
A new efficient algorithm for computing Gröbner bases
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ABSTRACT
This paper introduces a new efficient algorithm for computing Gröbner
bases. We replace the Buchberger criteria by an optimal criteria.
We give a proof that the resulting algorithm (called F5) generates
no useless critical pairs if the input is a regular sequence. This a
new result by itself but a first implementation of the algorithm F5
shows that it is also very efficient in practice: for instance previ-
ously untractable problems can be solved (cyclic 10). In practice
for most examples there is no reduction to zero. We illustrate this
algorithm by one detailed example.

1. INTRODUCTION
Solving polynomial systems is an important part of Computer Al-
gebra since a lot of practical problems (cryptography, robotics, ce-
lestial mechanics, error correcting codes, signal theory, . . . ) can
be solved with these algorithms. Among all available methods
for solving polynomial systems, computation of Gröbner bases re-
mains one of the more powerful. Historically, the Buchberger al-
gorithm was the first algorithm for computing such Gröbner bases.

It may eventually be possible to suggest two improvements for the
Buchberger algorithm [3, 4, 5]. The first improvement is concerned
with strategies: during a Gröbner computation, several choices can
be made (select a critical pair, choose a reductor) this aspect of the
problem is not directly studied in this paper, but is implemented in
other algorithms (F4 [6] for instance). The other open issue was
to remove useless computations: since 90% of the time is spent in
computing zero it is a very challenging question to have a more
powerful criterion to remove useless critical pairs. This is precisely
the goal of this paper to give a theoretical and practical answer.

In [9] the link between the computation of a Gröbner basis of F ��
f1 ��������� fm � and linear algebra is done: the Buchberger algorithm

can be considered as a triangularisation of a submatrix of the sylvester
matrix. The reduction of a polynomial to zero can be interpreted as
a linear dependence of the rows of this matrix. Since each row of
the matrix is a product t � f where t is a term and f � F , a linear

dependence is ∑λ t f � 0 or by grouping terms: ∑m
i 	 1 gi fi

� 0. In
other words, 
 g1 ��������� gm � is a syzygy.

Several papers investigate those issues: Buchberger [4] proposes
two criteria to remove a lot of useless critical pairs; staggered lin-
ear bases are used in [7]; the idea of [10] is to compute simulta-
neously a Gröbner basis and a basis of the module of syzygies: a
critical pair is not considered if the corresponding syzygy is a linear
combination of some elements of the current basis of the module of
syzygies. They have in all in common to use implicitly or explicitly
the trivial sysygies fi f j

� f j fi. Another common point is that all
the algorithms are nearly Buchberger’s algorithm except that some
reductions are avoided. The efficiency of those algorithms is not
yet satisfactory in theory and practice because a lot of useless crit-
ical pairs are not removed. For instance we quote from [10] that
“many useless pairs are discovered, but it involves a lot of extra
computation, so the execution time is increased”. Another approch
is involutive bases [11] which is based on the concept of involutive
monomial division: some reductions are forbidden and so some
computations are not considered.

The strategy in this paper is to take into account only the trivial
syzygies fi f j � f j fi

� 0 but not to compute the module of syzy-
gies. This imply (see section 2 and 4) two major differences with
the standard Buchberger algorithm or the F4 algorithm: first we
need to compute all the Gröbner basis of the following ideals 
 fm � ,

 fm  1 � fm � , . . . , 
 f1 ��������� fm � . The second difference is that some
reductions are not allowed; as a result the reduction of one polyno-
mial by a list of polynomials may be several polynomials. A con-
sequence of the restriction to trivial syzygies is that, in worst cases,
the algorithm does not avoid all the useless pairs: for instance if we
have two times the same polynomial in the original equations there
is a reduction to zero. However we give the proof (see corollary 3)
that if the input system is a regular sequences then there is no re-
duction to zero. Moreover, in practice, for most systems there is
no reduction to zero (experimental evidences are given in 9.1). An-
other important point is that the new algorithm does not improve
the theoretical worst case complexity for computing Gröbner bases
but experimentally (see section 9.2 for some some CPU timings
and comparison with other algorithms), the F5 is faster than all the
previously implemented algorithms. The limited length of the pa-
per impose us to make some choices: we give a full description of
the algorithm and a detailed example but the proofs of correctness
and termination are only sketched. For the same reason the experi-
mental section 9 is minimal. A full paper describing the algorithm
in the most general case is in preparation.



The plan of the paper is as follows. The section 5 is devoted to
presenting the new criterion, and a theorem giving an equivalent
condition for a set of polynomials to be a Gröbner basis. The re-
sulting algorithm is described in section 7. This section includes
also the proof of the correctness of the algorithm. In section 2 we
give the idea of the algorithm. The necessary mathematical nota-
tions (we make the choice to use the same notations as in the book
[2]) are reviewed in section 3. In section 8 we compute the example
from [10] in full. The name of this algorithm is simply algorithm
number 5. In the rest of this paper F5 stands for this algorithm.

2. THE IDEA
We consider the following systems of degree 2 in 3 variables x � y � z
depending on the parameter b ��� 0 � 1 � :�

b

�� � f3
� x2 � 18xy � 19y2 � 8xz � 5yz � 7z2

f2
� 3x2 � 
 7 � b � xy � 22xz � 11yz � 22z2 � 8y2

f1
� 6x2 � 12 xy � 4 y2 � 14xz � 9yz � 7z2

We want to compute a Gröbner basis of f1 � f2 � f3 modulo 23 for a
total degree ordering with x � y � z. This can be done with the
Buchberger algorithm (including the Buchberger criteria): there is
5 useless pairs and 5 useful ones. First we suppose that b � 0. To
compute the Gröbner basis, we proceed degree by degree. For the
degree 2 there is no choice to construct the matrix:

A2
� 	
 x2 xy y2 xz yz z2

f3 1 18 19 8 5 7
f2 3 7 8 22 11 22
f1 6 12 4 14 9 7

��
and after triangulation of the matrix A2:

B2
� 	
 x2 xy y2 xz yz z2

f3 1 18 19 8 5 7
f2 0 1 3 2 4 � 1
f1 0 0 1 � 11 � 3 � 5

��
and we have constructed two “new” polynomials in the ideal f4

�
xy � 4 yz � 2 xz � 3 y2 � z2 and f5

� y2 � 11xz � 3yz � 5z2.
In degree 3 the first idea is to construct the matrix:������������

x3 x2y xy2 y3 x2z �����
z f3 0 0 0 0 1 �����
y f3 0 1 18 19 0 �����
x f3 1 18 19 0 8 �����
z f2 0 0 0 0 3 �����
y f2 0 3 7 8 0 �����
x f2 3 7 8 0 22 �����
z f1 0 0 0 0 6 �����
y f1 0 6 12 4 0 �����
x f1 6 12 4 0 14 �����

��������������
To triangulate the matrix the first operation might be to simplify
rows x f2 and x f1 with the row x f3. But this this is a waste of
time since this as already be done in the previous step: for instance
f4

� � f2
� 3 f3, so that x f4

� � x f2
� 3x f3. This is an important

idea of the Buchberger algorithm: try to reuse as much as possible
the previous computations. It is also clear that we should not put
into the matrix f1 and f4 since they are linearly depends. So we
construct a matrix with f4 (resp. f5) instead of f2 (resp. f1):������������

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3

z f3 0 0 0 0 1 18 19 8 5 7
y f3 0 1 18 19 0 8 5 0 7 0
x f3 1 18 19 0 8 5 0 7 0 0
z f4 0 0 0 0 0 1 3 2 4 22
y f4 0 0 1 3 0 2 4 0 22 0
x f4 0 1 3 0 2 4 0 22 0 0
z f5 0 0 0 0 0 0 1 12 20 18
y f5 0 0 0 1 0 12 20 0 18 0
x f5 0 0 1 0 12 20 0 18 0 0

� ������������

After triangulation������������
x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3

x f3 1 18 19 0 8 5 0 7 0 0
y f3 1 18 19 0 8 5 0 7 0
y f2 1 3 0 2 4 0 22 0
xf2 1 0 0 8 1 18 15
z f3 1 18 19 8 5 7
z f2 1 3 2 4 22
z f1 1 12 20 18
yf1 1 11 13
xf1 1 18

��������������
So we have constructed 3 new polynomials (black bold font). For
instance f6

� y3 � 8y2z � xz2 � 18yz2 � 15z3 and we recall that this
polynomial comes from the row x f4 or equivalently x f2.
In degree 4 there is a new interesting point: the matrix A4 whose
rows are

x2 fi � xy fi � y2 fi � xz fi � yz fi � z2 fi � i � 1 � 2 � 3
is not full rank ! (this correspond to 3 useless pairs in the Buch-
berger algorithm). The reason is that f2 f3 � f3 f2

� 0 or written
differently:

3x2 f3 ��� 7 � b � xy f3 � 8y2 f3 � 22xz f3 � 11yz f3 � 22z2 f3� x2 f2
� 18xy f2

� 19y2 f2
� 8xz f2

� 5yz f2
� 7z2 f2 � 0

Hence we can remove the row x2 f2 from A4. By using f1 f3 �
f3 f1

� 0 we can remove in the same way x2 f1 from A4. Since
there is another relation f1 f2

� f2 f1 we know that there is another
useless row in the matrix A4. Suppose that we return to the original
problem

�
b with b ��� 0 � 1 � ; we have
0 � 
 f2 f1 � f1 f2 � � 3 
 f3 f1 � f1 f3 �
0 � 
 f2 � 3 f3 � f1 � f1 f2

� 3 f1 f3
0 � f4 f1 � f1 f2

� 3 f1 f3
0 � � 
 1 � b � xy � 4yz � 2xz � 3y2 � z2 � f1

� 
 6x2 ��� �!� � f2
� 3 
 6x2 ��� � � � f3

We deduce from this equality that we can remove xy f1 from A4 if
b "� 0 and yz f1 if b � 0. In other words it is impossible to know
without computation which row is useless (since it depends on the
value of b). On the other hand a combination of the trivial relations
fi f j

� f j fi can always be written:
u 
 f2 f1 � f1 f2 � � v 
 f3 f1 � f1 f3 � � w 
 f2 f3 � f3 f2 �

where u � v� w are arbitrary polynomials. This can be rewritten

 u f2

� v f3 � f1 � u f1 f2 � v f1 f3
� w f2 f3 � w f3 f2

Hence all the (trivial) relation h f1 are such that h is in the ideal
generated by f2 and f3. So it is easy to remove lines if we have
already computed a Gröbner basis of 
 f2 � f3 � . More precisely we
can always remove the rows m f1 where m is a monomial divisible
by the leading term of an element of Id 
 f2 ��������� fm � . If Gprev is an
already computed Gröbner basis 
 f2 ��������� fm � and we want to com-
pute a Gröbner basis of 
 f1 � � Gprev then we will construct matrices
whose rows are m f1 such that m is a monomial not divisible by the
leading term of an element of Gprev.

To finish this example (b � 0) and in order to reuse the previous
computations we have to apply the following simplification rule (in
that order):

x f2 # f6 f2 # f4
x f1 # f8 y f1 # f7
f1 # f5

Now the rows of the matrix A4 are
y f7 � z f8 � z f7 � z2 f5 � y f6 � y2 f4 � z f6 � yz f4 �
z2 f4 � x2 f3 � xy f3 � y2 f3 � xz f3 � yz f3 � z2 f3 �

Hence A4 is almost a triangular matrix except a 5 � 5 block:



����� xyz2 y2z2 xz3 yz3 z4

z2 f4 1 3 2 4 22
z2 f5 0 1 12 20 18
z f7 0 0 1 11 13
z f8 0 0 0 1 18
y f7 1 11 0 13 0

� �����
The reduction of the matrix give us a new polynomial f9

� z4. Re-
mark that none useless pair (a line in the matrix reducing to zero)
has remained.

The conclusion of this example is that in order to reuse the previ-
ous computations in lower degrees: first we need to give a unique
“name” or “signature” (see section 4) to each row of the matrix
(for instance the true name of the rows x f4, f6 is x f2 in the pre-
vious example).The second thing is that we have to implement the
simplification rules (see section 6).

