{w,,..., wy < Oand I :=1{i €[d]:w, = a} then the
face F" is the (|I| — 1-simplex conv{(%) - e;:i € I}.

Proof. Part (a) follows from the observation that P c Q¢ for every
positive w. Part (b) is analogous to part (b) of Theorem 22 It remains to
prove part (c). Let @ and I be as above. Then the inequality (22 holds for
every staircase A € (V). By Lemma 21, the last inequality in (22) is
strict unless A is some u'”. By definition of I, the middle inequality in
(22 is strict unless A = u') for some j € I. This shows that w attains its
minimum over Q¢ precisely at the (|I| — 1)-simplex conv{(%) - e;:jEI }, as
claimed. |
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We summarize the results of this section in the following theorem.

THEOREM 24 The corner cut polyhedron P¢ and the staircase polytope
Q7 satisfy
(@ P{=0Q¢+R:, and Q¢ =P!Nn{xeR":T,x; < (V)
(b) The set of vertices of P and the set of vertices of Q% equal
2 e
(c) The face poset of Q¢ is obtained from the face poset of P% as follow:
1. Each bounded face of P¢ is included.
2 Forl c[dlwith 1<|I|<d, the face P* N R is replaced by the
face Q¢ N R

3 The face (%) - e; + RY is removed for each i € [d].

4 The simplex con{(%) - ey, ..., (%) -e,} and its faces of dimension
> 1 are added.

3 RECOGNIZING CORNER CUTS

In this section a polynomial time algorithm is given for deciding whether
a staircase A is a corner cut. Here the staircase A is represented either by
its subset max(A) of maximal elements, or by the set min(N‘\ A) of
minimal elements in its complement. We identity min(N ¢\ A) with the set
min(M,) of minimal generators of the monomial ideal M,. For instance, in
the plane (d = 2) every staircase is represented by two integer sequences
O=a,<a,< - <a, and b, >b,> - > b, = Q which are inter-
preted as follows:

min(N\A) = {(a,,,) ... (a,,.5,)).
M/\ = <yb1’ vabe’ e, xamf lybmf 1’ xam>’
max(A) = {(a,— 1L,b;— 1),...,(a, — Lb,_; — D}.
Since a staircase is, by definition, nonempty and finite, the set min(N ¢\ 1)

contains a positive multiple of each unit vector. This gives the following
“corner cut criterion.”

LEMMA 31. A staircase A is a corner cut if and only if the system of linear
equalities

(LP): Vv € max(A) VYu € min(N\A):(u—v) -w> 1
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has a solution w € Q. In other words, A is a corner cut if and only if (LP) is
feasible. Moreover, any solution w to (LP) is necessarily coordinatewise
positive.

We call a solution w to (LP) a separator for A. Recall that our input is
either the set max(A) or the set min(N ¢\ A) but not both. Thus in order to
write down the linear program (LP) we must first compute min(N %\ A)
from max(A) or vice versa. This is a nontrivial task. Agnarsson [Agn,
Theorem 19 showed that for every m > d > 1, there exists a staircase A
with #min(N“\ A) = m and #max(A) > c¢(d) - m!?/?. The same example
can be dualized to show that for each m' > d > 1 there exists a staircase X’
with #max(X) = m' and #min(X) > ¢'(d) - #(m')'“/?. Hence the size of
max(\) can be exponential in d if min(N ¢\ A) is given, and vice versa. This
implies:

PROPOSITION 32  For varying dimension d, there is no polynomial time
algorithm for computing min(N \ \) from max(\), or for computing max(\)
from min(N 9\ ).

We shall overcome this obstacle by restricting to a special class of
staircases. A staircase A in N ¢ is called Borel fixed if v + (e; — e;) & N\ A
for all i <j and v € A. This is equivalent to saying that the monomial
ideal M, is Borel fixed. Borel-fixed monomial ideals play an important
role in computational algebraic geometry (see [BaS or Eis]).

LEMMA 33 Up fto a permutation of coordinates, every corner cut is
Borel-fixed.

