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APPLICATIONS OF GROBNER. BDASES
IN NON-LINEAR COMPUTATIONAL GEOMETRY

BRUNO BUCHBERGER'

Ahrtract

Grobner bases ate certain finite sets of multivariate polynomiala. Many
problems in polynomial ideal theory (algebraic geometry, non-linear compu-
tational geometry) can be solved by easy algorithms after transforming the
polvnomial sels involved in the specification of the problems inte Gedbner ba
sis form. In this paper we give some examples ol applving the Graliner hases
method Lo problems in non-linear computational geometry {inverse kinematics
in rubot programmung, collision detection for superellipsoids, implicitization
of parametric representations of corves nod surfaces, inversion problem for
parametric representationg, antomated peametrical theorem proving, primnary
decomposition of implicitly defined geometrical obhjects). The paper starts with
a briel summary of the Grobner bases method

1 Introduction

Traditionally, computational geometry deals with geometrical and combinatorial
problems on linear objects and simple non-linear ob jeets, see for example (Preparata,
Shamos 1985). These methods are not appropriate for recent advanced problems
arising in geometrical modeling, computer-aided design, end robot programming,
which are more algebraie in nature and invelve non-linear geometrical objects. Heal
and complex algebraic geometry is the natural framework for most of these non-
linear problems. Unfortunately, in the past decades, algebraic geometry was very
little concerned with the algorithmic solution of problems, Rather, non-constructive
proofs of certain geometrical phenomena and mere existence proofs for cerlain ge-
ometrical objects was, and still is. the main emphasis.

The method of Gribner bases is an algorithmie method that can be used to
attack r wide range of problems in commutative algebra (polynomial ideal theary)
and (complex) algebraic geometry, It 1s based on the concept of Grobner bases
and on an algorithm for constructing Grobner bases introduced in (Buchberger
1965, 1970). In recent vears the method has been refined and analyzed and more
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applications have been studied. {Buchberger 1985] is a tutorial and suryey on the
(GGrébner bases method.

The present paper starts with a briel summary of the basic concepts and reaulls
of Grébner bases theory [ Section 2). IT the reader accepts these basic concepts and
results as black boxes, the main part of the paper is seli-contained., The internal
details of the black boxes together with extensive references lo the lilerature are
given in the tutorial {Buchberger 1885).

The main part of the paper explains various applications of the Grobner bases
method for problems in non-linear computational geometry as motivaled by wadl-
vanced applications in computer-aided design, geometrical modeling and robot pro-
gramming. The sequence for the presentation of these applications is quite random.
Each of them relies on one or several of the basic properties of Gribner bases sum-
marized in Seclion 2.

2 Summary of the Gréobner Bases Method

The reader who is interested rm]_'.' in the upplicatiuns may Ekl]‘] this seclion and
come back in case he needs a specific notation, concept or theorem.

2.1 General Notation

N set of natural numbers including zero
Q) sel of rational numbers

H H[". ['Ir r'{:H.l Hll'l[]é}l:]'?i

C set of complex numbers

K typed variable for arbitrary fields

K algebraie closure of K

1,3, kL, myn
-H[r‘h'" :l"'!:ﬂl

K(ziy .o, &n)

il liJ LY vl'jl

Lt Ryt o

fig,h.p g
a,iu

Cf,u)
F.G

H

Ideal{ F')

Radical{ F)

f=rg

Kl|ziy. .., @)/ Ideal( F)

[flr

1'_:.'5_"r-r1 varinbiles for natural numbers

ring of n-variate polynomials

over the coefficient field X

field of n-variate rational rational expressions
aver the cocflicient field K

tvped variables [or elements in coeflicient fields
typed variables for polynomials

typed variables for power products,

i e polynomiels of the form E; Pl t‘;"

the coefficient at power product ¢ in polynemial f
typed variables for finite sets of polynomials
typed variable for finite sequences of polynomials
the ideal generated by F,

i.e.theset {T,hefi| B € Klzgsoovmals fi € F
the radical of the ideal generated by F,

i.e.{f | f vanishes on all common zeros of F'}
or, equivalently, {f | f* € Ideal{#'} for some k}

f is congruent to ¢ modulo Ideal( F')

the residue class ring module Ideal(F)

the residue class of f module Ideal( F)




In the definition of Tdeal{ F), it is sometimes necessary to explicitly indicate the
polynomial ring from which the A, are taken, If the polynomial ring is not clear
from the context, we will use an index:

Idealg|a,,..zn)(F)

In the definition of Radical{ Fl, by a common zero of the polynomials in I' we
mean a commen zero in the algebraic closure of the cocflicient field,

2.2 Polynomial Reduction

The basic notion of Grobner bases theory is pelynomial reduction, The notion of
polynomial reduction depende on a linear ordering on the set of power products
that enn be extended te a partial ordering on the sel of polynomials. The set of
“admissible orderings” that can be used for this purpose can be characlerized by
two easy axioms. The lexical ordering and the total degree ordering are Lhe lwo
admissible orderings used most often in examples. These two orderings are com-
pletely specified by fixing a linear ordering on the set of indeterminates xq,...,2,
in the polynomial ring. Roughly, f reduces to g modula ' il g resulls from [ by
subtracting a suitable multiple a.w h of a polynomial h = £ such thal g is lower in
the admissible ordering than (. Reduction may be conceived as a generalization of
the subtraction step thal appears in univariate polynomial division, For all details,
see (Buchberger 1985). We use the following notation:

- !.!."?_.}E‘d '.'E{TJIH.I!}IJ‘. r“l‘. Fi':][l]il'i!"igl]ﬂf'. {'Jl'd{‘.]l'ltngﬁ

LE(f) leading power product of f (w. r. 1. =)

LC(f) leading coefficient of f (w. r. t. =}

MLP(F) the set of “multiples of leading powerproducts in F™,

i.e {u|(3f & F){uisa multiple of LP(f)}
f reduces to g modulo F
reflexive-transitive closure of —p
reflexive-symmetric-transitive closure of —p

e
memh |
[0~

f is in normal form modulo F\ 1. e,

[~

F
there does not exist any g such that f —p g

A binary relation — on a2 set M is called “noethertan” ifl there does not exist
any infinite sequence &; — T3 — 73 — ... of elements z; 1in M.

Lemma 2.2.1 (Basic Properties of Reduction]
{ Noetherianity )
For all F': — g is noctherian.
(Reduction Closure = Congruencs
For all F: =p=v1F%.
(Normu! Form AFQGT?:!‘-JF.IH.;
There crists an algorithm NF  (“Normal Form”) such that for all F,q:
(NFi) g —3 NF(F,g),
(NF2) NF[E,__E_}_:]F.
(Cofactor Algorithm)




Therve exists an algorithm COF {(“cofactors”) such that for all £,g:
COF(F,g) is a sequence I of polynomials indered by I satisfying
9=NF{(F,g)+Xscrdyf

Note thati, for fixed F,f, there may exist many different g such that f —% g
and 95 i, e, , in general, “normal forms for polynomials f are not unique module
F*. A normal form algorithm NT, by successive reduction steps, singles out one of
these g for each F' and [.

COT proceeds by “collecting” the multiples ww.k of polynomials i © F that
are sublracted in the reduction steps when applyving the normal form algorithm NI
o g. Actually, COF can be required to satis{ly additional properties, for examples,
certain restrictions on the leading power products of the polynomials Hy. f.

