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Abstract. Among all the restrictions of weight orders to the subsets of monomials with a fixed
degree, we consider those that yield a total order. Furthermore, we assume that each weight vector
consists of an increasing tuple of weights. Every restriction, which is shown to be achieved by some
monomial order, is interpreted as a suitable linearization of the poset arising by the intersection
of all the weight orders. In the case of three variables, an enumeration is provided. For a higher
number of variables, we show a necessary condition for obtaining such restrictions, using deducibil-
ity rules applied to homogeneous inequalities. The logarithmic version of this approach is deeply
related to classical results of Farkas type, on systems of linear inequalities. Finally, we analyze the
linearizations determined by sequences of prime numbers and provide some connections with topics
in arithmetic.
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1. Introduction

We denote by N the set of nonnegative integers. If k ∈ N, the elements of Nk+1

can be naturally put in one-to-one correspondence with the monomials in k + 1
variables x0, . . . , xk by associating u ∈ Nk+1 to xu := x

u0
0 , x

u1
1 , . . . , x

uk
k . In this

paper, we analyze certain linear orders defined over the monomials xu of a fixed
degree, in a fixed number of variables. In particular, we deal with monomial orders
and weight orders.

DEFINITION 1.1. If F is a field, a monomial order on F [x0, . . . , xk] is any re-
lation < on Nk+1 or, equivalently, any relation on the set of monomials {xu, u ∈
Nk+1}, satisfying:

(i) < is a total order.
(ii) If u < v and z ∈ Nk+1, then u+ z < v + z.

(iii) < is a well-ordering.

Monomial orders are basic ingredients in the theory of Gröbner bases of polyno-
mial ideals (see, for example, [1]).
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DEFINITION 1.2. Let r := (r0, . . . , rk) be a vector in Rk+1, whose coordinates
are positive. Then, for any u, v ∈ Nk+1, define

u <r v iff r · u < r · v.
The relation <r is called the weight order determined by r.

If r0, . . . , rk are linearly independent over Q, then <r is a total order, and con-
versely. In this case, as a consequence of Dickson’s Lemma, we have that <r is in
fact a monomial order (see, for example, [1], pp. 69–72). Robbiano ([5]) has shown
that every monomial order on Ns is the lexicographic product of s weight orders.
Therefore, weight orders contain much information related to monomial orders.
In this paper, we will be concerned with the weight orders determined by some
increasing sequence of weights; in other words, if r is the tuple determining the
weight order, then we assume that ri < rj for any i < j . Our object of study is the
intersection over all possible choices of such weight orders restricted to each subset
of monomials of a fixed degree h in k+1 variables. Using the above rephrasing, in
place of monomials we consider the corresponding subset of (k+1)-tuples, namely
Dk

h ⊂ Nk+1. Theorem 2.3 characterizes each intersection as a partial order (Dk
h,�)

which has a simple combinatorial definition. Among all the linearizations of a fixed
Dk

h we focus on the restrictions of weight orders. These particular linearizations,
which we term β-linearizations, turn out to be achieved by some monomial order
whose restriction over the monomials of lower degree is uniquely determined by
the linearization itself. Subsequently, the β-linearizations are interpreted as system
of inequalities of the form

x
u0
0 , x

u1
1 , . . . , x

uk
k < x

v0
0 , x

v1
1 , . . . , x

vk
k ,

with
∑

i ui =
∑

i vi .
In Section 3 we enumerate all the β-linearizations of a fixed D2

h. The case
k ≥ 3 is investigated in Sections 4 and 5 with the help of a further class of posets.
Although our approach does not provide any enumeration in this case, it leads
to a necessary condition for the existence of such linearizations. This condition
can be easily checked in the cases D3

2,D
3
3 and D3

4. More precisely, we exhibit
a class of inferential rules which generate all the inequalities deducible from a
single inequality. The idea of describing inferences by means of certain rules has
been extensively developed, so far, in the case of linear systems (see, for exam-
ple, [2, 8, 10]). Since the logarithmic version of the above inequalities consists
of linear inequalities, our necessary condition is in fact derivable from a classical
result, namely the Kuhn–Fourier Theorem (see [8]). The cited theorem provides
a characterization for solvable systems of linear inequalities (for this reason, the
theorem is classified as a result of ‘Farkas type’). In the present work, we provide
an independent proof of the above necessary condition. Our argument yields, as an
immediate consequence, a better understanding of deducibility rules in our specific
context. In Section 6, we show that prime numbers in place of real numbers are
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enough to define all the weight orders <r . In Section 7, we describe some curious
symmetries of certain β-linearizations, which have been a further motivation to
develop the present analysis.