Proof. Let A CN? be a corner cut with separator w = (w,,...,w,).
Permuting coordinates if necessary we may assume w, > --- > w,. Then,
if v € Aand i <j, we have found that w- (v + (¢; —¢)) =w-v + (w; —
w) <w-v hence v + (¢; —¢) €N\ A 1

The bit size of a vector v € N¢ is the number d + Y¢_,[log{v; + D] of
bits needed to present it. The bit size of an input IV € N is the sum of the
bit sizes of its members.

LEMMA 34 Let A be a staircase which is represented by either min(N ¢\ \)
or by max(A). There exists a polynomial time algorithm for deciding whether A
is Borel fixed.
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Proof. A staircase A is Borel fixed if and only if the following equiva-
lent conditions hold:

Vv € max(A):v; > Oand i <j = 30" €max(A):v +e —e¢ <V,
(3D

VYu € min(N“\A):u; >0 and i<j
= Ju' e min(N\A):u—e +e >u. (32

Either (31 or (32 can be tested in time polynomial in the size of the
input. I

The two dual representations of a Borel fixed staircase A can be
transformed into each other by the following explicit rules. For i €
{1,...,d} let max(A)!¥! denote the subset of maximal elements in the set
{(vy..., v,0...,0 €N v="(v,...,0;) € max(A)}.

PROPOSITION 35 Let A be a Borel fixed staircase. Then

(@ max(A) ={u —e,;; u € minN\ M), u, > Q, and
() minNN\AN) ={v+e:veEmax(MDi=1,..., d).

Proof. We claim that, if v €\, u € N\ A, and u <v + e, then
u=v + e, Forsuch u,v clearly u; = v, + 1 If u; <v; for some i, then
v+ (e, —e)>uand v+ (e, —e;) € A, which is impossible. Therefore,
u,=v; for all i <d hence u =0 +e¢; as claimed. It follows that if
v € max(A) then u == v + e, € min(N“\ A), and if u € min(N ¢\ A) with
u, > Othen v == u — e, € max(\) which proves part (a). For part (b) note
first that the set on the right-hand side is an antichain in N4\ A. It thus
remains to show that it contains min(N ¢\ A). Consider any u € min(N “\ )
and assume u; is its last positive coordinate. Let A®) = {(v,,...,v,): v =
(vy,..., v,) € A} be the projection of A to N'. Then A\ is Borel fixed
and max(M)!' ={(v,,...,0,Q0...,0:(v,,...,0,) € max(A?)}. Further,
(uy,..., u;) € min(A?"). Part (a) applied to A“” in N’ shows (u, ..., u;) =
(vy,...,v,) + e, for some (v,,...,v;) € max(A\) hence u =v + ¢, for
some v € max(\). ||

COROLLARY 36 Let A be a Borel fixed staircase. Then
#max(A) +d — 1 < #min(N‘\ 1) < d- #max(A).

Proof. The second inequality is clear from part (b) of Proposition 35
The first inequality follows from part (a) of Proposition 35 and the fact
that, A being finite, the set min(N ¢\ A) contains at least d — 1 vectors with
zero last coordinate. |}
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Corollary 36 stands in contrast to Proposition 32 and the results in
[Agn] for general staircases. It shows that Borel fixed staircases are much
more nicely behaved than general staircases. We are now prepared to
prove the complexity result stated in the Introduction.

Proof of Theorem 3Q We describe an algorithm for deciding whether a
given staircase A is a corner cut, and, as we go along, we shall argue that
all steps can be done in polynomial time in the bit size of the input. We
only explain how this is done for the case when A is represented by
max()), where we make use of condition (31) of Lemma 34 and part (b)
of Proposition 35 The case when A is represented by min(N¢\ A) is
analogous and makes use of condition (32 of Lemma 34 and part (a) of
Proposition 35 instead.