2.3 Grobner Bases and the Main Theorem

Definition 2.3.1 (Buchberger 1865, 18970)
F s a Grobmer basis (. v £ = ) off
“normal forms modulo Foare unigue”, 1,
for all f,q:,q::
if [ op @ 5 0081y G2p then g0 = g2

Note that —p depends on the underlying admissible ardering = on the power
products. Therefore, also the definition of (irobner basis depends on the under-
Iving —. Whenever = is clear from the context, we will not explicitly mention
> . Grobner bases whose polynomials are monic (i oo have leading coefficient 1)
and are in normalform modulo the remaining polynomials in the basis are called
“reduced Crabner bases™. As we will see, Grobner bases have a number of use-
ful properties that establish easy algorithms for important problems in palynomial
ideal theory. Therefore the main question is how Grobner bases can be algorith
mically constructed, The algorithm needs the concept of “S-polynomials”. The S-
polynomial of two polynomials f and g is the difference of certain multiples u. f and
v.g. For delails see (Buchberger 1985). We use the notation

SP(f,q) the S-polynomial of f and g.

Theorem 2.3.1 (Main Theorem, Buchberger 1965, 10970)
(dlgorithmic Chargeterization of Grabner Bases)
Fis a Grabner basis ff
for all f,g € F: NF(F,8P(f.g)) = I
(Algorithmic Construction of Grobnsr Fases)
There exista an algorithm GB sueh thet for all F
(GBI) Ideal(F) = IdealilGB(F})
(GBZ) GB(F) is o (reduced) Grobner basis.

The I:-:':r:}f of the Ii;'ﬂgorithmic Cha,:acteriza!ian] is completely combunatorial and
quite involved. The whole power of the Grobner bases method is contained in this
proof. The algorithm GB is based on the (Algorithmic Characterization), i, e. it




involves successive computation of normal forms of S-pelynomials, This algorithm
is structurally simple. However, it is complex in terms of time and space consumed.
In some senee, this is necessarily so because the protlems that can be solved by
the (3rébner bases method are intrinsically complex as has heen shown by various
authors. Still, the algonithm allows to tackle interesting and non-trivial practical
problems for which no feasible selutions were known by other methods.  Also,
various theoretical and practical improvements of the algorithm have enhanced the
scope of applicability.

2.4 The Grobner Bases Algorithm in Software Systems

The Grobner bases algorithm GB is available in almost all major computer algebra
systems, notably in the SAC-2, SCRATCHPAD II, REDUCE, MAPLE, MAC-
H‘i’rh’i .‘f\. H.T'l‘.! TT'I'Il:h'f'II."!'l'rH H}'Hl-i'”]!\'. r|- l|'|l'. 'iflll'[ﬂll”"-'i”!'l nf rHl]r]'lh{"'l"_j.’;Fr, {:1!“”;”51 I:TH]H
1982) contlains the addresees of institutions from which these systems can be ob
tained. In these systems at least the algorithms SP, NI', (COTF,) and GDB are
H.I:l'.l.'..‘i!-i”!]t: Lo T.I'Il'. IS, i['l muost S}'R'.f‘.‘f'l'.l!i._ f!.i..‘il:il il H'IJ.:IT]E}CI' -I'Jf I:'Jtll'lf".r ﬂilxiljﬂl’}' Tl Lil'l:l'.H
ant varianis of Lhese basie algosithms are available and Lhe user ean experiment
with dillerent coellicient domains, admissible ordenings and stralegies for luning
the algorithms.

The i|'|1plt:uu:ututiuns Vvary drusti:ta]]}' in their t?fﬁt"lcn{::f must]_v because of the
varying nmount of theory that has been taken into account. Also, computation time
II.H{! H]:!FI.I'.!‘. l]t"!lH:lHlH E!I'EIHLII{'.H]]}' a1l tt'l[? ii{I:!lJi.ﬁ:i-:.i."].{: Ur[lt:flll'.g}l- !]55.'[‘.1]1 1 i}'!'.!'lllll1.}l.1.lhilrl.‘-l
of variables, on treating indeterminates as ring or field variables, on stralegies for
selecting pairs in the consideration of 5 polvnomials and on many other factors.
Thus if one seriously considers solving problems of the type described in this paper
CHINC HIHH!I{J ll':r’ lIiITl'!['!'S!IT. E_"}‘.‘i‘l.l'.l[l!‘ i'L[][]. "."H.:']l.ll:!‘. |J|."!].l:!'il'|:gl'i1 sl FH.LEH{E‘H f‘!1.{'.,

T'he resl of the paper is written with the goal in mind that the reader should
be able to apply the methods as soon as he has access to an implementation of the
basic algorithms NI, COF, SP. and GB viewed as “black boxes”.

2.5 DProperties of Grobner Bases

In the following theorem we summarize the most important properties of Grobner
bases on which the algorithmic solution of many fundamental problems in polynoe-
mial ideal theory {algebraic geometry, non-linear computational geometry) can be
based. Actually, not all of these properties are used in the later sections of the paper.
However, since the results on (2rédbner bases are nuite scattered in the literature, the
summary may help the reader wwho perhaps wants to try the Grobner bases method
on new problems. Many of the properties listed in the lheorem were already proven
in (Buchberger 1965, 1970). Actually the problems that can be solved with the
(Residue Class Ring) propertics were the starting point for Grabner bases theory
in (Buchberger 1965). The properiy (Elimination Ideals] iz due to (Trinks 1978).
The property {(Inverse Mappings) is a recent contribution by (Van den Esscn 1986)
that solves a decision problem that has been open since 1939, (Algebraic Relations]
and {(Syzygies) seem to have been known already to (Spear 1977). However, it is
hard to trace were the proofs appeared for the first time. Maore references are given
in (Huchberger 1985). Maost of the proofs of the properties helow are immediate




consequences of the defipition of Grobner bases, the property (Reduction Closure
— Clongrucnce). and some well known algebraic lemnmas in polynomial ideal theory.
The proofs of the properties (Syvzygies) and (Inverse Mappings| are more involved.
The existence of the algorithm GB based on the above Main Theorem is the crux
for the slgorithmic character of the properties.

In the following, lel Kiz..... z,.] be arbitrary but fixed. F and & are used
as typed variables for finite subsets of Klr;,..., r.l. If not otherwise stated, = is
arbitrary. When we say “y is a new indeterminate” we mean that y is different from

zrh...,::;:,_, Hy “F is solvable” we mean that there exists an n-tuple (ay,...,0,) of
elements a; in the algebraic closure K such that fley, ..., g,) = 0 for all f & F.
Similarly, the expression “F has finitely many solutions” and similar expressions
always refer to solutions over the algebraic closure of K.
Theorem 2.5.1 {General Properties of Griohner Bases)
(Ideal Equalily, Uniguencss of Reduced Grabner Bases)
For all F, G:1deal(§") = ldeal(C) ff GH{F) = GR(G).
(Idempotency of (5)
For all reduced Grobner bases (: GB{() = (7.
({deal Membership)
For all F, f f € ldeal(F) iff NF(GB(F), f) = 0.
( Canonical Stnplhficalion )
For all F, f. g: f =r g iff NFIGB{F),f) = NF(GB(F),q).
(Radical Membership)

For all F, f:
[ e Radical(F) iff 1 ¢ GB(F U{y.f —1}), {where y 15 o new indeterminate ).

{Compulation in Residue Class Rings)

For all F:

The residue clnss ring Klz,.... . ]/ 1deal( F') i 1somorphic lo the el
gebraie structure whose carrier sel ws {f | [} and whose addition and
mulitpheation operations, < and 5, are defined as follows:

f&gi— KF[GD[F"}r + gk
f &g :=NF(GB{F) f.g)




(Note that the carvier sel 12 o deesdable sef and & and @ are computable!).
(Residue Class Hing, Veelor Space Basis)
For all F:

The set {{ujr | u @ MLP(GB{F))} is a linearly independent basis for
Kz, ... uq]/Tdeal{ F) conssderved as a vector apace over K.