3. STANDARD NOTATIONS
In the rest of the paper we suppose that all the polynomials are
homogeneous and that the coefficients of the polynomials are in a
field.

We use the notations of [2] for basic definitions: � is the ground
field, � � � �

x1 ��������� xn � is the polynomial ring. N is the set of
non negative integers. We denote by T 
 x1 ��������� xn � , or simply by
T , the set of all terms in these variables. We choose � an admis-
sible ordering on T . If t � xα1

1
� � � xαn

n � T , then the total degree
of t is defined as deg 
 t � � ∑n

i 	 1 αi. Now let 0 "� f ��� , so that
f � ∑c 
 α1 ��������� αn � xα1

1
� � � xαn

n (where c 
 α1 ��������� αn � are elements of� ). The total degree of f is defined as

deg 
 f � � max � α1
���!� � � αn � c 
 α1 ������� � "� 0 � �

We use the notation HM 
 f � (resp. HT 
 f � , HC 
 f � ) for the head
monomial (resp. head term, head coefficient ) of f .

Let f � g � p ��� with p "� 0, and let F be a finite subset of � . Then
we say that f is reducible modulo P if there exists g ��� such that
f � #P g. f 	� #P g is the reflexive-transitive closure of � #P . If G is a

Gröbner basis then NF 
 f � G � � g where f 	� #G g is the normal form

of f w.r.t. G. The S-polynomial of f and g is defined as
Spol 
 f � g � � HC 
 g � τ

HT 
 f � f � HC 
 f � τ
HT 
 g � g

where τ � lcm 
 HT 
 f � � HT 
 g ��� .

4. SIGNATURE OF A POLYNOMIAL
Let 
 f1 ��������� fm � be a polynomial m-tuple (an element of the free
module � m) and I the ideal generated by 
 f1 ��������� fm � . The goal of
this section is to associate a unique and canonical “signature” for
all the elements of T 
 I � that is to say all the leading terms of all the
polynomials in the ideal.

In the following Fi is the canonical i-th unit vector in � m. We
consider the evaluation function:

v 	
 � m � # �
g � 
 g1 ��������� gm � �# m

∑
i 	 1

figi

��
We have v 
 Fi � � fi and g � ∑m

i 	 1 giFi. An m-tuple g � 
 g1 ��������� gm �
is called a syzygy if v 
 g � � 0. The so called principal syzygies
si  j � f jFi � fiF j are syzygies. The set of all syzygies is a module
and abbreviated by Syz (for more information on syzygies we refer
to [2] or to [1]). Let PSyz be the module generated by the principal

syzygies. For a generic (random) polynomial system 
 f1 ��������� fm � ,
Syz � PSyz.
We can extend the admissible ordering � to � m with the following
definition:

m

∑
k 	 i

gkFk � m

∑
k 	 j

hkFk iff

�� � i � j and h j "� 0
or
i � j and HT 
 gi � � HT 
 hi �

In particular we have F1 � F2 � � �!� � Fm. For all g ��� m there
is an index i such that g � ∑m

k 	 i gkFk with gi "� 0. This i will be
denoted as the index of g, index 
 g � . For the new ordering � we
have

HT 
 g � � HT 
 gi � Fi
We define the degree of g � ∑m

i 	 1 giFi, deg 
 g � by
max � deg 
 gi � � deg 
 fi � for i ��� 1 ������� � m ���

Let Ti be � tFi � t � T � so that HT 
 g � � Ti. T ��� m
i 	 1Ti will be the

set of the signatures of all the polynomials in the ideal I. Of course
if t � T , W 
 t � � � g ��� m � HT 
 v 
 g ��� � t � can contain more than
one element so we have to choose one of them:

PROPOSITION 1.

Let w be � T � # � m

t �# min � W 
 t ���
If 
 t1 � t2 � � T 
 I � 2, then HT 
 w 
 t1 ��� "� HT 
 w 
 t2 ��� if t1 "� t2.

COROLLARY 1. For all the polynomials p in the ideal I we
define v1 
 p � to be HT 
 w 
 HT 
 p ����� . If p1 and p2 are two polyno-
mials of I with distinct head terms (HT 
 p1 � "� HT 
 p2 � ) we have
v1 
 p1 � "� v1 
 p2 � .
In the following algorithm F5, v1 
 p � will be the “signature” of the
polynomial p: it is unique and does not depend on the order of
the computations. We need to store these data in the internal rep-
resentation of a polynomial. Mathematically the representation of
polynomials will be R � T ��� . If r � 
 tFi � f � � R we define:

poly 
 r � � f ���� 
 r � � tFi � T
index 
 r � � i � N

We will see that during the execution of the algorithm the property� 
 r � � v1 
 poly 
 r ��� is conserved. We say that r � R is admissi-
ble if there exists g � v  1 
 poly 
 r ��� such that HT 
 g � � � 
 r � . Let
0 "� λ ��� , v � T , t � wFk � T and r � 
 uFi � p � � R we define
λ r � 
 uFi � λ p � , vt � 
 vw � Fk and vr � 
 uvFi � vp � . We do not define
an addition. We also extend the definition of usual operators to R:

for r � R HT 
 r � � HT 
 poly 
 r ��� .
for r � R HC 
 r � � HC 
 poly 
 r ��� .
for r � R and G ��� , NF 
 r� G � � 
 � 
 r � � NF 
 poly 
 r � � G ��� .

5. NEW CRITERION
DEFINITION 1. Let P be a finite subset of R, and r � R, and

t � R. If
poly 
 r � � ∑p � P mp p mp ���

we say that it is a t-representation of r wrt P if HT 
 t ��� HT 
 mp p �
and

� 
 r ��� � 
 mp p � for all p � P. This property will be denoted
as r �! 

P 
 t � . We use the notation r � oP 
 t � if there exists t " � R
such that

� 
 t " �$# � 
 t � and HT 
 t " � � HT 
 t � such that r �% 
P 
 t " � .