The first step is to decide whether A is Borel fixed after some permuta-
tion of the variables, and in the affirmative case, apply such a permutation.
We define a directed graph G on the set [d] = {1,2..., d} as follows. We
include the arc (i, j) in G if and only if, for each v € max() with v, > O
we have v + e; — ¢; < v' for some v" € max(A). The number of operations
needed to construct G is quadratic in d and quadratic in #max(\) and
hence is polynomial in the input size. We now try to construct a permuta-
tion 7 on [d] by the following procedure, which is easily carried out using
quadratically many operations. For i = 1,2 ..., ..., we define 7w (i) to be
any source in the digraph G — {w(j): j < i}, where a source is defined to
be a vertex having outgoing arcs to all other vertices. If this procedure
successfully completes a permutation 7 = (7 (D), ..., 7(d)) then condition
(31 of Lemma 34 holds with the coordinate order 7 (1),...,7(d), so =
makes A Borel fixed. We claim that, if this procedure fails at some i to
find a source, then no permutation makes A Borel fixed. To see this,
suppose that 7r(j) had been determined for all j < i but G — {#(j): j < i}
contains no source. Assume indirectly that A is Borel fixed under some
permutation 7. Let r € [d] be smallest with 7(r) € § == [d[\{=(}): j < i}.
Since 7(7) is not a source in G[S], there exists s > r with 7(s) € S and
(7(r), 7(s)) not an arc in G. By the construction of G, this implies that
there exists v € max(A) with v, > Osuch that v + e, — e,,, < v’ fails
for all v € max(A). This shows that condition (3 1) fails for the coordinate
order specified by 7, contradicting the choice of 7.

So if a permutation was not found then A is not a corner cut by Lemma
33and we are done. Assume now that a permutation had been found and
applied to the coordinates, so that A is Borel fixed. We can then determine
min(N “\ A) by Proposition 35b), in polynomial time (cf. Corollary 36.
Having at hand now both max(A) and min(N ¢\ A), we can write down the
linear program (LP) in Lemma 31 It is well known by the work of
Khachiyan and Karmarkar [Sch, Sects. 13-15 that the feasibility of a
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system of linear inequalities can be decided in polynomial time. This
completes the proof. |

In any fixed dimension d, the feasibility of the linear program (LP) can
be checked in strongly polynomial time, say, by Fourier—Motzkin elimina-
tion (cf. [Sch]). In particular, in small dimensions d = 2 3it is possible to
write down the Fourier—Motzkin eliminated system of inequalities explic-
itly in terms of min(N “\ A) and max(\). This gives an analytical criterion
for A to be a corner cut. Let us demonstrate this for the plane d = 2 We
may assume w,= 1 and ask for w, > Q With m = #min(N9\ A), we
obtain a system of m?— m inequalities (u;, — v,)-w, + (u,—v,) > O
where v = (v,v,) runs through max(A) and u = (u;,u,) runs through
min(N #\ A). Each such inequality can be rewritten as w, > (v, — u,)/(u,
—v)ifu; >v,and as w, < (v, —uy)/(u; — vy if u; <v,, and can be
omitted if u, = v,. Let

Uz_u

L, = max{ 2:Uemax()t),uemin(NZ\/\),ul>Ul},

Uy — 0,

(J)\ :

Up— Uy >
min cv€max(A), u € min(N\A), u; <vyyp.
Uy — vy

Then we obtain the following criterion for a staircase A € N2 to be a
corner cut, which is equivalent to the result of Boshernitzan and Fraenkel
[BF 1] on spectra of numbers.

COROLLARY 37. A staircase X CNZ2 is a comer cut if and only if
L, <U,.

Remark 38 Based on this criterion, Boshernitzan and Fraenkel gave a
quadratic algorithm for recognizing nonhomogeneous spectra of numbers,
which is basically our algorithm for d = 2 Later, in [BFZ, they refined it
to a linear time algorithm. A natural question is whether a linear time
recognition algorithm for corner cuts exists in any dimension.