In the related case of binary strings, monomial orderings have been studied
by Maclagan (see [3]), obtaining a complete enumeration for smaller values of
the length. A concept similar to β-linearization, namely the coherent Boolean
order, has been investigated in the cited paper. Monomial orderings on binary
strings are a basic ingredient for the construction of Gröbner bases over exterior
algebras.

2. The Posets Dk
h and their β-Linearizations

We define a class of finite partially ordered sets (Dk
h,�).

DEFINITION 2.1. If h ∈ N+ and k ∈ N, Dk
h stands for the set of (k + 1)-tuples

u = (u0, . . . , uk) such that ui ∈ N for all i, and
∑

i ui = h. Given u, u′ in Dk
h, we

write u �∗ u′ (equivalently, u′ �∗ u) if ui = u′i + 1, ui+1 = u′i+1 − 1 for some
index i ≤ k−1, and uj = u′j otherwise. The relation�∗ is extended by reflexivity
and transitivity so as to obtain a relation�. If u � u′ (resp. u � u′), we say that
u is under (resp. over) u′.

By defining r(u) := ∑
0≤i≤k i · ui , we have u �∗ u′ ⇒ r(u) = r(u′) − 1,

whence � is antisymmetric. Furthermore, r(h, 0, . . . , 0) = 0, which means that
r(u) counts the elementary steps connecting u to the minimum; in particular, their
number does not depend on the path chosen. Thus, each (Dk

h,�) is a ranked poset.
It can be easily shown that each Dk

h is a lattice. The proof of this fact is postponed
to Section 5. Throughout this paper we will often denote vectors by sequences of
entries with no parentheses, nor commas (e.g. u0u1 . . . uk). In Figures 1 and 2, the
Hasse diagrams of D2

2, D
3
2 and D3

4 are shown (from left to right, instead of the
usual top-down representation).

Notice that (u0, . . . , uk) � (v0, . . . , vk) if and only if (uk, uk−1, . . . , u0) �
(vk, vk−1, . . . , v0). The next result is a basic tool for proving the subsequent theo-
rem.

Figure 1. (D2
2,�), (D3

2,�).
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Figure 2. (D3
4,�).

LEMMA 2.2. u� v if and only if
∑

j≥i uj ≤
∑

j≥i vj for all i ≤ k − 1.
Proof. (⇒) Suppose that u� v. Then, there exist z0, . . . , zn such that

u = z0 �∗ z1 �∗ · · · �∗ zn = v.

If n = 0 there is nothing to prove. Otherwise, let zγ,j denote the j th entry of z
γ

.
Since the definition of�∗ implies that

∑
j≥i zn−1,j ≤∑j≥i zn,j for any i ≤ k− 1,

by induction on n we obtain
∑

j≥i z0,j ≤∑j≥i zn,j for all i ≤ k − 1.
(⇐) If u �= v, then consider the rightmost coordinate where u and v differ.

Let i be the index for this coordinate. The inequality
∑

j≥i uj ≤
∑

j≥i vj implies
that ui = vi − t for some t > 0. Thus, we may replace v by v′ such that v′i =
vi − t, v′i−1 = vi−1 + t and v′j = vj for j �= i, i − 1. Now v′ still satisfies the
hypothesis, but this vector agrees with u in more coordinates than v, and v′ � v.
If i = 2, then v′ = u, so we are done. For larger i, we use induction on the position
i defined above, since we may replace v by v′ to reduce from i to i − 1, and the
transitivity of� yields u� v. ✷
THEOREM 2.3. Given u �= v in Dk

h, u� v if and only if

k∏
i=0

q
ui
i <

k∏
i=0

q
vi
i (1)

for every increasing sequence of k + 1 real numbers 0 < q0 < q1 < · · · < qk.
Proof. Suppose that u � v. Let n > 0 be such that u = z0 �∗ z1 �∗ · · · �∗

z
n
= v. We reason by induction on n. Let us set w := z

n−1 and define a as the
unique index such that va = wa + 1, va−1 = wa−1 − 1; by also using the inductive
hypothesis we get∏

i

q
ui
i ≤

∏
i

q
wi

i <
∏
i

q
wi

i ·
qa

qa−1
=
∏
i

q
vi
i .