(Residue Class Ring, Struciure Constants)

For all F, u, »:
if w,v ¢ MLP(GB(F)),
then [ulp.nle = Luemupiosir)) Gu- ] r,
where, for all w,ay := C(NF(GB(F), wv)5).

{The a, i K, appearing tn these representations of products of the basis
elements as linvar combinations of the basie eloments are the “strueture
constants™ of Klry, ... 5]/ ldeal( F) considered as an assoerative alge-
bra. |
{’!.-l’.'”.fil‘”.g’ Pf}'i'!“‘.'!" PT‘I‘J{IHETJ_J
For afl F: MLP{Ideal( F)) — MLP(GB{F)).
{ Principal Ideal)
For all F:
ldeal{F] is principal (3. e, has o one-element idenl hnais )
iff GB{F) has ezactly one element.
{ Trivial Ideal)
For all I'; ldeal(F) = K|z,,...,z,.) f GB(F) = {1}.
(Salvability of Polynomial Eguations)
For all F: F is solvable 1ff 1 € GB(F).
( Finite Solvability of Polynomial Equations)
For all F:
F' has only finitely many selutions iff
forall 1 =01 < m there ezests an [ CGB{F) such thet

LP(f) ia a power of z;.

(Number of Solutions of Polynomial Equations)



For all I with fintlely many soluiions:
the number of solutions of I' (with multiplicities and solutions at infinity) =
= eardinality of {u | v & MLP(GDB{F));.

(Mininal Polynemial)

For all F and all finite sels U aof power products:
There exists an f © Ideal{F) in which only power products from U occur
iff (INF(GB(F\u)) | u € U} is linearly dependent over K.

(By applying this property successively tn the powers 1,2, 2?22, ... one

can algorithmically find, for ezxample, the wnivariate polynomial in z;
of mimmal degree tn Ideal(I) if it ezists, On this algorithm a gen-
cral method for salmng arbitvary system of polynomial equations can be
based, see {Buchberger 1870), whick works for arbitrary - whereas fhe
climination method mentioned below works only for lezical orderings. )

{Syzygica)
Let &7 be o (reduced) (raebner basis and define for all fog = F:

PHU@) . COF(F,SP{f,9)):

w and v such that SP(f,g) = w.f — vy,

&178) 15 a wequence of polynomials indezed by P,
(fe) ., _ IS

5{ = at— Py

Slfa) . —y — f’;:f-gj_.

U _ PY for all h £ F— {9}

Then,

(§Ue) | f.g € F} is a sel of generators for the Kz, ..., z,]-module of
all sequences H of polynomials {indezed by F) that are solutions (“syzy-
gies”) of the linear diophantine squation

Cicr iuh = 0.

(This solution method for linear diophaniine cquations over Kl# 150005 80)
whose coefficients form ¢ Grobner bosis I can be eastly extended to the
case of arbitrary I and to syslems of lincar diophantine equations, see
(Buchberger 1985}, [Winkler 1986)).

Theorem 2.5.2 (Properties of Gribner Bases for Particular Orderings)

(Hilbert Function)




Let = be a fotal degree ovrdering.

Then, for all F:

The value H(d, F') of the Hilber! funeiion for d and F, 1. 2. the number
of modulo Ideal(I7) linearly independen! polynorals in Kz a0 imu]of
degree < d, 15 equal to

d4n

(n

( Etimination Ideals, Solulson of Polynomial Equations)

) - cardinality of {u of degree < d | u & MLP(GB(F}}}.

Let = be the lexical ordering defined by o < 7 =< ... < 24,
Then, for all F, 1 <1< n:

The set GB(F) 11 Klzy,... 7)) 11 8o (reduced] Grobner basis for the
“i.fh elvmination ideal” generated by F, 1 e, for itli‘-iL].!{[r,, .,,_|{F} I

%

Hlm”....u:,‘,.

( This property leads immedialely Lo o general solution method, by “suc

ccasive substitution”, for arbilrary sysivmna of polynomial cquations with
finstely many solutions, which is formally described 1 (Duchberger 1955 ).
We will demonstrate this method in the examples in the application sce-

tion of this paper. )
(Continuation of Partial Solulions)

Let = be a lexicod orderig.

For all I':

IfFioe{fiyiooifat i @ Grabner basis with respect to =, Fr—dven - Fo,
and fi,...,fi{l €1 < k) are eractly thase polynomiels in F that de-
pend only on the indeterminater xy,... 7, then every ecommon solu-
tron {f:.-] yeresti) of {1,000, _,‘rl-} ran he continued to a commeoen solufion
{(@1,.-.y0n) of F. (For a correct statement of this properly some termi-

nology about solutions at infinily would be necessary. )

(Independent Variables Modulo an Ideal)

For all Fand 1 < < .., <lm < n

The indelerminalea o, ..., 2, are independent module Ideal( ) 5. .
there s no polynomial in Ideal(F) tha! depends only on 2,00 x4,

iff GB(F) MK ey ..oy, | = {0}, where the =~ used musl be o lemeal
ordering satisfying o, = -+ = ;= all other indeterminates. (This
property yields immediately an clyorithm for determining the dimenasion

af a polynomial ideal {algebraic variety).)

L]




!"fdeaf jﬁf-ff'i"#ﬁr‘.“fﬂ.’.}

Let = be the lerical ordering defined by =y <~ ¢7 < .00 <1, < W,

y a new variable.

Then, for all F, :

GB{u.f | fe FIU{ly -1)g|lge &N KT, . T
is a (reduced) Grobner basws for Tdeal( F) 11 Ideal(G).

{This property yields also an algorith for guotients of finitely generated
idvals bocause the determinaiion of such guoitenis can be reduced to the
delermanation of intersections. )

(Algebrare Helulions)

For all F:

Lot {Ffiveveyfm)s let yayioo s ym e new indeterminates and let -
b the lexical erdernig defined by yy =0 000 =0 Yo = 1y <l S
Then, GB({y; — f14- -4 Yen T PYOVEK 500 W) 38 6 (reduced) Crabner
basis for the “idval of algelvaie relations” over F, 1 ¢, Jor the set {g &
I‘rlyh---uh"r-:l |.q{J|r1"""Jrf'"l.| = 0}

(Inverse Mapping)

_‘LIH'F' I'Jf! lﬁll:

Let Po— {fi, ooy fudy et yyoo oo gy be new indeterminates and let = be
the lerieal u'.l‘f.ft:l"f?lg tflfﬁnﬂi‘f Eﬁy i =iie = Yq =Ty e < Py Thfﬂ-.
the mapping from K inte K defined by F is bijective ff GR{{m —
fiverortn — Fa}) has the form {2, gy....20 — ga} for certain g; &
it e s ¥nl

The properties stated in the above theerem can be read as the algorithmic solu-
tion of certain problems specified by polynomial sets F. Each of these "algorithms”
requires that, for solving the problem for an arbitrary F, one first transforms F
into the corresponding (reduced) Gribner basis GB(#') and then performs some
algorithmic actions on GRB(F). For example, for the decision problem *f =F g77,
(Canonical Simplification) requires that one first transforms F into GB(}) and
then checks, by applyving algorithm NF, shether or not the normal forms of f and
g are identical modulo GR(F). Actually, mest of the ahave properties (algorithms)
are correct alse if, instead of {ransforming F into & corresponding reduced Grobner
basis, one transforms F into an arbiirary equivalent Grobner basis G. (We say “&
is equivalent to G iff Ideal{ F) — Ideal{(F).} ln practice, however, this makes very
little difference because the compntation of Grébner bases is not significantly easier
if one relaxes the requirement that the Gribner hasis must be reduced.