4 COUNTING AND ENUMERATING CORNER CUTS

In this section we discuss the number of corner cuts N(¥*) . This

number grows polynomially with # for fixed d, while the number of Borel
fixed staircases is exponential even in the plane. We also show that in fixed
dimension all n-element corner cuts can be efficiently enumerated. For
the upper bound we shall make use of the following classical result.
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PrROPOSITION 4.1 (Andrews [And]). For every fixed d, the number
of vertices of any lattice polytope P in R? satisfies #vert(P) =
O(vol(P)d~b/d+ by

See [BV] for recent developments in discrete geometry related to
Andrews’ theorem.

Proof of Theorem 4Q Fix the dimension d. By Theorem 20 the corner
cuts are in bijection with the vertices of the corner cut polytope QY. By
Lemma 21, Q¢ is contained in the d-simplex con{Q (%) -e,,...,(2) - e.};
hence its volume satisfies vol(Q?) < (;;)(2)? = O(n®?). Since Q¢ is a
lattice polytope, Proposition 41 and Theorem 20imply

#( N d) = #vert(Qg) = O((nzd)(d— 0/(d+ 1))'
cut

n

This completes the proof of Theorem 4Q |

The bound just provezd, which relies on Theorem 2Q is much better
than the bound of O(n“") which one can derive from results on separable
partitions (se [AQ)).

Remark 42 The number of vertices of any subpolytope of Q¢ satisfies
the same bound.

Next, we show that, in contrast with Theorem 40 the number of Borel
fixed staircases grows exponentially with 7, even in the plane d = 2 We
use a bijection between finite plane staircases and RD-sequences—finite
sequences over the alphabet {R, D} starting with R and terminating with
D. Under this bijection, the RD-sequence

R'"DYR"2D% - RD ., m,r.dy....r,.d, > 1

Yim 'm

corresponds to the staircase A given by

min(N“\ A) = {(o, id,.), (rl,mild,-),

i=1 i=1

The sequence describes the directions “Right” and “Down’ while walking
on the boundary of N “\ A. The following characterization of planar Borel
fixed staircases is straightforward.
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LEMMA 43 The staircase corresponding to an RD-sequence as above is
Borel fixed if and only if r, =r,= - =r, = L

PROPOSITION 44 The number of Borel fixed staircases in (¥?) is

20/,

Proof. Given n > 15 let k be the largest integer such that n > 12k~
+ 3k, and let m = 4k. For each k-subset I C[2k]=1{1,...,2k} we
define an RD-sequence RD“'...RD‘ by setting d;,=d, ;= 1if
i€l and d;,=d, ., ;= 2if i ¢ 1. The number of elements of the
corresponding Borel fixed staircase A is #A = X/ i-d; = Z-(m + 1) =
12k? + 3. So the number of n-element planar Borel fixed staircases,
which is no smaller than the number of planar Borel fixed staircases with
12k 2 + 3k elements, is at least the number (%) > 2° of k-subsets I € [2k].

Since k > \/% for all large n, this number is 2G|

stair

Remark 45 While RD-sequences of planar corner cuts have been
studied in various contexts under different names (e.g., in computer vision
under the term ‘“chain codes of digitized lines”), no simple characteriza-
tion of such sequences (say, as the one in Lemma 43 for Borel fixed
staircases) seems to be known. See [Bru] for a recursive characterization.

The set (I‘LZ)
function

of all planar staircases (or partitions) has the generating

stair

oo oo 1
2
#(N) = T ——
Z stair k=1 (1 - Zk)
=14z4+ 2224+ Z3+ 54+ 72°
+ 1128+ 13" + ...

Staircases in 3space are called plane partitions in combinatorics. The
generating function for counting (¥°);. is derived in [Sta, Theorem 182.
It is MacMahon'’s classical formula:

[ee] o) 1
3
¥O#( N )stair T ]._.[ k

n k=1(1—Zk)

1+z+ X%+ 6234 14+ 24254 485+ ...

To the best of our knowledge no such formulas are known for d > 4

Is it possible to find an explicit formula for the generating function
X, _o# (V) - z" which enumerates the subset of corner cuts among all
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staircases? Of special interest is the number of planar corner cuts (cf.
Remark 4.5). The following table is for small values of n:

n 567 8 91011121314151617 18192021 2
#(an) 6781012131616 1820 B2A26HBLIDIRXHH
cut

In an earlier version of this paper we raised the problem to determine this
sequence. This problem was solved by Corteel et al. [CRST].