Conversely, it is enough to prove that if u and v are incomparable, then there exists
a sequence 0 < q0 < · · · < qk such that∏

i

q
ui
i >

∏
i

q
vi
i . (2)
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Indeed, if u � v, then we use the previous argumentation to get (2). Let b be the
greatest index such that ub �= vb and assume that ub > vb. A sequence satisfying
(2) is built as follows: fix an increasing sequence {qi, 0 ≤ i < b}; then, choose
qb > qb−1 in such a way that qb >

∏b−1
i=0 q

vi−ui
i and, if necessary, complete the

sequence with any increasing sequence of numbers greater than qb. By doing so,
we obtain a suitable sequence, because

b−1∏
i=0

q
ui
i · qubb >

b−1∏
i=0

q
vi
i · qub−1

b ≥
b−1∏
i=0

q
vi
i · qvbb

and for each index j > b (if any) uj = vj . Now, assume that ub < vb. Let i be
some index contradicting the assertion of Lemma 2.2. Write U,V , respectively, in
place of

∑
j≥i uj ,

∑
j≥i vj and define 0 < q0 < · · · < qi−1 in any way (notice that

i ≥ 1). Let δ > 1 be such that

δ
∏
j<i

q
uj
j >

∏
j<i

q
vj
j . (3)

Using the hypothesis U > V , choose qi in such a way that q
U
V −1
i >

V
√
δ, or

equivalently q
U
V

i /
V
√
δ > qi . Now, if necessary, complete the sequence under the

condition

qi < qi+1 < · · · < qk ≤ q
U
V

i

V
√
δ
.

We get∏
j≥i

q
uj
j ≥ qUi ≥ δqVk ≥ δ

∏
j≥i

q
vj
j ,

and also using (3), we can conclude. ✷
As a consequence of the above theorem we obtain the following characterization
of each (Dk

h,�) in terms of weight orders.

COROLLARY 2.4. For every fixed Dk
h, the relation� is the intersection of all the

weight orders <r , restricted to Dk
h, such that r0 < · · · < rk .

Proof. If u� v �= u and <r is such a weight order, then∏
i

(eri )ui <
∏
i

(eri )vi ⇒
∑
i

riui <
∑
i

rivi ⇒ u <r v,

where the first inequality is due to Theorem 2.3. On the other hand, if u �� v,
then the same theorem enables us to find an increasing sequence of real numbers
{si} such that

∏
i s

ui
i ≥

∏
i s

vi
i . Furthermore, we may assume that s0 > 1, because
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any sequence {αsi}, with α > 0, clearly induces the same inequality of {si}. Since
u ≮(log s0,...,log sk) v, the vector u does not precede v in the intersection of all the
weight orders. ✷
If h = 1 or k ≤ 1, then Dk

h is easily seen to be totally ordered by�. Let us suppose
that h, k ≥ 2 and consider the set

Wk
h := {{u, v} ∈ Dk

h ×Dk
h : u �� v ∧ u �� v}.

If L = {u, v} ∈ Wk
h and α ∈ N+, then we define αL := {αu, αv}. Notice that

αL ∈ Wk
αh, by Lemma 2.2. Furthermore, we set L := {v, u} and say that L is equal

to L with reversed orientation.

DEFINITION 2.5. A β-linearization of (Dk
h,�) is an extension of � to a total

order, obtained by defining for each {u, v} ∈ Wk
h

u� v ⇔
k∏
i=0

q
ui
i <

k∏
i=0

q
vi
i ,

where q is a fixed increasing sequence of k+1 positive real numbers, which neces-
sarily yields only strict inequalities. We say that q induces the β-linearization λq .

Theorem 2.3 implies that the notion of β-linearization is well-defined. Since the
multiplication of q by any positive number does not change the corresponding
β-linearization, we may assume that q0 > 1. Thus, we see that λq corresponds to
the weight order <logq0,...,logqk , restricted to Dk

h. Observe that the linear indepen-
dence over Q of {log qi} translates to

(q
z0
0 · qz1

1 · · · qzkk = 1, zi ∈ Z) ⇒ zi = 0 ∀i.
It may happen that q induces a β-linearization of some Dk

h, whereas it yields only
a partial ordering over a certain Dk

h′ , because some element L ∈ Wk
h′ gets no

orientation. For example, the above situation occurs when

h = 2, h′ = 3, k = 2, q = (2, 4, 32), L = {(1, 0, 2), (0, 3, 0)},
or when

h = 3, h′ = 2, k = 2, q = (2, 4, 8), L = {(1, 0, 1), (0, 2, 0)}.
Nevertheless, it turns out that each β-linearization λq is always the restriction of

some total weight order <r . To see this, let us assume that the (k+1)-tuple q (with
q0 > 1) is such that