Alternatively, by (Idempotency of GB). the properties stated in the above the-
orem can also be read as properties of [reduced ] Grobaer bases — and algorithms
for solving problems for (reduced) Grobner bases, Tor example, introducing the ad-
ditional assumption that T is a (reduced) Grobner basis, (Canonical Simplification)

reads as Tollows;

0




Pb:r- il (T‘Cifu{:ﬁd,] GF@{&H.[—:F- hoses I' I'Ii"-!ﬂ{ ‘FGJIL’?IOTT!!:G.'I.! fg_‘-]‘:
F=py iff NE(F, f) = NF(F, ).

Some of the properties stated in the above theorem are characteristic for Grobner
bases, i. e. il the property holds for a set F then [ is a Grobner basis. For example,
(Leading Power Products) is a characteristic property, i.oe. if MLP(ldeal{ F)) —
MLP{F) then F is a Grobner basis.

Let us carry through one more exercise for reading the above propertics as
algorithms. For deciding whether

(Question)
for-all oy, € 76

for whith Hildhceonstag = “F=fnlf 0 afin) = 0
also gla,,. .. an) = U,

i. v, for deciding whether g € Radical({fi,..., fi.}), beeanse of (Radical Member
ship), it euflices Lo perform the follewing ateps:

1. Compute the (reduced) Grébner hasis & for Eifygioen Faedbgr=T3);
where y is a new indeterminate.
2. The (Question) has a positive answer iff 1 £ 5.

3 Application: Inverse Robot Kinematics

The problem of inverse robot kinematics is the problem of determining, for a given
robol, the distances at the prismatic joints and the angles al the revolute joints that
will resull in a given position and orientation of the end-effector. The mathematical
description of this problem leads to a system of multivariate polynomial equations
(after representing angles a by their sine and cosine and adding sin® @ 4+ cos® o — 1
fo the set of equations), see (Paul 1981}

Let us consider, for example, the following robot having two revolute joints (two

“degrees of freedom®™).




We inlroduce the fnl]nwing variables:

R lengihs of the two robot arms
PPy, P2 z-, y—, and z-coordinate of the positinn of the end-effectnr
@. 8,1 Fuler angles of the orientation of the end eflecior

(Euler angles are one way of describing orientation)
fy, fis angles describing rotation at the revolule joints

We intronduce the sines and cosines of the angles occuring in the above dt'-h'{',f'ii]-

tion as separale variables:

8.0 sine and cosine ol &
Sy Gy sine and cosine of &
sf,cf sine and cosine of @
at, ¢l gine ane cosine of 8
ap,ep sine and cosine of

The interrelation of the physical entities deseribed by the above variables is

Q*xprt'h'r;f'ii in bhe rn”iﬂ'."u]g_ system of EE[L[E.'.E("I'I.S:

éy-tg—cf-et-ep4 afap=1,
sy -tg—af el cep—ofap— A,
ay + 8t -ep = 0,

ey -8y —cfcteap+sf-cp=1,
—ty 82+ sfeloap ef ep— 10,
¢y — st -ap =10,
g4y —cf -8t =0,
— — af -3t =10,
ol =1
lz‘fl'CZ—PJ?—‘.l?
Iyvay-ea —py =0,
fo - a0+ 1 pr — 0,
et +af—1=10,
&3 482 —1=0,
ef b aft=1=1,
et + st - 1 =10,
ept +apt —1 — 1.

Let us call those variables that deseribe the geometrical realization of the robot
“geometrical variables” (for example, the variables {,,[,). Let us also call those
variables that describe position and oricntation of the end-effector shortly “posi-
tion variables® (pa,...,sf,¢f....). The octher variables {81,¢1,...} are the “joint
variables™.

In the case of more complicated robots (with six degrees of freedom), one can
specify values for the geometrical variables and the position variables and, wilh
certain restrictions, will always be able to determine appropriate values of the joint
variables that yield the given position and orientation of the end-effectar. In the
above example robot, with only two degrees of freedom however one can only inde-
pendently choose the value of two position variables, for example pz and pz. The




value of all the olher va.rin'lﬂ[::-.} T‘;{Jtal!]_‘-.' of the other pGSi'LiL‘:n variables Py .Sf1 c.f1 S5
and the joint variables will then he determined by the above system of algebraic
equalions,

The problem can be considered in Lhree dilferent versions of increasing general-

iy,
[H.FHT ”i‘l'i'l'l'l{" 1\.“"{'5'55{}“]

o The value of the geometrical variables are numerically given.

o The value of those ]mr-'i!':-:m variables that can be independently chosen [e. E:
pa, pz) are numerically given,

¢ The solution of the problem censists in determining appropriale nmmerical
values for the (remaining position variabies and) the joint variables.

(M Line Version, Conerete Hobot )
o The value of the peometrical viariables are numerically given.

e The value of Lthose ]HJHIELIHJI[ variables that can be indepcndcntly chosen are

left open as paramelera.

s Bv a "solution of the problem”, in this version, one means symbolic expres-
sions involving the position parameters that deseribe, in “closed form™, the
dependence of the (remaining position variables and) the joinl variables from
the porition parameters. Of course, a “symbolic closed form solutian™ of Lhis
kind will not always be possible. [t is possible for certain classes of robots,
see (Paul 1881), and it is possible in a modified sense also in the general case

by using Grobner bases.

(Off-Line Version, Roliot Class)
s The value of the geometrical variables are left open as parameters.

¢ The value of those position variahles that can be independently chosen are
left open as parameliers

e By a "solution of the problem”, in this version, one means symbolic expres-
sions involving the geometrical and the position parameters that describe,
in “closed form”, the dependence of the (remaining position variables and)
the joint variables on the geometrical and position parameters.. A “symbolic
closed form solution™ in this general sense is even more difficull. Again, it is
possible for certain classes of robets and. as we shall see, it is possible in a

modified sense also in the general case by using Grobner bases,

A symbulic solution of the inverse kinematics problem in the {Of-Line Version),

can be contrasted to a numerical approach:

{Symbolic Approach)
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e Derivation of the symbelic expressions for the solution of the problem in the
{Ofi-Line Version).

e Numerical specification of the parameters.

e Numerical evaluation of the symbolic expressions using the mumerical values
of the parameters.

( Numerical Approach)
e Numerical specification of the parameiers.

o Solution of the problem in the {Real Time Version} by numerical iteration
methods.

Tt is clear that a symbolic snlufion of the problem in the (Qff-Line Version)
can have practical advantages over the purely numerical approach (as long as Lthe
resulting svmbolic expressions describing the solutions are not too complicated)
beeause the numerical evaluation of the svmbolic solution expressions in real-time
situations may be faster than a dircet iterative numerical solution of the (Real Time
Version) of the problem. Also, of course, the symbolic solution may give “insight”
into the problem that can not be gained by a numerical solution,

For the above example, we show the salution of the problem in the (Off-Line
Version, oboter Class) by using Grobner bases. In this version, the geometrical
varinbles 1, ls and the position varialiles pr, pz are considered as symbolic param
elere.

The solution method uses property {Elimination ldeals) of Grobner bases, 'This
property, read as an algorithm, tells us that we first have to compute the Grébner
bases of the set F' of input polynomials. Sinee [, l; pr,pz are to be treated as
symbolic parameters, we work over the field Qi by, pr,pz) as coeflicient field.
''his is perfectly possible, because the Grobner bases method works over arhitrary
fields (whose arithmetic is algorithmic). Furthermore, we must specify an ordering
on the remaining variables, for example ¢, - c; = & = 53 < py < ef < ¢t ~
cp ~< sf < st < sp. These variables are treated as ring variables, i.e. the Grobner
basis will be computed considering the input polynomials as polynomials in the ring
Q(l. 13, pr,pziler, ..., sp|. The resulting Grobner basis has the following form:

CE + ml:.i;—'iiﬂ:' =0,

ey -+ p;:_g.fl.fz—tsz cpz ooy = 0.