We finish this section with an algorithm for enumerating all corner cuts
and all vertices of P¢. It builds on results in [HORZ and runs in strongly
polynomial time for fixed d.

PROPOSITION 46 There is an algorithm that, given any d and n, produces
the set ("), of comer cuts and the set of vertices P? using n°” arithmetic
operations.

Proof. Put N={Q1,...,n — 1}. Call a subset A € N c N¢ separable
if A is strictly separable by a hyperplane from N9\ A. Clearly, any
n-element corner cut in N¢ is a separable subset of N?. The collection .

of all separable subsets of N is determined by the collection of #( N ) <

n?@*+ D orientations of all (d + 1)-simplices spanned by points of N, and
can be produced using n°“” arithmetic operations. The exact details
involve symbolic perturbation of the points in N to general position and
suitable determinant computations and can be found in [HORZ. Let .9 be
the subcollection of . of all n-element A which satisfy 3¢ (3A); < (1),
and let V== {ZA: A €7}. From Theorem 20 and Lemma 21, it follows
that Q¢ = conv(}) and A € 7 is a corner cut if and only if ¥\ is a vertex
of conv(V). So A € 7 is a corner cut if and only if XA & conv(U) for every
(d + D-subset U C V\{ZA}. Now V' is contained in {v € N¢: X% p, <
(1)}, hence #V < ((’é); d) < n?, and there are (*",) = n°“? such subsets
U of V. Therefore, the set of corner cuts ('), €.7 and the corresponding
set {ZA: A€ (¥} SV of vertices of P! can be computed in
n°“" arithmetic operations as claimed. ||

The procedure described above gives, for every fixed d, a polynomial
time algorithm that, given n and v € N¢, decides if v is a vertex of P¢,
with XA = v. It would

be interesting to know if this task can be done in polynomial time even in
varying dimension d, perhaps using the methods of [HOR 1].

and if it is, finds the (unique) corner cut A € (%),
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In this section we have seen that, for fixed d and varying n, the map

(Nn") S 0iNZi A TA (4.1)
stair

compresses a set of exponential size to a set of polynomial size. On the
boundary it restricts to the bijection between (¥*) ,, and the vertices of Q.

The typical fiber over an interior lattice point of Q¢ is expected to have
exponential size. It would be interesting to study the fibers of this map in
detail. Is there an interesting fiber polytope, in the sense of [BiS]?

5 THE GROBNER BASES OF A POINT CONFIG URATION

Let k be an infinite field and let # = {p,..., p,) be a configuration of
n distinct points in affine d-space k. Each point p, = (p,,,..., Pid)
corresponds to a maximal ideal M(p,) = {x; — p;;,...,X; — p;4» in the
polynomial ring k[x] = k[x, ..., x,]. The configuration % is an algebraic
variety whose vanishing ideal is the intersection of these n maximal ideals

I, =M(py) N M(pz) NN M(p,) Ck[x].

Thus I, is the radical ideal consisting of those polynomials f € k[ x] which
vanish on 2.

For any nonnegative vector w in R% ., the initial ideal in,(I,) is the
ideal of w-leading forms in, (f) where f runs over [,. We call two
nonnegative vectors w and w’ equivalent if in (I,) = in,(1,). The equiva-
lence classes are the relatively open cones in a subdivsion of R% , which is
called the Grobner fan of I,. A vector w lies in an open cell of the
Grobner fan if and only if inw(lg,) is a monomial ideal; see [BM, MR, Stul.