∑
i ci log qi = 0 for some rational numbers {ci}. Notice that

log qk can vary in a suitable neighborhood X � log qk without altering the related
β-linearization (here we use the finiteness of Dk

h). Since

|X| > ℵ0 = |{ρ : {log q0, . . . , log qk−1, ρ} are lin. dependent over Q}|,
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it follows that we can find some x ∈ X such that <(logq0,...,logqk−1,x) is a total weight
order over the whole Nk+1. Furthermore, by the definition of monomial order
(see Definition 1.1(ii)) we may easily deduce that every total weight order, which
extends some fixed β-linearization, is uniquely determined over

⋃
θ≤h D

k
θ . To sum-

marize, we have thus established the

PROPERTY 2.6. Every β-linearization ofDk
h can be extended to some total weight

order on Nk+1. Any two such extensions coincide over
⋃

θ≤h D
k
θ .

Given the real numbers 0 < q0 < · · · < qk , let Ak
h(q0, . . . , qk) stand for the

subset of R+ made of all the products of h elements chosen in {qi} with repetitions
allowed. If |Ak

h(q0, . . . , qk)| = |Dk
h| (that is, if q induces a β-linearization over Dk

h)
the two structures are given a natural bijection, while the relation� is a first indica-
tor of how much the position of the totally ordered elements in (Ak

h(q0, . . . , qk),<)

is conditioned by the underlying combinatorial structure.
The obstruction to the choice of a β-linearization among all the available lin-

earizations can be interpreted by means of systems of inequalities. For example,
let us consider D2

2 or D3
2, depicted in Figure 1. In the former case only one pair

is incomparable, namely {(0, 2, 0), (1, 0, 1)}. That is, the order� captures almost
completely the behavior of (A2

2(x, y, z),<) for any 0 < x < y < z, because we
can find both 0 < x′ < y′ < z′ such that x′z′ < y′2 and 0 < x′′ < y′′ < z′′ such
that x′′z′′ > y′′2; hence, the totally ordered set has one of the following forms:

z2 > yz > y2 > xz > xy > x2; z2 > yz > xz > y2 > xy > x2.

Instead, in the latter case, five pairs are incomparable, whence there are at most 25

ways of obtaining the final linearization. Nonetheless, some obstructions (more or
less evident) actually reduce the choices. Thus, we need to know which systems of
inequalities are satisfiable among the 32 ones, of the form

z2 ∗1 yw, yz ∗2 xw, y2 ∗3 xz,

z2 ∗4 xw, y2 ∗5 xw,

where ∗i ∈ {<,>} and 0 < x < y < z < w. Theorem 2.3 does not face this
question, for it only deals with single inequalities. Nevertheless, it ensures us that
all the combinatorial obstructions are in fact arithmetical constraints. We formalize
the above discussion by associating to each L ∈ Wk

h the inequality

βL ≡
k∏
i=0

x
ui
i <

k∏
i=0

x
vi
i .

A β-linearization of (Dk
h,�) can be interpreted as a suitable choice of one inequal-

ity between βL and βL, for each element L.

DEFINITION 2.7. Let * ⊆ R+. The inequality βL′ is *-derivable from βL if
βL′ is satisfied by every increasing sequence {q0 < · · · < qk, qi ∈ *} which
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satisfies βL. We write βL ⇒* βL′ . If * = R+ we simply write βL ⇒ βL′ and
say that βL′ is derivable from βL. An analogous terming is used for systems of
inequalities in place of single inequalities.

Every β-linearization is to some extent related by the above derivability conditions.
In the next three sections we will therefore investigate such conditions, in order to
get some more knowledge about the allowed linearizations.

3. The β-Linearizations of D2
h

In this section we enumerate the β-linearizations of (D2
h,�) for any fixed h ≥ 2.

Let us denote the variables by p, q, r. If L ∈ W 2
h , then βL is equivalent to either

parb < qa+b or pa′rb
′
> qa

′+b′ , with a + b ≤ h, a > 0, b > 0, and conversely.
Thus, a satisfiable system {βL : L ∈ W 2

h } can be set up in at most 2h(h−1)/2 ways.

LEMMA 3.1. The system

S:

{
parb < qa+b,

pa′rb
′
> qa

′+b′,

having positive real numbers as exponents, can be satisfied by some real numbers
0 < p0 < q0 < r0 in place of p, q, r respectively, if and only if b/a < b′/a′. Under
this condition, each inequality of the form pa′′rb

′′
< qa

′′+b′′ (resp. pa′′rb
′′
> qa

′′+b′′)
with a′′, b′′ > 0 is derivable from S if and only if b′′/a′′ ≤ b/a (resp. b′′/a′′ ≥ b/a).