DEFINITION 2. We say that r � R is normalized if
� 
 r � � eFk

and e is not top reducible by Id 
 fk & 1 ��������� fm � .
We say that 
 u � r � � T � R is normalized if ur is normalized. We
say that a pair 
 ri � r j � � R2 is normalized if u j

� 
 r j � � ui
� 
 ri � ,




 ui � ri � and 
 u j � r j � are normalized where

τi  j � lcm 
 HT 
 ri � � HT 
 r j ��� , ui
� τi � j

HT 
 ri � , u j
� τi � j

HT 
 r j � .
THEOREM 1. Let F � �

f1 ��������� fm � be a list of monic polynomi-
als. Let G � �

r1 ��������� rnG � � RnG such that

(i) F � poly 
 G � . Let gi
� poly 
 ri � and G1

� �
g1 ��������� gnG � .

(ii) all the ri are admissible and monic (i � 1 ��������� nG).

(iii) for all 
 i � j � � � 1 ������� � nG � , such that the pair 
 ri � r j � is nor-
malized then spol 
 gi � g j � � oG 
 uiri � (or 0) where

ui
� lcm 
 HT 
 gi � � HT 
 g j ���

HT 
 ri � �

Then G1 is a Gröbner basis of I.

PROOF. Let f be an element of I � Id 
 G1 � . We define
� �� 
 s � σ � ��� nG � �

n � ∑nG
i 	 1

sigσ 
 i � � f and
� 
 s1rσ 
 1 � � � � 
 s2rσ 
 2 � � ��!� � � . We define a new ordering 
 s � σ � � 1 
 s " � σ " � . We use the nota-

tion

v̄ � 
 � 
 s1rσ 
 1 � � � � 
 s2rσ 
 2 � � � � � � �
and

v̄ " � 
 � 
 s "1rσ � 
 1 � � � � 
 s "2rσ � 
 2 � � � � � � � �
We define 
 s � σ � � 1 
 s " � σ " � if one of the following conditions is
true

(i) v̄ � lex v̄ "
(ii) v̄ � v̄ " and maxiHT 
 sigσ 
 i � � � maxiHT 
 s "igσ � 
 i � �

(iii) v̄ � v̄ " and t � maxiHT 
 sigσ 
 i � � � maxiHT 
 s "igσ � 
 i � � and

# � i � HT 
 sigσ 
 i � � � t � � # � i � HT 
 s "igσ � 
 i � � � t �
We take s � min �

1

�
. Wlog we may assume that σ is the identity

(by renumbering G) Let t � maxiHT 
 sigi � and � � � i � HT 
 sigi � �
t � , r � # � . Suppose for a contradiction that t � HT 
 f � . Necessar-
ily r � 2. Suppose that there exists i such that 
 si � ri � is not normal-
ized. That is to say

� 
 ri � � uFk and HT 
 si � u � HT 
 Id 
 fk & 1 ��������� fm ��� .
Since ri is admissible, one can write gi

� ∑m
j 	 k w j f j such that HT 
 wk � �

u.
siwk

� r � ∑m
r � G � 
 r � � Fk

λ jpoly 
 g �
with HT 
 r � � HT 
 siwk � and HT 
 λ jpoly 
 g ����# HT 
 uku � . Then

f � ∑ j �	 i s jg j
� siwkgk

� ∑m
j 	 k & 1 siw jg j

� ∑
j �	 i

s jg j
� rgk

� m

∑
r � G ��
 r � � Fk

gkλ jpoly 
 g � � m

∑
j 	 k & 1

siw jg j

This expression is � 1 s and there is a contradiction. Therefore all
the 
 si � ri � are normalized.
Let w � max � � 
 siri � � � i ��� � and � � � i �	� � � 
 siri � � w � .
If # � � 1, since the ri are admissible then for all i �
� , gi

�
∑m

j 	 j0
wi  j f j with HT 
 siwi  j0 � F j0

� w. We can write f as follow:

f � ∑i � min � sigi
� 
 ∑i �� siwi  j0 � g j0� 
 ∑i �� ∑m

j 	 j0 & 1 wi  jg j
� ∑i � max � sigi �

so we find another expression of f with is � 1 than s. Consequently
# � � 1 and let k ��� and l ����� � k � . By construction we have� 
 slrl � � � 
 skrk � . We write f as follow:

f � skgk � HC 
 sk �
HC 
 sl � slgl

��� 1 � HC 
 sk �
HC 
 sl ��� slgl

� ∑i �	 k  l sigi

Let mk
� HM 
 sk � and ml

� HC 
 sk �
HC 
 sl � HM 
 sl � and s "i � si � HM 
 si � .

Hence t � HT 
 mkgk � � HT 
 mlgl � , and consequently
τk  l � lcm 
 HT 
 gk � � HT 
 gl ��� divides t, that is to say:

mkgk � mlgl
� HC 
 sk � t

τk � l spol 
 gk � gl �
Since 
 sk � gk � and 
 sl � gl � are normalized we deduce that 
 gk � gl � is
normalized, so that

mkgk � mlgl
� t

τk � l oG 
 ukrk �� oG 
 skrk �
where uk

� τk � l
HT 
 rk �

Hence
f � oG 
 skrk � � s "kgk � HC 
 sk �

HC 
 sl � s "lgl
� αslgl

� ∑i �	 k  l sigi

where s "i � si � HM 
 si � (HT 
 s "i � � HT 
 si � ) and α � 1 � HC 
 sk �
HC 
 sl � �� . This is a new expression of f which is � 1 s. This is a contra-

diction and t # HT 
 f � . So we can reduce f by an element of G1.

f 	� #G1

0.

REMARK 1. In the theorem if we restrict (iii) to the critical pair
of degree less than d we make the proof that G is Gröbner basis up
to degree d.

6. SIMPLIFICATION RULES
We describe now how to implement the simplification rules (for
instance xF2 # f6 and F2 # f4 in the previous example).
We use an array Rule to store the rules. Each element of Rule is a
list of elements of T � N. At the beginning there is no rules:

Reset simplification rules
Input: m the number of polynomials
for i : � 1 � 2 ��������� m do

Rule
�
i � : � /0

Add Rule (rk
� 
 tFi � p � � R)

Rule
�
i � : � concat 
 � � t � k � � � Rule

�
i � �

The following procedure try to simplify a product u � rk:

Rewritten (u � T a term, rk
� 
 tFi � p � � R)

L : � Rule
�
i � � � �

t1 � k1 � ������� �
�
tr � kr � �

for i � 1 ��������� r do
if ut divisible by ti then

return 
 ut
ti � rki

�
return 
 u � rk �

The following function return true if the u � rk can be rewritten
differently.