In this section we construct a convex polyhedron state(%) in R” whose
normal fan equals the G robner fan of I,,. Following [BM] we call state(%)
the state polyhedron of 2. We thus obtain a one-to-one-to-one-to-one
correspondence between the following objects:

(a) the distinct reduced G robner bases of the ideal I;
(b) the distinct initial monomial ideals of the ideal I,;

(c) the open cones in the Grébner fan of 1,,;
(d) the vertices of the state polyhedron state(%).
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For A ={A;, Ay ... 0} € (Nn") and a point configuration % as above we
define
pi piz o pY
(@) = dee| P2 P8P here i = pipe - pi

The expression [Al(#) is defined only up to sign, since A and & are
regarded as unordered sets. This is notationally more convenient. Note
that all n! terms in the expansion in the determinant [A]J(£) are distinct
monomials in the p;;. This implies

LEMMA 51. The determinant [ AJ(%) is a nonzero polynomial in the dn
variables p;;.

We call a point configuration & generic if [ A\](#) # Ofor all corner cuts
= (l\ild)
and Zariski dense in the space k9" of all point configurations. Thus the
statement of Theorem 50 makes sense and is consistent with standard

usage of “‘generic point configuration” in algebraic geometry.
We define the state polyhedron of a point configuration % as

By Lemma 51, the set of generic configurations is nonempty

cut*

stair

state(P) = R% ,+ conv{Z)\: A€ (Nnd) and [A](2) # O}.

In view of Theorem 20this is a subpolyhedron of the corner cut polyhe-
dron P¢. The equality state(<) = P? holds if and only if 2 is generic.
The result stated in the Introduction (Theorem 50 is an immediate
corollary to the following more general theorem.

THEOREM 52  The normal fan of state() equals the Grobner fan of 1.

Proof. Let A € (V)

+ 1)-determinant

For each u € N“\ A we form the (n + 1) X (n

stair *

fu= AU W2 U {(xroeex))).

This is a polynomial in k[x] which is well defined up to sign. By Laplace
expansion,

fo= () 2+ L (=D [AN(A) U ()] (2) -x.

i=1
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We claim that the following seven statements are equivalent for a vector
weRL

(D [Al(?) # O and the linear functional v — w v is minimized
over state(P) at LA,

(@ [AAP) # Oand Vu € (V) p # Aand [ul(P) # O=w- L u
>w- XA,

(3 [AN&) # Oand Yu e N\ Vi e {1,...,n}: [A\{\} U {}I(»)
#0=>w-A <w-u,

(9 [A(2) # Oand Yu € N\ A: in,(f,) = x",

(5 VueN\A f, # Oand in,(f,) = x",

® M, cin,(l,),

(M M, =in,(I,).

The implications (1) & (2 « (3 & (4 < (9 are straightforward. The
implication (3) = (2 holds by the Basis Exchange Lemma of linear
algebra. To see the implication (5 = (6), it suffices to note that f,
vanishes at each point in & and hence f; € I,. The statements (6) and (7)
are equivalent because both ideals M, and in (I,) are Artinian of
colength n in k[x]. Hence if one of them contains the order, then they are
equal.

To complete the proof of our claim, we next show (7) = (4). Suppose
that (7) holds. Then the set {x1, x*2,..., x*} is k-linearly independent
modulo I,. This implies that the n X n-matrix (p;V) has rank 7, and hence
its determinant [A]J(#) is nonzero. Therefore x" is the unique monomial
appearing in the expansion of f, which lies in M, =in,(I,). Since
f, € L, we conclude in,(f,) = x", and (4) is proved.

The equivalence of (1) and (7) shows that two nonnegative vectors w and
w' give the same initial monomial ideal in,(I,) = in, (I;) if and only if
they support the same vertex of state(#). Hence w and w' lie in the same
open cone of the Grobner fan of I, if and only if they lie in the same
open cone of the normal fan of state(%). |

COROLLARY 53 If in,(I,) = M,, then {f,: u € min(N‘\ \)} is the
reduced Grobner basis of 1, with respect to w.

Proof. The initial terms of the elements f, € I, minimally generate
the initial monomial ideal in,(I,) = M,, and this ideal contains none of
the trailing terms of any f,. |

For fixed number of variables d, the number of monomial ideals of
colength n grows exponentially in n. Even the subset of Borel fixed ideals
grows exponentially in n, even for d = 2 as Proposition 44 shows. Thus
the following result may be somewhat surprising.
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COROLLARY 54 Fix d and let & be any configuration of n points in the
affine d-space k°.