Proof. An equivalent condition for a sequence 0 < p < q < r satisfying S is(
q

p

)γ ′

<
r

q
<

(
q

p

)γ

, (4)

with γ := a/b, γ ′ := a′/b′. Clearly, (4) does not hold if γ ≤ γ ′. On the other hand,
when γ > γ ′, a suitable sequence can be produced by choosing any 0 < p < q and
subsequently finding a number r such that (4) holds. We will prove only the case
< of the second assertion (the other one is similar). Suppose that b′′/a′′ ≤ b/a. By
the first inequality of S we get

pa′′
0 r

a′′b/a
0 < q

a′′+a′′b/a
0 . (5)

Since a′′b/a − b′′ ≥ 0, the provable inequality

r
a′′b/a−b′′
0 ≥ q

a′′b/a−b′′
0

yields, together with (5), the desired inequality. On the contrary, if b′′/a′′ > b/a

we show the existence of 0 < p1 < q1 < r1 which do not verify the requested
inequality, though they satisfy S. To this end, set γ ′′ := a′′/b′′ and observe that γ ′′
and γ ′ are both smaller than γ . Set γ := max(γ ′, γ ′′). Then, the condition(

q1

p1

)γ

<
r1

q1
<

(
q1

p1

)γ
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is satisfiable, by the previous argumentation; moreover, the solutions are suitable
for S, though pa′′

1 rb
′′

1 > qa
′′+b′′

1 . ✷
COROLLARY 3.2. The system

S:

{
pairbi < qai+bi , 1 ≤ i ≤ I,

p
a′j rb

′
j > q

a′j+b′j , 1 ≤ j ≤ J,

where all the exponents are positive real numbers, can be satisfied by 0 < p0 <

q0 < r0 in place of p, q, r respectively, if and only if

max

{
bi

ai
, 1 ≤ i ≤ I

}
=: M < M ′ := min

{
b′j
a′j
, 1 ≤ j ≤ J

}
,

having defined M := 0 if I = 0, M ′ = +∞ if J = 0 and using the rules of
extended arithmetic. Under this condition, the inequalities of the form pcrd <

qc+d : c, d > 0 and those of the form pc′rd
′
> qc

′+d ′ : c′, d ′ > 0 can be derived
from S if and only if d/c ≤M and d ′/c′ ≥ M ′, respectively.

The easy proof of the corollary is omitted. As a consequence, we can enumerate
the β-linearizations of (D2

h,�) : they depend uniquely by the choice of M, which
assumes either any rational value b/a with b ≥ 1, a ≥ 1, a + b ≤ h − 1, or the
value zero; in this case, we have M ′ = 1/(h − 1). In general,M ′ is the number
following M in (Q+ ∪ {+∞},<) among the admitted values. If M = h − 1, then
M ′ = ∞. By the previous analysis we get the

COROLLARY 3.3. The β-linearizations of (D2
h,�), h ≥ 2, are indexed by the

rational numbers of the form b/a, with b ≥ 0, a > 0, a + b ≤ h − 1. Thus, their
number is equal to 2

∑
1≤i≤h−1 φ(i), where φ is the Euler function.

Proof. We prove only the second assert, by induction on h. If h = 2, then the
admitted rational numbers are 0 and 1; hence the basis holds, because 2 = 2φ(1).
Let us assume that h = H > 2 and that the assert holds if h = H−1. The admitted
rational numbers whose numerator is equal to H − 1 are as many as the numbers
smaller than H − 1 and coprime with it. Thus, there exist φ(H − 1) such numbers.
We do a similar calculation with the denominator in place of the numerator. Now,
using the inductive hypothesis, we can conclude. ✷
In the previous section we have shown that every β-linearization of Dk

h is induced
by the restriction to

⋃
θ≤h D

k
θ of some total weight order, and that the restriction

does not depend on the order. On the other hand, the above corollary has the
following two consequences:

PROPERTY 3.4. If h > h′, then there exist several restrictions of total weight
orders to

⋃
θ≤h′ D

2
θ , which yield the same β-linearization over D2

h.
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Proof. Since the restrictions to
⋃

θ≤h D
2
θ of all the total weight orders <r , with

r0 < r1 < r2, correspond to all the β-linearizations of D2
h, the number of such

restrictions is a strictly increasing function of h. Therefore, at least two restrictions
defined over

⋃
θ≤h′ D

2
θ must coincide over

⋃
θ≤h D

2
θ . ✷

If k > 2, a weaker result can be established.

PROPERTY 3.5. If k ≥ 3, then for every h ≥ 2 there exists some h′ > h such
that two distinct restrictions of total weight orders to

⋃
θ≤h′ D

k
θ yield the same

β-linearization over Dk
h.