Rewritten? (u � T a term, rk
� 
 tFi � p � � R)


 v� rl � : � Rewritten 
 u � rk �
return l "� k

Example: If r4
� 
 F2 � f4 � and r6

� 
 xF2 � f6 � as in the previous
example then AddRule 
 r4 � and AddRule 
 r6 � add two new rules
xF2 # f6 and F2 # f4. Now Rewritten 
 xy � r4 � returns 
 y � r6 � and
Rewritten? 
 y2 � r4 � returns true.



7. DESCRIPTION OF THE ALGORITHM
7.1 The main algorithm
Since the algorithm is incremental the main loop of the algorithm
iterates on the number of polynomials:

Algorithm incremental F5

Input: � F � 
 f1 ��������� fm � a list of homogeneous
polynomials and � an admissible ordering

N : � m (the number of polynomials r1 ��������� rN occurring in the
algorithm)

Reset simplification rules 
 m � .
rm : � 
 Fm � fm � � R, Gm : � �

rm �
for i : � 
 m � 1 � ������� � 1 (in that order) do

Gi : � AlgorithmF5 
 i � fi � Gi & 1 �
return poly 
 G � ��� poly 
 r � � r � G1 �

In this algorithm the critical pairs are oriented:

DEFINITION 3. The critical pair of 
 r1 � r2 � � R2 is

CritPair 
 r1 � r2 � � 
 lcmr1  r2 � u1 � r1 � u2 � r2 �
(this is an element of T 2 � R � T � R) such that:

lcm 
 CritPair 
 r1 � r2 ��� � lcmr1  r2� u1HT 
 r1 � � u2HT 
 r2 �� lcm 
 HT 
 r1 � � HT 
 r2 ���
and � 
 u1r1 � � � 
 u2r2 �

We say that the degree of such a critical pair is deg 
 lcmr1  r2 � .

The basic version of our algorithm is now described. To simplify
the presentation, we make the choice to describe the algorithm sim-
ilarly to the description of the Buchberger algorithm, that is to say
using polynomials and not linear algebra. However, from the effi-
ciency point of view, it is recommended to translate the algorithm
in a F4 [6] fashion. The only structural difference with a standard
Buchberger algorithm is that the reduction of one polynomial wrt
a list of polynomials may return several polynomials. The algo-
rithm uses 3 auxiliary functions: the definitions of “CritPair” (con-
struction of critical pair if the new criterion cannot apply), “Spol”
(construction of the Spolynomial), and “Reduction” (reduction of
polynomials wrt the current list) are postponed until the end of this
section:

Algorithm F5

Input:

���� ��� i an integer and fi a polynomial
Gi & 1 a finite subset of R �
such that poly 
 Gi & 1 � is a Gröbner basis

of Id 
 fi & 1 ��������� fm �
ri : � 
 Fi � fi � � R
ϕi & 1

� NF 
 � � poly 
 Gi & 1 ���
Gi : � Gi & 1

� � ri �
P : � Sort � CritPair 
 ri � r� i � ϕi & 1 � � r � Gi & 1 � � by degree
while P "� /0 do

d : � deg 
 f irst 
 P ���
Pd : � � p � P � deg 
 p � � d �
P : � P � Pd
F : � Spol 
 Pd �
Rd : � Reduction 
 F � Gi � i � ϕi & 1 �
for r � Rd do

P : � P � � CritPair 
 r� p � i � ϕi & 1 � � p � Gi � �
Gi : � Gi

� � r �
P : � Sort P for the degree

return Gi

7.2 New criterion: implementation
We can now define the construction of a critical pair which imple-
ments the new criterion:

Algorithm CritPair 
 r1 � r2 � k � ϕ �
Input:

�� � k an integer
r1 � r2 polynomials in R
ϕ a normal Form

pi : � poly 
 ri � for i � 1 � 2
t : � lcm 
 HT 
 p1 � � HT 
 p2 ���
ui : � t

HT 
 pi �
for i � 1 � 2

if u1
� 
 r1 � � u2

� 
 r2 � then
Swap r1 and r2

tiFki
: � � 
 ri � for i � 1 � 2

if k1 � k then return /0
if ϕ 
 u1t1 � "� u1t1 then return /0
if k2

� k and ϕ 
 u2t2 � "� u2t2 then return /0
return � t � u1 � r1 � u2 � r2 �

Algorithm Spol
Input: P � �

p1 ��������� ph � a list of critical pairs

Let pl
� � tl � ul � ril � vl � r jl � for l � 1 ������� � h

F : � /0
for l from 1 to h do

if and
(not Rewritten? 
 ul � ril ���
(not Rewritten? 
 vl � r jl ���

then

N : � N � 1
rN : � 
 ul

� 
 ril � � ul poly 
 ril � � vl poly 
 r jl ���
Add Rule 
 rN �
F : � F � � rN �

F : � Sort F by increasing
�

return F

7.3 Reductions of polynomials
A major difference with Buchberger algorithm is that the reduction
of a polynomial wrt a list of polynomials may return several poly-
nomials so we have to modify the standard Reduction function: we
use an auxiliary function TopReduction to perform an elementary
reduction step. The result of TopReduction is a pair 
 r� F " � where
r � R and F " a list of polynomials. F " � /0 means that r is irre-
ducible (or zero). If F " "� /0 (then r � /0) and it means that we have
to rerun TopReduction on all the elements of F " .
Algorithm Reduction

Input:

���� ��� ToDo a finite list of polynomials
G a list of polynomials of R
k an integer
ϕ a normal Form

Done : � /0
while ToDo "� /0 do

h : � the minimal of ToDo for
�

ToDo : � ToDo � � h �

 h1 � ToDo1 � : � TopReduction 
 ϕ 
 h � � G � Done � k � ϕ �
Done : � Done � h1



ToDo : � ToDo � ToDo1
return Done

To implement TopReduction we need a function to test the divisi-
bility of the leading term of polynomial wrt a list of polynomials.
The result is a reductor or /0 if it is (top) irreducible.