P =,

a4 pzch 0, -
p2t=lypi—+h

vy -8 =0,
Py -+ Fz?_g.ffpz_;.p,r!_g! |]f2_' 1 .
gpe —pEtheiee BI0 g

o P i
ct =1},

d_ il ipe? =T ey L T[T 23
pel—2lypaf —igpre2liprd -0 sgyerf =1

cp+

af +

i 2R
pef—2dypr DL il
4 o i e g el — ),
sl | pred —Z'I:"pz-:']?.'l:z—r;'l‘r'; 1 Jlr : : .
pet—4d pr’ AT p? 60 et el T pe—d-ope ) T T

Iy pe? =y -l *p..':-—é-;?: -pzﬁ—ig-i-if-l':
pz?—z-h pr—iitl
;rrz:—E'fi*pz—'pI?—I%+f";

0y raly 'lf'_i.: =i,

It
LR
1

ap ey e ref — O

lppepe? 20y lpprprly et =13 pzali iy ps

14




The above (irobner basis has a remarkahle structure:

» The peometrical parameters [; and !, and the position paramelers pr and pz
are still available as symmbolic parameters in the polvnomials of the Grobner
hasis. Thus, the system ie still “genersl”. The Grobner basis is in “closed

formn™,

s In accordance with property (Elimination Ideals), the system is “iriangular-
ized™. In this example, this means that the first polynomial of the basis
depends only on ey, the second on ¢;,¢2, the third on ey, 02,4y, ... After
substitution of numerical values for the parameters !, I, pr, pz, we can there-
fore numerically determine the possible values for e; from the first equation
then, for each of the values of ¢, determine the value of & from the second
equalion l'l“'”r lisr vach of the values of ¢, 0y, determine the value of & from

the third equation etc.

s Actually, the degrees of the polynomials in this basis are quite low. 'T'his
is in general not true for the first polynomial in Grobner bases. The first
pelynominl, which, in case the solution set is finite, is always univariate, tends
to have quile a high degree in general, The degrees of the other polynamialy,
however, tend to be very low [mosl thmes even IliI‘-.EE‘LI':] also in the general
case because the polynomial sets describing realistic physical or geometrical
situations often define prime ideals, [or which linearity in the second, third

cvarinble can be proven theoretically. This phenomenon needs closer study,
however. For numerical practice, low degrees in the second, third ... varinble
implies that numerical errors from the determination of the value of the firsl
value will not drastically necumulate. In the case where the second, third

.. eguation is linear, the Grobuner basis has the form {py(z )20 — palz1),

v Bn—pa{m1)}. In this case, the errors introduced by the numerical solution
of p; will not accumnulate at all.

e The above methed of numerical backward substitution based on the Grobner
Lasis, by property (Elimination ldeals), is gnaranteed to yield all (real and
complex) solutions of the system.

e Again by (Elimination Ideals), ne “ezirancous” solutions of the system are
produced. {Other algebraic methods, for example the resultanl method, may

produce extraneous solutions, |

The above Grobner basis was nroduced in 62 sec on an TBM 4341 using an
implementation of the Grithner basis method by L. Gebauer and H, Kredel in the
SAC-2 computer algebra system. The computation time is increasing drastically
when more complicated robot types are investigated. We are far from being able to
treat the most general rohot of six degrees of freedom. However, so far, only very
litile research effort has been dedicated to this possiblc application of Grobner bases.
Using the special structure of the problem it mav well be thal more theorctical
resulls can be derived that allow to drastically speed up the general algorithm in
this particular application.




4 Application: Intersection of Superellipsoids

Superellipsoids (Barr 1981 ) are surfaces in 31} space that have a compact implicit
representation as the scl of points [z,y, 2] euch that

Superellipsoids are topologically equivalent to spheres. They can be consid-
ered as ellipsoids with axes a,b, ¢ whose curvature in the #—,y—,z directions is
distorted by the influence of the exponents ¢,,¢;,¢;3. (The above equalion is the
implicit equation for the case where the superellipsoid is in standard position with
it midpoint at the origin,) The exponents ¢;, ¢2, €2 open an enormous flexibility for
adjusting the shape of superellipsoids in order to approximate real objects. Some
basic problems in geometric modeling, for example, the problem of deciding whelher
a point is inside or outside an ohjeet can be casily solved for superellipsoids, Re-
cently, superellipsoids have been proposed [or approximating parts of robots and
obstacles in order o test for collision. The collision detection problem of robots is
thereby reduced to an intersection test for superellipsoids,

Unfortunately, for general superellipsoids, vo good intersection tr":#': are known,
I this sechion we report on first attempts to apply Girdbiner bases for this question,
We restriel our attention to the case of a sphere (with midpoint (A, B, ) and
radius f1) and a superellipsoid (in standard position) whose exponents satisfy ¢
ca — €3 < 2 {a convex superellipsoid). In this case, the two ohjects intersect il the
minimal distance between the midpoint of the sphere and the superellipsoid is less
or equal to the radius of the sphere. Using Lagrange factors, this approach leads
to the following syetem of equations for the coordinates (=, 5, 2) of the point on the

superellipsoid having minimal distance to (A, B, ')

(Equations {or Minimal Distance]
(£)2/ (L 4 (20 —1 = ¢
I:J = ":l.:!l}l. {:r]ﬁ_.!]_[:l
(v - B) + 2.5 e o
G-y ad (henn Zg

E.L

IT & is of the form 1 /& (which is sufficiently gencral for practical purposes}, this
{System for Minimal Distance) iz an algebraic system, We consider a, b, e,4, B, C
as parameters, i. e. we work over K{a,b.e. 4, B.C)z,y.2.4]. For computing the
Gribner bases, we use the lexical ordering defined by 2 <y <2 = A Fore=1
(which is, actually, the ellipsoid case) we get the Grabner basis

{Grébner Basis for Minimal [Hestanece)

*—plz)=0
y—gqlz) =0
2 r(e) =0
A—zglz)=0.

Here, p(x), g(2). {2}, s{x) are univariate polynomizls in @ of degree 5 with coef-

[cients that are rational expressions in the parameters a,b.¢, A, B, {'. The equation
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for A is nof. interesting for the problem at hand and may be dropped. The printout
of these rational expressions consumes approximately 2 pages, (Some simplification
by extracting common subexpressions would be sossible.) Again, the Grobner basis
has all the advantageous fealures described in the inverse kinematics application.
Note in pariicular that, in this Grishner basis, the second, third and fourth equa-
tions are linear in the variables y, 2, A, respectively. Therefore the Grébner hasis
presents an explicit symbolic snlution to the problem as soon as the solution value
for x is numerically determined from the first equation, which is univariate in 2.
If we change ¢ to 1/2, the resulting Griobner hasis will again have the structure
displaved in (Grébner Basis for Minimal Distance]. The only difference 1s that the
degree of the univariate polynomials p{z ), q(x}, (=), s(z) will be 11. We conjeclurs
that the structure of the system will stay unchanged for arbitrary ¢ of the form 1/%.
The problem with this approach is, again, computation time. While the Grobner
basis compntation for ¢ = 1 needs 15 minutes (on an IBM 4341 in the SAC-2
implementation of the Grobner bases method), the computation already needs 14
hours for ¢ = 1/2. At the moment, this excludes practical applicability ol the
method. TMowever, one should take into account that the souree of complexity seems
to be the extrancous extremal solutions that enter through the Lagrange [nelor
method, Actually, the first equation in the Grabner Lasis describes the z-coordinala
of all relative exiremal points on the surface and not only the » coordinates of Lhe
minimal point. This raises the degree of the first polynomial and, hence, also af the
other polynomials. More systematic study is necessary. Furthermore, it seems to be
possible to guess and gnbeequently prove the general structure of the polynomials
p(x), q(z),»(2), s{z) from the Grobner bases computations for two or Lhree different
¢ values. This could make the Grobner basis computation superfluousin the fulure.
As with other symbolic computation methods, Gribner bases computations can be
applied on very different levels including the level of producing and supporting