Proof. A fixed β-linearization λs of Dk
h′ induces the β-linearization λ(s0,s1,s2) on

D2
h′ " {u ∈ Dk

h′ : ui = 0 ∀i > 2}. Thus, the restrictions of total weight orders
to
⋃

θ≤h′ D
k
θ are at least as many as the β-linearizations of D2

h′ . Since there are
finitely many restrictions of total weight orders to

⋃
θ≤h D

k
θ , whereas the number

of β-linearizations of D2
h′ increases with h′, we get the assert. ✷

As a further application of the above corollary, let us consider the poset D2
3 and in

particular the three pairs of elements having rank 2, 3, 4 respectively (since D2
3 and

D3
2 are isomorphic posets, the reader may refer to Figure 1 using different labels).

The linearizations of this poset are at least 23, because the above pairs lie on distinct
levels. The obstruction is therefore evident, being 8 > 4 = |{0, 1/2, 1, 2}|.

We may consider sequences of the form 1 < ξ < η in order to represent all
the β-linearizations in the right upper quadrant of R2, over the bisector. In the case
h = 3, Figure 3 provides such a representation. The sectors I, . . . , IV are bounded
(clockwise) by the curves ξ = 1, η = ξ 3, η = ξ 2, η = ξ 3/2 and the bisector (we
have used different scalings for the two axes). The points lying in the interior of a
sector represent all the triples which induce the same β-linearization. As a further
suggestion, we have drawn the dotted line L which represents all the sequences
{xi} such that x1 − x0 = x2 − x1. We see that L lies in the third and fourth sector;
this means that the arithmetical progressions made of k + 1 = 3 numbers induce
only two linearizations among the four available.

Figure 3. Sequences (1, ξ, η) in the case h = 3.
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More generally, for any h ≥ 2, it can be easily shown that each sector is defined
by ξ 1+a′/b′ < η < ξ 1+a/b, where b′/a′ = M ′.

We conclude this section with a worth mentioning fact.

PROPERTY 3.6. The β-linearizations of D2
h, with h ≥ 3, form a proper subclass

of all the linearizations.
Proof. The distinct pairs {(1, 0, h−1), (0, 2, h−2)}, {(h−1, 0, 1), (h−2, 2, 0)}

give rise to the same inequality, namely pr < q2. This is of course an obstruction
to the free choice of an orientation. On the other hand, all the four choices give rise
to some linearization. ✷

4. Results for the Case k ≥ 3

The previous discussion seems more difficult to set up when k ≥ 3, because βL
cannot be reduced to a unique form. Hence, in this section we introduce a further
class of posets, in order to describe at least a necessary condition for obtaining
a β-linearization in every Dk

h. The main result (Theorem 4.3) provides a charac-
terization of all the inequalities βM which are derivable by some inequality βL,
where L,M belong to the same set Wk

h . Actually, this result might be established
with few difficulties using the Kuhn–Fourier Theorem (see also the Introduction),
which asserts that a system of linear relations is solvable if every legal linear
dependence leads to a relation always true, as for example 0 < 3 or 0 = 0 (by
definition, a system possesses a legal linear dependence if, using some correct
linear combinations, one can obtain a new relation with all zero coefficient of
the variables). In our proof, the concept of linear combination is used as well.
Furthermore, the techniques developed in our argumentation bear some conse-
quences (namely, Lemma 4.6 and Corollary 4.8) which do not seem to be easily
derivable from the classical result. These consequences are worth mentioning in
the present context; indeed, in Section 5 we avail of the cited lemma, whereas the
corollary is a sharpening of the Kuhn–Fourier Theorem in the particular case of the
system

βL,

0 < x0 < x1 < · · · < xk.

Let W k
h stand for the subset of

⋃
2≤θ≤h W

k
θ with the property that

∀θ ∀L ∈ Wk
θ ∃!M ∈ W k

h , ∃c : L = M + {c, c}, ci ≥ 0 ∀i.
Every inequality βL,L ∈ Wk

θ , is therefore equivalent to a unique βM,M ∈ W k
h ,

whose degree is the smallest admitted. The subset W k
h can be also defined by the

simpler condition {u, v} ∈ Wk
θ : uivi = 0 ∀i, e.g.

{(1011), (0300)} ∈ W 3
3 , {(102), (021)} �∈ W 2

3 , {(101), (020)} ∈ W 2
3 .