Algorithm IsReducible

Input:

���� ��� ri0
a polynomial of R

G � �
ri1 ��������� gis � where gi � R

k an integer
ϕ a normal Form

t jFk j
: � � 
 ri j

� j � 0 � 1 ������� � s
for j from 1 to s do

if all the following conditions are true

(a) u � HT 
 ri0 �
HT 
 ri j

� is a term (i.e. u � T )

(b) ϕ 
 ut j � � ut j
(c) not Rewritten? 
 u � ri j

�
(d) ut jFk j

"� t0Fk0

then return ri j

return /0

It is easy to give an interpretation of the four conditions:
(a) the usual divisibility test.
(b) test the new criterion: 
 u � ri j

� is normalized.

(c) test if we can use a previous computation to avoid
a waste of time (see the example in section 2).

(d) remove identical rows in the matrix.

Algorithm TopReduction

Input:

���� ��� rk0
a polynomial of R

G a list of polynomials of R
k an integer
ϕ a normal Form

if poly 
 rk0
� � 0 then

Warning “the system is not a regular sequence”
return 
 /0 � /0 �

r " � IsReducible 
 rk0 � G � k � ϕ �
if r " � /0 then

return 
 1
HC 
 rk0

� rk0 � /0 �
else

rk1

� r "
u � HT 
 rk0

�
HT 
 rk1

� � T

if u
� 
 rk1

� � � 
 rk0
� then

poly 
 rk0
� � poly 
 rk0

� � upoly 
 rk1
�

return 
 /0 � � rk0
� �

else
N : � N � 1
rN

� 
 u � 
 rk1
� � upoly 
 rk1

� � poly 
 rk0
��� � R

Add Rule (rN)
return 
 /0 � � rN � rk0

� �
7.4 Proof of the algorithm
Let R̃ be the set of all the polynomials occurring in the execution of
the algorithm. In the following we give a proof of the termination

in a restricted case (when there is no reduction to zero) but it is
possible to modify slightly the F5 algorithm so that we can always
ensure the termination of the algorithm in all the cases.

PROPOSITION 2. For all r � R̃, r is admissible.

PROOF. By induction on m. Then r1
� 
 F1 � f1 � is obviously ad-

missible. The operation to construct a new r � R̃ is r " � 
 � 
 rk � � poly 
 rk � �
upoly 
 rl ��� where

� 
 rk � � � 
 url � and rk � rl admissible. Hence we
can write ri

� ∑m
j 	 1 si  j f j (i � k � l) such that HT 
 sk  1 � F1

� � 
 rk � .
Hence poly 
 r " � � ∑m

j 	 1 
 sk  j � usl  j � f j and HT 
 sk  1 � usl  1 � � HT 
 sk  1 �
since HT 
 usl  1 � is zero or is less than HT 
 sk  1 � . r " is admissi-
ble.

PROPOSITION 3. If Gi & 1 is a Gröbner basis of
Id 
 fi & 1 ��������� fm � , then all the polynomials occurring in Algorithm
F5 
 i � fi � Gi & 1 � are normalized.

THEOREM 2. For all d, the result of the algorithm F5 is a (non
reduced) Gröbner basis up to degree d.

PROOF. The proof is by induction on m the number of polyno-
mials. We suppose that G2 is a Gröbner basis up to degree d and
we want to proof that G1 is a Gröbner basis up to degree d. For all

 r� r " � such as in theorem 1, let r " " be the result of the reduction of
spol 
 r� r " � by G1. Let τ be lcm 
 HT 
 r � � HT 
 r " ��� and u be τ

HT 
 r � . We
have � � r � � � � u

� � r �
and HT � poly � r � � � ��� lcm � HT � r ��� HT � r � � � � uHT � r �

so that

spol 
 r� r " � � r " " � oG1

 ur � � oG � r � � 
 ur �

From proposition 2 and proposition 3 we can apply theorem 1 and
we deduce that G1 is a Gröbner basis of the ideal generated by

 f1 ��������� fm � (up to degree d).

THEOREM 3. We suppose that all the fi are homogeneous and
that there is no reduction to zero. For all d, the result of Reduction
in the algorithm F5 is Rd . Then Id 
 HT 
 Gi ��� "� Id 
 HT 
 Gi

� Rd ��� .

COROLLARY 2. This makes the proof of the termination of the
algorithm F5.

PROOF. Without loss of generality we can suppose than i � 1 in
the algorithm F5 and G2 the result of the algorithm on

�
f2 ��������� fm �

which is a Gröbner basis by previous theorem. Let uF1 be the max-
imum of � � 
 r � � r � Rd � , so there exists r � Rd such that

� 
 r � �
uF1. Suppose for a contradiction that there is r " � G1

� Rd � � r �
such that u � HT 
 r �

HT 
 r � � � T . If u
� 
 r " � is not top reducible by G2 then

a) if u
� 
 r " � � � 
 r � then the critical pair


 r " � r � � 
 u � r " � 1 � r � was introduced in the list and since there
is no reduction to zero ur " � Rd . This is a contradiction since
r was the maximum.

b) if u
� 
 r " � � � 
 r � then r can be reduced by r" . Contradiction.



We have to study now the case u
� 
 r " � top reducible by G2. Since r "

is admissible r " � ∑m
i 	 1 s "i fi with HT 
 s "1 � F1

� � 
 r " � and us "1 � v �
∑m

i 	 2 λi fi where v is fully reduced by G2 so that HT 
 v � � HT 
 us "1 �
upoly 
 r " � � us "1 f1

� ∑m
i 	 2 us "i fi� v f1

� ∑m
i 	 2 
 λi f1

� us "i � fi

Let � � � HT 
 t f1 � � HT 
 r � � t � T 
 v � � . If � is non empty then for
all t ��� , 
 t � f1 � is normalized so that it should have been put in the
list of critical pair. In the reduction process we find a polynomial r" "
such that

� 
 r " " � � HT 
 v � F1 and HT 
 r " " � � HT 
 r � . Contradiction.
If � � /0, then ∑m

i 	 2 
 λi f1
� us "i � fi

� ∑g � G2
µgg where HT 
 µgg � #

HT 
 r � . Hence HT 
 r � � HT 
 µgg � for some g � G2 or HT 
 r � �
HT 
 v f1 � . So we can reduced r by G2

� � f1 � .