mathemalical conjectures,

5 Application: Implicitization of Parametric Ob-
jects

As has been pointed out repeatedly, the automatic transition between implicit and
parametric representation of curves and surfaces is of flundamental importance in ge-
ometric modeling, see for example (Sederberg, Anderson 1984). The reason for this
is that the implicit and the parametric representation are appropriate for different
classes of prablems. For example, for generating points along curves or surfaces, the
parametric represeniation is most convenient whereas, for deciding whether a given
point. lies on a specific curve or surface. the implicit representation is most natural.
It is also well known that implicitization of parameiric surfaces is of importance for
deriving a representation of the intersection curve of two surfaces. This problem has
a satisfactory solution in case one of the surfaces is expressed parametrically and
the other implicitlv. In this case, the parameter representation z(s,t) yls,t), 2{s, 1)
for the first surface can be substituted into the implicit equation f{z,y.2) of the
other surface. This results in the implicit representation fz(s,t),u(s 1), =(s,1)) of
Lhe intersection curve in paramcter space.




Actually, for some time, the problem of implicitization has been deemed un-
solvable in the CAT) literature. (Sederberg. Amderson 1984], however, presented
a solution of the implicitization problem using resultants. The solution is spelled
aut for surfaces in 3D and curves in 2. [n the general case of (n — 1)-dimensional
hypersurfaces, 1 guess, the method could yield implicit equations that introduce
non-trivial extraneous solutions, see also the remarks in (Arnon, Sederberg 1984).
In {(Arnon, Sederberg 1984) it is shown how Grobner bases can be used for Lhe
general implicitization problem of (n — 1)-dimensional hypersurfaces. The authors
sketch a correctiness proof for the method that relies on {Algebraic Relations}). In
this section, we review their method and generalize it to the most general case of hy.
persurfaces of arbitrary dimension in n-dimensional space. 5till, much research will
be neederd Lo assess the efficiencies of the methods and to determine their range of
practical applicability. Also some theoretical details are not yet completely covered

i Lhe lterature.

(General Tmplicitization Problem)

Given: o, P © Klagooo.w)
I'ind: fl:-"':-.l'rfr E Kl[-“_-;---r.’-'m!-
such that forall ay, oo 0,
fjli;ﬂj,..,,ﬂ'm.] = vr o= fp(@y ey @un) — 0 iff
i =g Baibs Yones o =gy b.} for some by, ... h,.

The problem requires to construct b polynomials unplicitly defining hypersur-
faces whoge infersection is the hypersurface deseribed by the parameter represen-

tation.

(Tmplicitization Algorithm)
{,llrt-_- R f&} — GB{{H: = Piyvvesm Frll}_.:' m f‘:_L".- v 1H1'.'1.]!

where GB has to be compuited vsing the lexical ordaring determined by

yl e y-:m — 2—1 - :'_T:n.
Correciness Proof: Let gy < ... =< g be the polynomials in

GB{{H] — Pty e Pr.--.}:'—ffilh.- "!ym]-

{¥1 — P1s-- - 1Ym — pm} and the Grobner basis {fiyieis fesg100e o @} have the same

common zeros, L

The vonverse is clear.

Example: Tet us consider the 3D surface defined by the following parametric

l‘l:l::'::m:.nta1.il::-n




{Parameiric Representation)

=t
i = .07
x =77

Roughly, this surface has the shape of a ship hull whose keol s the y-axis and
whose bug is the z-axis. Applying algorithm GB to {z — rit,y — r.d?, 2 — r?} wilh
respect bo the ordering 2 <y <o <t < r yields the following Grobner basis:

(Grébner Basis)
4

T .2
L —y
tape — 2°
2 2t
ry — @t
ra —t.z2
L o

r* oz

The polynomial depending only on z,y, # is an implicit equation for the surface
delined by {i"'arnln{tl.t:r Hepresentation ).

By clase inspeclion one will detect that, éu".unll}', the implicit Equ:lt-iClﬂ oCcour
ring in the above (Grobner Basis) does not strictly mect the specification of the
{Tmplicitization Problem). The y-axis is a solution to the implicit equation whereas
it dowes not appear in the surface defined by the (Parameter Representation}. 'his
ie nol a deliciency of the Grobner basis method but has to de with the particu
lar (Parameter Hepresentation) which. in some sense, 15 not “general enough” or,
stated differently, in the {Continuation of Partial Solutions) property, solutions at
infinity have to be taken into account. This question deserves sorme further detailed
sbudy. (Sturimfels 1987) has already sketched some analysis of this phenomenon,
He proposes the [ollowing parameter presentation, which includes the y-axis and
whose implicit equation is again =* — 1%.2.

{Parametric Representation)
o= w.u
z = u

This example was computed in 4 sec on an IBA AT in the author’s research
implementation of the Gzébner basis method in the mublATII system, Other ex-
amples with more complicated coefficients and similar degree characterislics had
computing times in the range of several seconds, T guess that the examples occur
ing in practice should be well tractible by the method.

Example: The method can also be used for rational parameiric representations.

We consider the example of a circle in the plane.




{Rational Parametiric Representation)
1 2

e n
= 14na?
— A
?f F+.'r.‘-

In the case of rational parametric representations, we first clear denominalors.
In the cxample, the input to GB shonld therefore be {2} 2.5 —1+5% y+y.8°—2.5},
The resull is, of course, @ + §* — 1

6 Application: Inversion of Parametric Repre-
sentations

The inversion problemn for parametric representations is defined as follows:

(Tnversion Problem for Parametric Representations)

(Given: Pyvesa s K JTi'.i.t:. ey Rn ] and
a poinl {,...,2,, ) on the hypersurface
parametrically defined by proooopa

Find: by ... 00 | oy by s Pn )i sl = Pl i, b))

This problem is closely connected with the (Implicitization Problem}. In fact,
the (Inversion Problem) is just a special case of the general problem of solving
systemns of polynomial equations, which is completely solved by the Grobner ba-
gis method bused on the (Elimination Ideals) property or based on the (Minimal
T'olynemial) property. For solving the (Inversion Problem), the general Grobner
bases solution method can be applied to the system {3y — mi{#1,. - sBa)s covsUrm
P2y oz}, 1o e we have the following algorithm.

(Inversion Algorithm for Parametric Representations)
G:— GB({FL —,U'_I[.a:'j--r-l-'-r:n:l ----- Yen F.—.-.[_-E'.--H-rn,llh
where GB has to be computed using the lexical ordering determined by
h = Y =Ty =00 Ly
{fl'. K 1fk} =G0 Ki'&’n- #1 3}'#._;-
(If, for some 1 < i< &, fi(ay, ... 2m) # 0, then “Input Error”.)
Substitute a; for v; in (G and solve the system G, which is “triangularized”,

In fact, the steps necessary in this algorithm include the steps of the (Implici-
tization Algerithm). Therefore, when we apply the Grébner bases method to the
(Tinplicitization Problem), we antomatically get also 2 solution for the (Inversion
Problem) and vice versa.

Example: We use again the example of Section 3.

[Parametri ¢ Representation)

a — .t
= p.t2
2= p?