250 ANDREA VIETRI

Clearly W k
h ⊂ W k

h′ if h < h′. Let {ei}0≤i≤k stand for the canonical basis of Rk+1

and Ek
h be the set of (k+ 1)-tuples u = (u0, . . . , uk) such that each ui is an integer

and
∑

i ui = h. We define four classes of maps from W k
h to

⋃
1≤θ≤h+1(E

k
θ × Ek

θ )

as follows. If L ∈W k
h , then

Ai(L) := L+ {ei − ei+1, 0}, 0 ≤ i < k;
Bi(L) := L+ {0,−ei + ei+1}, 0 ≤ i < k;
Ci(L) := L+ {ei, ei+1}, 0 ≤ i < k;
Ci(L) := L− {ei, ei−1}, 0 < i ≤ k.

In the sequel, we will extend the symbol {u, v} to the pairs of elements of Ek
h. Let

Z denote the class of all the maps defined above. We endow W k
h with the following

partial order <. Firstly, we write L <∗ L′ if f (L′) = L for some f ∈ Z. Then,
the relation < is defined as the reflexive and transitive closure of <∗. An argument
similar to the one adopted for (Dk

h,�) can be used for proving that (W k
h ,<) is

ranked and that < is in particular antisymmetric. However, these new posets have
no maximum nor minimum in general (they may be even disconnected, as W 3

2 in
Figure 5). The rank function is defined as r({u, v}) := δ+∑i i(ui − vi), for some
suitable integer δ.

The following relation does not extend < as a partial order, for we will quickly
check that it is not antisymmetric.

DEFINITION 4.1. Let L,M ∈ W k
h . L is weakly preceding M (L <w M) if for

some H ≥ h there exist 2n positive integers {ai}, {bi}, i = 0, . . . , n− 1, and n+ 1
elements {L = L0, L1, . . . , Ln = M} such that aiLi < biLi+1 for all i ≤ n− 1, in
(W k

H ,<). The sequence {Li} is termed an inferential sequence related to L,M.

Remark 4.2. <w is not antisymmetric because for example L <w 2L <w L.
It is still transitive, as it could be easily seen. Moreover, L < M clearly implies
L <w M.

In the following theorem we show that the maps belonging to the class Z give rise
to all the possible inequalities which can be derived from an initial inequality βM .
Thus, we exhibit a class of algorithms for generating all the logical consequences
of βM related to some fixed Dk

h.

THEOREM 4.3. βM ⇒ βL if and only if L <w M.

The proof of the ‘only if’ part of the theorem will be split into two lemmas. Let li ,
0 ≤ i ≤ k−1, denote the (k+1)-tuple ei+1−ei . Observe that Ek

0 is a k-dimensional
Z-module having {li} as a basis. Given L := {u, v}, M := {u′, v′} in W k

h , let us
define z := v − u, z′ := v′ − u′. Then, for some integers {ai}, {bi}, z = ∑

i aili ,
z′ = ∑

i bi li . We will write 〈0 : a0, 1 : a1, . . . , k − 1 : ak−1〉 in place of L, with
the indices not necessarily increasing (this notation will be useful in the proof of
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Proposition 5.1). Also notice that the hypothesis of incomparability yields easily
ai < 0 < aj for some i, j , as well as bs < 0 < bt for some s, t . The following
claim will be useful in the next section:

PROPERTY 4.4.

ai =
i∑

r=0

(ur − vr), for all i ≤ k − 1.

The assert can be easily proved by induction, using the relations −a0 =
v0 − u0, a0 − a1 = v1 − u1, a1 − a2 = v2 − u2, . . . , ak−2 − ak−1 = vk−1 − uk−1.

LEMMA 4.5. If some positive rational number q satisfies qai ≥ bi (resp.
qai ≤ bi) for all i, then L <w M (resp. L >w M).

Proof. We deal with the first case. If q = c/d we have

L <w cL = c{u, v} = d{u′, v′} + {cu− du′, cu− du′} +
+
{

0, c
∑
i

ai li − d
∑
i

bi li

}

= dM + {cu− du′, cu− du′} +
∑
i

(cai − dbi){ei, ei+1}−

−
∑
i

(cai − dbi){ei, ei}

= dM + {t, t} +
∑
i

αi{ei, ei+1}

for some t , where αi := cai − dbi ≥ 0 ∀i. We use induction on
∑

i αi for proving
that cL < dM. If that sum is zero, then αi = 0 ∀i and we get t = 0 by the
following argument: if ti ≥ 0 ∀i then ti = 0 ∀i by the definition of W k

h ; else, if
ti < 0 for some i, then cL has some negative entry because u′iv

′
i = 0 ∀i; this is

absurd. In conclusion, we get cL = dM. Now assume that αs > 0 for some s.
Define N := {x, y} := cL−{es, es+1}. First suppose that N has only non-negative
entries. We claim that N ∈ W k

ch−1. Indeed, if by contradiction N was a pair of
comparable vectors, then by Lemma 2.2