THEOREM 4. If the algorithm finds a reduction to zero, rik # 0

then there exists s � Syz � PSyz with HT 
 s � � � 
 rik � .

PROOF. We may suppose wlog that
� 
 rik � � tF1 for some t �

T . Now for all s � PSyz with index 
 s � � 1 we have
s � ∑m

i 	 1 ∑m
j 	 i & 1 λi  jsi  j� ∑m

i 	 1 ∑m
j 	 i & 1 λi  j f jFi � ∑m

i 	 1 ∑m
j 	 i & 1 λi  j fiF j� ∑m

j 	 2 λ1  j f jF1
� ∑m

i 	 2 
 �!� � � Fi
Consequently HT 
 s � � HT 
 ∑m

j 	 2 λ1  j f j � F1, that is to say HT 
 s � �
HT 
 Id 
 f2 ��������� fm ��� . Hence if rik

� 0, then
� 
 rik � � HT 
 s � for

some s � Syz. Since rik
is normalized HT 
 s � "� HT 
 Id 
 f2 ��������� fm ��� ,

hence s "� PSyz.

COROLLARY 3. If the input system is a regular sequence there
is no reduction to zero.

8. EXAMPLE
We compute one example from [10] in full. We are using the De-
gree Reverse Lexico ordering x � y � z � t and the coefficients are
rational numbers.

f3
� x2y � z2t

f2
� xz2 � y2t

f1
� yz3 � x2t2

The algorithm computes successively Gröbner bases of 
 f3 � , 
 f3 � f2 �
and 
 f3 � f2 � f1 � . Since the last computation is the most difficult we
may skip these first steps. The corresponding Gröbner bases are

G3
� �

r3 � and G2
� �

r3 � r2 � r4 � r5 � where r3
� 
 F3 � f3 � , r2

� 
 F2 � f2 � ,
r4

� 
 xyF2 � xy3 t � z4 t � , r5
� 
 xyz2 F2 � z6 t � y5 t2 � .

ϕ2
� NormalForm 
 � �

�
r3 � r2 � r4 � r5 � �

r1
� 
 F1 � f1 �

G1
� G2

� � r1 � � �
r3 � r2 � r4 � r5 � r1 �

There are four critical pairs: p7
� 
 xyz3 � x � r1 � yz � r2 � ,

p8
� 
 x2 yz3 � x2 � r1 � z3 � r3 � , p9

� 
 yz6 t � z3 t � r1 � y � r5 � ,
p10

� 
 xy3 z3 t � xy2 t � r1 � z3 � r4 � .
� 
 p7 � ���������

� 
 p10 � are resp.
xF1 � x2 F1 � z3 F1 � xy2 F1 are all invariants by ϕ2.
P � �

p7 � p8 � p9 � p10 �
d � 5 , enter Spol 
 P5 � with P5

� �
p7 � and P � �

p8 � p9 � p10 �
r6

� 
 xF1 � y3 zt � x3 t2 � and F : � �
r6 �

We add a new rule xF1 # r6
There is obviously no reduction of r6 by G1 so the returned result
is R5

� �
r6 �

G1
� �

r3 � r2 � r4 � r5 � r1 � r6 �
We update the list of critical pairs: p11

� 
 y3 z3 t � z2 � r6 � y2 t � r1 � ,
p12

� 
 y3 z6 t � z5 � r6 � y3 � r5 � , p13
� 
 xy3 zt � x � r6 � z � r4 � ,

p14
� 
 x2 y3 zt � x2 � r6 � y2 zt � r3 � , p15

� 
 xy3 z2 t � xz � r6 � y3 t � r2 � . We
check that

� 
 z2 r6 � � xz2 F1 and
� 
 z5 r6 � � xz5 F1 are reducible

by ϕ2 so that the pairs p11 and p12 are rejected.
Hence P � �

p8 � p9 � p10 � p13 � p14 � p15 � .
d � 6 , enter Spol 
 P6 � with P6

� �
p8 � p13 �

and P � �
p9 � p10 � p14 � p15 �

We check that Rewritten 
 x2 � r1 � � 
 x � r6 � so we do not keep p8
For the other pair p13: Rewritten? 
 x � r6 � � f alse and
Rewritten? 
 z � r4 � � f alse so that r7

� 
 x2 F1 � z5 t � x4 t2 �
We add a new rule x2 F1 # r7
There is obviously no reduction of r7 by G1 so the returned result
is R6

� �
r7 �

G1
� �

r3 � r2 � r4 � r5 � r1 � r6 � r7 �
Among all the critical pairs we check as usual that 
 r7 � r1 � , 
 r7 � r6 � ,
 r7 � r3 � and 
 r7 � r4 � are not valid.
The new critical pairs are p16

� 
 z6 t � z � r7 � 1 � r5 � and p17
� 
 xz5 t � x � r7 � z3 t � r2 � .

d � 7 , enter Spol 
 P7 � with
P7

� �
p15 � p16 � p17 � p14 � and P � �

p9 � p10 �
We check that Rewritten 
 xz � r6 � � 
 z � r7 � so we do not keep p15
p16 is valid and r8

� 
 x2 zF1 � y5 t2 � x4 zt2 � is computed
We add a new rule x2 zF1 # r8
p17 is valid and r9

� 
 x3 F1 � � x5 t2 � y2 z3 t2 � is computed
We add a new rule x3 F1 # r9
We check that Rewritten 
 x2 � r6 � � 
 1 � r9 � so we do not keep p14
There are two Spolys to reduce F � �

r8 � r9 �
The elements of F are not top reducible by G1 as described in the
algorithm but it is possible to fully reduce r9 by yt2 � r1: r9