Suppose we want to determine the parameler values defining the point (2,2,4)
on the surface. Application of GB vields
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(Groliner Basis)

:T.‘4 e y:I.Z

e —y
btz — e
2.z —x°
ry — r?
o — fiz
ri—

'J"I —E

The first polynomial is the implicit equation, which can be used to check whether
(2,2,4) is, in fact, on the gurface: 2° —2°.4 — 0. Substituting (2,2, 4) in the second,
third, and fourth polynomial of the Grobmer basis (and making all polynomials

monic) yields the system

(Gribner Basis After First Substitution]

f -1

t— 1

£ .- ]

This systemn of anivariate polynomials, by the property (Continuation of Parlial
Solutions) musl slways bave a commen zero that can be determined by forming
the greatest common divisar, g :— { — 1, of the three polynomials and solving lor ¢.
This leads to £ — 1.

Substituting (2,2,4,1) in the fifth, .. . eights polynomial of the Grobner basis

gy

(and making all polynomials monic) yields the system

—
r—2
r—2
r - 4

Again, thie sysiem of univariate polynomials, by the property (Continuation of
Partial Solutions) must have a common zero that can be determined by forming
the greatest common divisor, h := v — 2, of the four polynomials and solving for r.
This leads to r = 2.

Actually, it has been shown recently in (Kalkbrener 1887) and, independently, in
(Gianni 1987) that the computation of greatest common divisors is not necessary in
the above procedure. Rather, as can be verified in the above example, for each of the
univariaie systems the first non zero polvromial will always be the greatest common
divisor of the systemn. This is a drastic simplification of the general procedure for
solving arbitrary systems of polynomial equations by the Grobner bases method.

7 Application: Detection of Singularities
In tracing implicitly given planar curves, numerical methods work well except when

tracing curves through singular points, see (Hofmann 1987), (Ilofmann 1987a) has
pointed out that Gébner bases yield an immediate approach to detect all singular
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points of implicitly given planar curves. The singular peints of a planar curve given
by f(z,y) = {l are exactly the points (a.5) that are common zeros of f, f, and f,.
Ilence, the problem of determining the et S of singular points of a planar curve f
can be treated by the following algorithm.

{Algorithm for Detection of Sf:lgu]ai"'.t'u:.\'- |

G = GB({ /], f=, fu}). where f.. f, are the partial derivatives of f w. r.
i. 2 and ¥ IL‘EPEEHTEI}' and (GB has (o he :'r}rr‘|51111.ur] w. r. t. a lexical
ordering of 2, y.

G i= wet of common 2eros of (7 determined '.'J]-‘ the successive substitution
method.

Exnmple: Lel us consider the following planar curve

This curve has 8 singular points. We detect them by applying GB to {f, f., £, }
where

{ Four Cirele Curve)
Jim (2 4y — (e - 1) 182 (e + 1P+ — 1)+ (- 1P - 1),
Application of GB, using the lexical ordering determined by 2 = v, yields

(Grﬁbnﬂr Basis fur Four Circle C-un'e:l

v .oy,
r.y.ply),
a* — y'.q(u)

i | TR 3.4 1,2 g8, 3

where  ply) i=9t= V=gt = 2y -3
Tw 0 mEsRocd 823w GBSGow , B335, | 5
gdyli=S ¥ — 5 =" ¥ iy

One sees that, for any selution y of the first polynomial in the Grobner basis,
the second peolynomial vanishes identically whereas the third equation yields at
most two different values for @. Proceeding by the general substitution method for
Grobner hases, we obtain the following singular points:

o B R WL
(—1/2,v3/2),(1/2,4/3/2),
(—+/312,1/2), (v3/2,1/2),
(0,0),
(—1/2,—-4/3/2),(1/2,—+/3/2),



Tn accordance with the picture. we obtained five different values [or y and,
altogether, nine singular points, The computation look 78 sec in the author’s
muMATI Grabner bases package on an Apollo workstation emulation of an 1BM
AT

8 Application: Geometrical Theorem Proving

Automaled Geometrical Theerem Proving is intriguing in two ways. irst, it is a
playground for developing and studying new algorithmic techniques for automated
mathematics and, second, it becomes more and more important for advanced goeo-
metric modeling, which requires to check plausibility and consistency of inaccurate
and numerically distorted geometrical objects and to derive and restore Lheir consis-
tent shape, see for example (Kapur 1987). Apart from older approaches Lo geomel.-
rical theorem proving hased on heuristics, recently there have been developed three
systematic npproaches based on three different algorithmie methods in computer
algebra, namely Collins’ eylindrical algebraic decomposition methed (Colling 1975),
Wu's method of characteristic sets (Wu 1978) and the Grabner basis method. [Kul-
zler 1987) compares Lhe three methods, The use of Grobner bases for anlomated
geometrical theorem proving has been independently introduced by I3, Kutzler and
D, Kapur, see [or example (Kutzler, Stifter 1986 and (Kapur 1986, Tn this section
we give an outline of the main idea how Grobner bases can he used [ proving
Ht:l.rlth::[.ri_(_';'j.]_ theoreme, We start with an ttxun:plc of a _genmelrical thearem. For
simnplicity, we present Kapur's approach, Kulzler's approach is slightly different.

Example: Apollonios’ Circle Theorem.

The altitude pedal of the hyvotenuse of a right-angled iriangle and the midpotnts
of the three sides of the triangle lie on a ciovele,

B(D,yzl

G{D,yﬁ}

£{o0,0) : -
E{_"f'lggﬂ.l n{}'r1 1G}
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After introdueing coordinates, & possible algebraic formulation of this problem

is as follows:

(Hypotheses)

hii= 2yg =y =10 (E is midpoinl of (4},
hpi= 2y —y =0 (F is midpoint of AH, 1st coordinale),
hgi— 2y oy —10 (F is midpoint of AD, 2nd coordinate),
hyi= 2ys — v (7 is midpoint of B,
hoi= (yr— ) + 98 —(yr—w)

{ma 3..',,_':|:I1 =10 (length EAM = length IFAM),
he == (wr —ws)® 4t wi  (¥s — W)’

-7 =0 (length EM = length G},
Moy e [yg. Vi)ys + v =0 { H lies on leJ.
he = =iy + Yty =0 (CH is perpendicular to AR,
[(.‘-1!'][:]']5;"'1’:‘]"}

ei= (w o w) ¥ = (yr—we)’-

(yx e =D {lenpth B AL — length ITAS).

Ter prove Lthe theorem means to show that

fi.'-l' E‘l“ Gy, 0 fign f= R:
it hl{ﬂ:l,...,fr]n} = W cnwgligltyy o) — Oy

then r_‘(ll,. - .,:Im:l' =10,

All expressions h; and ¢ ocenrring in this proposition are polynomial expres-
sions. Il one replaces R by C, the proposition, by definition, is just the proposition
“e € Radical({h,,... hg})". However, by (Radical Membership), arbitrary radical
membership questions “¢ © Radical({h,,... . hn})7" can be decided by deciding
“l £ GB({hy,..., hm,2.0 —1})7", where z must be a new indeterminate.

This methed is totally general and automatic for all geometrical thearems whose
hypothesis and conclusions are polynomial cquations. In fact, it is also efficient.
Hundreds of non-trivial theorems have been proven by this approach, most of them
in only several seconds of computing time, see (Iutzler, Stifter 1886), (Kapur 1986)
and {Kutzler 1987) for extensive statistics.

Two remarks are appropriate. First, replacing U by € slightly distorts the
problem. Of course, if 2 geometrical thearem holds over © then it also holds over
R.. The reverse is not true in general, It turns out, however, that the geometrical
theorems occuring in the mathematical literature are generally true over C. Still,
one must bear in mind that, if a negative answer is produced by this method for a
given proposition, this does not necessarily mean that the proposition 15 false over
R. 11 is false over C. it could be still true over R,

Second, most geometrical theorems are only true lor the “general” case. It may
well happen that they are [alse for “degenerate” situations, for examples, when
circles have zero radius, angles become zero, lines hecome parallel etc. Geomel-
ric theorem proving based on the Grobner bases method can handle degenerate

situations automatically in a very strong sense.