(@ The number of distinct reduced Grobner bases of 1, is
O(n2i(d="1/(d+ D).

(b) The ideal 1, possesses a universal Grobner basis of cardinality
O(n2d-3+@=/dd+ D)

Recall that a universal Grobner basis of the ideal I, is a finite subset %
which is a Grobner basis of I, simultaneously for all weight vectors
w € R4 o cf. [Stu, Sect. 1].

Proof of Corollary 54 Every vertex of state(£?) is a lattice point in Q¢
Hence (a) follows from Theorem 52 and Remark 42 Next note that the
union of all reduced G robner bases of I, is a universal Grobner basis. By
Corollary 53 the cardinality of the reduced Grobner basis corresponding
to the staircase A is #min(N %\ A). Multiplying the bound #min(N “\ A) =
O(n“~Y/4) from [Ber, Theorem 3 by the bound in (a) we get (b). |

Remark 55 'Two monomial ideals M, and M, which satisfy XA = X u
cannot both be initial ideals of some fixed nonmonomial ideal I in k[x],
even if I is not radical. This is the content of [Stu, Sect. 2 Exercise (2)].
The example in the Introduction shows that there is no ideal I of colength
6in kl[x, y] with in,,(I) = (x> y?) and in,(I) = {x*, xy, y>). 1

In Section 4 we studied the cardinality of (¥),,, as a function of n and

d. In Corollary 54(a) we gave an upper bound for the function, F(n, d) =
the maximum number of vertices of state(%#), where # runs over all
configurations of n points in k% and k runs over all fields. Clearly,
#(ND e < F(n, d) = O(n®@= DU+ D) but the inequality is generally
strict. Configurations in special position may have more distinct reduced
Grobner bases than the generic configuration with the same number of
points. Here is the first instance:

PrROPOSITION 56 #(V9),,,, = 8< F(7,2 = 1Q

Proof. For n =17,d = 2 the map (41 is injective. The 15 partitions of
the number 7 are mapped to the following 15distinct points, the first eight
of which are the vertices of Q%

vertices: (21,0), (15, 1), (1L, 2), (7,4),(47).(2 11), (1,15, (0 21)
not vertices: (10,3), (9, 3),(6,9),(6,6),(56),(3 9, (3 10.
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No subset of 11 points among these 15is in convex position. This shows
F(7,2 < 10

Consider the 10 points which are not underlined. They are in convex
position, and each of them is smaller than the other nine with respect to
some positive linear functional. We shall present a configuration & of 7
points in RZ such that state(<) has precisely these 10 vertices. This will
imply F(7,2 > 10and thus complete the proof. Set

2 ={(0.0.(L1).(22,(34.(57), (11,13, (a. )},

where (@, 8) ~ (1.8201, 1.82448) is the unique real solution of the two
equations

1468¢ — 282 + 1418 — 2937
— 483 + 211282 + 15781458 — 2836530 = O

This configuration satisfies [A](#) = O when A is any of the partitions
1+1+2+31+2+4o0r 1+ 1+ 1+ 4 The points YA representing
these three partitions are (7, 4), (4,7), and (6 6). The other 12 partitions w
satisfying [ n](#) # Q Among the 12 points ¥ u representing these 12
partitions, only the two underlined points (103 and (3 10 are not
extreme. Therefore the vertices of state(.%) are exactly the 10 nonunder-
lined points. [

We point out that the computational results in Sections 3and 4 can now
be translated into algorithms for the Grobner bases theory. In particular,
Theorem 30 gives a polynomial time algorithm for deciding whether a
given monomial ideal M, is the initial ideal in,(I,) of the generic point
configuration % in affine d-space with respect to some term order w. In
the affirmative case it produces a suitable term order w. The point here is
that d varies.

If we fix the number of variables d, then Proposition 4.6 together with
Corollary 54 gives a polynomial time algorithm for computing a universal
G robner basis of I,,.
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