�

 x3 F1 � � x5 t2 � x2 yt4 � and the final result is r9

� � ϕ2 
 r9 � � 
 x3 F1 � x5 t2 �
z2 t5 �
The result of Reduction is R7

� �
r9 � r8 �

G1
� �

r3 � r2 � r4 � r5 � r1 � r6 � r7 � r8 � r9 �
The critical pairs 
 r9 � r1 � , 
 r9 � r6 � , 
 r9 � r7 � , 
 r9 � r2 � , 
 r9 � r3 � , 
 r9 � r4 � ,
 r9 � r5 � , 
 r8 � r1 � , 
 r8 � r6 � , 
 r8 � r7 � , 
 r8 � r9 � , 
 r8 � r2 � and 
 r8 � r5 � are
not valid.
The new critical pairs are p18

� 
 xy5 t2 � x � r8 � y2 t � r4 � and p19
�


 x2 y5 t2 � x2 � r8 � y4 t2 � r3 � .
d � 8 , enter Spol 
 P8 � with

P8
� �

p9 � p10 � p18 � and P � �
p19 �

p9 is valid and r10
� 
 z3 t F1 � y6 t2 � x2 z3 t3 � is computed

We add a new rule z3 t F1 # r10
We check that Rewritten 
 xy2 t � r1 � � 
 y2 t � r6 � so we do not keep
p10
We check that Rewritten 
 x � r8 � � 
 z � r9 � so we do not keep p18
Now r10

� ϕ2 
 r10 � � 
 z3 t F1 � y6 t2 � xy2 zt4 � is fully reduced, the
result is R8

� �
r10 � .

G1
� �

r3 � r2 � r4 � r5 � r1 � r6 � r7 � r8 � r9 � r10 �
All the new possible critical pairs 
 r10 � ri � (i � 1 ��������� 8) are rejected

d � 9 , enter Spol 
 P9 � with P9
� �

p19 � and P � /0
We check that Rewritten 
 x2 � r8 � � 
 xz � r9 � so we do not keep p19
F � /0 and R9

� /0
The algorithm stops and returns G1.
Remark that no useless pair has remained. With the Buchberger
algorithm (resp. the algorithm [10]) there was 7 (resp. 1) useless
pairs and 5 (resp. 5) useful ones.



Example [5] [7] [10] F5 remark
Raksanyi 1 ? 0 0
Hairer1 10 ? 4 0

Rose 22 19 ? 0
Trinks6 17 8 6 0
Trinks7 12 11 6 4 over constrained

Katsura3 1 ? 1 0
Katsura4 18 10 7 0
Katsura5 50 28 ? 0

Katsura10 3936 ? ? 0
Binary10 2147 ? ? 0
Noon8 7886 ? ? 0
Eco 6 61 ? ? 7 see text

Eco 6 fact 63 ? ? 0
Eco 8 fact 315 ? ? 0

Fig 9.1: Number of useless critical pairs

Cyclic 7 8 9 10
F4 1.26 36.0 4949.1

F4 inc 1.4 171.3
F5 1.0 27.9
F "5 0.4 7.2 1002.3 57600
F " "5 0.8 3.95 676.2

Fig 9.2: Comparison of F4 and F5 for the Cyclic n problem
modulo p (Inspiron PIII 1Ghz): CPU Time in seconds.

9. EXPERIMENTAL RESULTS
9.1 Number of useless pairs
This is interesting to compare the number of useless critical pairs
in practice for the various algorithms because this number does not
depend on the implementation (at least for the F5 algorithm). The
first line of the following tabular (figure 9.1) contains all the exam-
ples of [7] and [10] the other are well known. Note that reductions
to zero are unavoidable for ���������
	�� (7 equations, 6 variables). The
table brought the ������ to our attention since the number of useless
pairs is not zero: we found that the system can be straightforwardly
rewritten by factorizing the original equations. By reformulating
these problem we obtain an equivalent system ������������� with
no reduction to zero ! The conclusion is that for a lot of practical
examples there is no reduction to zero.

9.2 First implementation
A first implementation of the F5 has been made in the Maple com-
puter algebra system and then translated in Gb (C++) and FGb (C).
From a traditional implementation of the Buchberger algorithm it
is very easy to implement the new algorithm: the only data type to
modify is to add to the property list of each polynomial r an inte-
ger (the index k of r) and a power product t (

� 
 r � � rFk). Hence
the extra memory cost is very small. The behavior of the algo-
rithm is very good: it is at least one order of magnitude faster than
the fastest known algorithm/implementation (F4) and two order of
magnitude faster than one of the fastest programs (Singular 2.0 [8]).
In tabular 9.2 we give the timings for the well known cyclic n prob-
lem: a Gröbner basis of Cyclic 10 was computed for the first time.
In table 9.2 “F4 inc” is the F4 algorithm applied incrementally. “F "5”
and “F " "5 ” are different version of the F5 algorithm that will be de-
scribed in a future paper. We report now detailed CPU timings for
the Katsura n problem modulo a small prime p (there is no useless
pairs for this example).

The algorithm F5 is not always faster than F4: for cyclic n the basic
version of the F5 algorithm is just a little faster than F4; the max-

n Singular Gb F4 F5 Singular
2-0-0 1-2-3

7 1.6 2.2 0.4 0.15 3.1
8 13.6 22.25 2.8 0.8 36.4
9 135.3 252.5 23.1 4.1 411.2

10 1140.2 2907.1 220.2 25.5 4311.8
11 11671 34903 2097 174.2 58174.6
12 25161 1460.7
13 240667 10748
Fig 9.2: Katsura n PII 400 Mhz (CPU time in seconds)

n F4
�
F5 Sing/Gb Gb/F4 O Sing/Gb Sing/F5

7 2.7 0.7 5.2 1.4 10.6
8 3.3 0.6 8.0 1.6 16.4
9 5.6 0.5 10.9 1.6 33.1

10 8.6 0.4 13.2 1.5 44.8
11 12.0 0.3 16.6 1.7 67.0
12 17.2
13 22.4

Fig 9.2: Katsura n PII 400 Mhz (Speedup)

imal efficiency of the F5 algorithm is expected when the number
of equation is less or equal than the number of variables. On the
contrary bad performance is expected when the system is overcon-
strained: for instance compute a Gröbner basis for a total degree
and then rerun the F5 algorithm on the result.

In the following tables 9.2 we compute the speedup: for instance��� ���������� is the CPU time for the old version of Singular (1-2-3)
divided by the CPU of Gb on the same example.
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