1. Tn situations where the degencrate situations can be described in the form
d(ry,...,n) 7 0. d a polvnomial, one can again use a new indeterminate to
transform the question into an ideal (and, hence, Grébner basis) membership

quesiion, Namely,
Va{(h(z) — 0 A 8(2) £ 0) = e(z) = )

is equivalent to

is equivalent to
1 & GBlh,w.s — 1,10 — 1}

Using this wellknown transformation technique one can actually show that
the Gribner basis method vields a decision algorithm for the following gen-
eral class of formulae:

{(quantifiers){arbitrary boolean combination of polynomial equalions)

where either all the quantifiers must be existen tial or they must be universal,

and the formulae muel be ¢losed, i e. no free variables may oceur.

2. The Gréobner hases approach to geometrical thearem proving can also be
modified in such a way that, in case a proposition dees not hold in general, the
method autematically prodeces a set of polynomials deseribing the degenerate
cases in which the proposition may be fulse. Roughly, this can be done, for
example, by analyzing the denominators of the coefficients that are produced
when Grobner bases are computed over rational function coefficient fields.
(Juite some research has been devoted to this guestion, sec (Kutzler 1986)

and (Kapur 1986).

9 Application: Primary Decomposition

A polynemial ideal is “decomposable” iff it can be represented as the non-trivial
inlersection of twe other polynomial ideals. Geometrically, this corresponds to a
representalion of the algebraic manifold (set of zeros) of the ideal as the non-trival
union of two algebraic manifelds. It is well known in polynomial ideal theory that
every polynomial ideal can be decompesed inte finifely many ideals that can not
be decomposed further (“irreducible comporents”) and that this decomposilion is
essentially unique. This is the content of the famous Lasker-Nocther decompesition
theorem, sce for example (Van der Waerden 1933). However, the proof of this
theorem is mon-vonstructive, 1. e. no generzl algorithmic method is provided thal
would find, for a polynomial ideal given by a finite basis F, Lhe finite bases for its
irreducible components.

In more detail, the primary decomposition of a polynomial ideal (algebraic man-
ifold) I (algebiraic manifold) not only gives its irreducible parts (the carresponding
“prime ideals™) &5 bul also information about the “muliiplicity” of these irreducible
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parts. This information is contained in the “primary ideals” tJ; corresponding to
the prime ideals. Fach prime ideal and ils vorresponding primary ideal implicitly
describe the same irreducible algebraic manifald. However, the prime ideal and a
carrespomding primary ideal may be different. In this case, the primary ideal tells
s “how often” the irreducible manifold defined by the prime ideal occurs in the
algebraic manifold defined by the given ideal I, Summarizing, the algorithmic ver-
sion of the primary decompesition problem has the following specificalion (where
we use Z( #') for “set of commen zeros of F7:

(Primary Decomposifion Problem |

Given: F.
Find: (v;, H; such that
the Ideal( () are primary,
the Tdeal(IT,) are the prime ideals corresponding to Ideal((+,),
Ideal( &) = [ Tt]t‘.iﬂ“?g_:l,
(. e L(F) = U; 4{0:)), and

some minimalily conditions are satisfied.

Note that the problem depends on the underlying coeflicient field. For cxample,
z? 4+ 1 is irreducible over B but reducible over C.

Recently the problem of algorithmic primary decomposition has been completely
solved using Gribner bases. Still, the algorithm for the most general case is not yet
implemented in a software systern, Complete implementations may be vxpected for
the very near future, A number of papers, of different generality and level of detail,
contributed to the recent progress in this area: (Kandri-Rody 1984), (Lazard 1985],
(Gianni, Trager, Aucharias 1985), {Kredel 1887).

An exact formulation of the problem and a detailed description of the algorithms,
which are quite involved, is beyond the scope of this paper. Il should be clear
that automatic decomposition of algebraic manifolds (e. g. intersection curves of
AD objects) should be of utmost importance for reametrical modeling where the
global analysis of finitely represented objects, as appozed ta a mere local numerical
evaluation, is more and more desirable in advanced applications. All the algorithms
invented for the solution of the primary decomposition problem heavily rely on the
basic properiics of Gribner bases as compiled in Theorem 2.5.1 and Theerem 2.5.2,
notably on the propertics (Elimination Ideals), (Ideal Membership) and properties
derived from these properties as. for example, (Intersection ldeal).

Yor hringing this important research to the attention of the geomelric madeling
community we preseni = simple example showing the kindd of information obtainable
from a primary decomposition.

Example: Primary Decompesition of Cylinder/Sphere Intersection,
Let us comsider the intersection of & tvlinder with radius r; whose axis coincides

with the zj-axis and a sphere with radins 75 and midpoint 2t the origin. The
intersection curve consists of the common zeros of the following two polynomials:

Fim{e] + 2} - 2,2l 43} 2 2}~ 13},




Depending on whether vy < vs, vy = o0 07 7y = g, the primary decomposition
a]gorit.hm, over R, yvields the [ollowing representation of [deal( F') as the intersection

of [TITTETY 1edeals:

Case ry <l Ty:
Ideal(I") — Ideal{z; + r &

)
where r := y/rs — 7.

de gl r?]" Ideal{zs — 7"~"'"§ + :r.';T = 'P'f},

L]

The two primary components are, in fact, prime.
P ; P I
Clase 1y —
ldeal( F') = ldeal(z], s + =] —7]).
The ideal is already primary with corresponding prime ideal
B L B
Ideal(@g,2) | 27 #3).
Case vy = ryt
Ideal(F) = Ideal(z] —+3 + ¢, 23 + ] —r{)
The ideal is already primary and identical to the corresponding

]}TII”HI' III]['.H.!.

I JECLRL AT Fiel terms, the above outcome of the _’.}rimar_‘; dccomposit—ion nlgn

rithm gives us the [ollowing information:

Clase v, = 7+ The manifold decomposes in two irredueille cornpanenls, ||EJ.!tI{'.|_1,.f1
two horizontal circles of radius ry with midpoints (0,0, £¢). The multiplicity of
these cireles is one (the primary ideals are identical to their corresponding prime
idleals).

Case ry = ro: The manifold does not decompose, It consists of the horizontal
circle with radins 7 with midpoint (0,0,0]). [lowever, this circle has to be “counted
twice” because, in the primary ideal, there appears the term 23 whereas in the
prime ideal, which defines the “shape” (1. e. point sel] of the manifold, za appears
only linearly. This corresponds to the geometrical intuition that the intersection
curve results from merging, in the limit, the two horizontal circles of case r < 7s.

Case r; = rs: The manifold does not decompose (over R!). In fact it has no real
points. In contrast to the case r; = vy, the manilold has multiplicity one because
the primary ideal coincides with the prime ideal.

10 Conclusions

The Grobner bases method provides an algorithmic approach to many problems in
polynomial ideal theory, We tried to provide some first evidence that the meihod
could be a valuahle tool for the progressing needs of geometrical engineering (geo
metric modeling, image processing. robotics, CAD ete.].

Further research should concentrate on two areas:

& The theoretical praoblems ([or example. solutions at infinity in paremtric repre-
senlations) occuring in the application of the method to geometrical problems
must be completely studied.




e The computational behavior of the method must be improved by obhlaming
new mathematical results that could hold in the special situations (e. g. kine-
madtics of certain robot classes) in which the method is applied.

Research on efliciency aspects and on geometrical applications of the Grobner
basis method is only al the beginning,

Acknowledgement, | am indebted to C. Hofmann, and B. Sturmiels for por-
sonal connmunications [ used in this paper. Thanks also to B, Kutzler, R Michelic-
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