∑
j≥i xi − yi ≥ 0 ∀i (the other case does

not arise in this context, having subtracted {ei, ei+1} from an incomparable pair).
On the other hand, the same lemma implies that

∑
j≥I (du

′
j − dv′j ) < 0 for some

index I . Therefore, because

N = dM + {t, t} +
∑
j �=s

αj {ej , ej+1} + (αs − 1){es, es+1},

the same index I is such that
∑

j≥I (xj − yj ) < 0, which is absurd. Moreover,
xs+1 = us+1 = 0, ys = vs = 0. Thus, N ∈ W k

ch−1. Since
∑

j �=s αj + αs − 1 <∑
j αj , it follows that N < dM by induction. Finally, since cL = Cs(N) < N , we
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have that cL < dM, by transitivity. Now assume that N has some negative entry.
Then, necessarily, one of the following three cases holds: xs = −1, ys+1 ≥ 0;
xs ≥ 0, ys+1 = −1; xs = −1, ys+1 = −1. In the first case, define N ′ := cL +
{0, es − es+1}. This element has no negative entries, because ys+1 = 0 implies that
cvs+1 > 0. Furthermore,

N ′ = dM + {t + es, t + es} +
∑
j �=s

αj {ej , ej+1} + (αs − 1){es, es+1}.

Therefore, reasoning as above, we see that N ′ ∈W k
ch, and applying induction we

get N ′ < dM . Finally, using the map Bs , we obtain cL = Bs(N
′) < N ′ and conse-

quently cL < dM. In the second case we consider the element cL+{−es+es+1, 0}
in place of N ′, and reason as above. In the third case we use N ′′ := cL+{es+1, es},
observing that

N ′′ = dM + {t + es + es+1, t + es + es+1} +
+
∑
j �=s

αj {ej , ej+1} + (αs − 1){es, es+1}.

The case qai ≤ bi in the assertion of the lemma is treated similarly. ✷
Before introducing the second lemma, we give some definitions. The system
{βL, βM} can be written as

1 <

k−1∏
i=0

(
xi+1

xi

)ai

, 1 >

k−1∏
i=0

(
xi+1

xi

)bi

. (6)

Indeed,

βL ≡ 1 <
∏
i

x
vi−ui
i ≡ 1 < x

−a0
0 · xa0−a1

1 · · · xak−2−ak−1
k−1 · xak−1

k ,

and we reason similarly with βM . It is useful to consider the variables yi :=
xi+1/xi , where each yi is supposed to be a real number greater than 1. Notice
that every given vector y can always be associated to some suitable sequence {xi}.
Thus, we write the system as

1 <
∏
i

y
ai
i , 1 >

∏
i

y
bi
i ≡

{
φ(y) > 1,

ψ(y) < 1,

having introduced the functions φ,ψ . We do similarly with {βL, βM}.
LEMMA 4.6. If there exists no q ∈ Q+ such that qai ≤ bi (resp. qai ≥ bi) for
all i, then βL �⇒ βM (resp. βM �⇒ βL).
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Proof. In order to prove the first assert, let us assume the following hypothesis:

(H) ≡ bi ≤ 0 < ai or bi < 0 ≤ ai for some index i.

Observe that the hypothesis of the lemma is implied by the given condition. Since
φ = φ̂y

ai
i , ψ = ψ̂y

bi
i with φ̂, ψ̂ not depending on yi , a sequence Y such that

φ(Y ) > 1, ψ(Y) < 1 is easily obtained when bi < 0 < ai , by choosing Yi large
enough. Else, if bi = 0 then ψ does not depend on yi and Theorem 2.3 enables
us to find a suitable sequence Y ′ such that ψ(Y ′) < 1; now, if necessary, increase
Y ′i so as to get φ(Y ′) > 1. If ai = 0 a similar argument is used. Now suppose
that (H) does not hold and that (ai = 0 ⇒ bi ≥ 0), (bi = 0 ⇒ ai ≤ 0). We
claim that for some indices i, j the following five conditions hold: ai > 0, bi > 0,
aj := −Aj < 0, bj := −Bj < 0 and aiBj > Ajbi . The first four conditions are
satisfiable because L,M belong to W k

h and therefore ai > 0, bj < 0 for some i, j ;
if we suppose that the last condition does not hold whenever the others are satisfied,
then a number q which contradicts the hypothesis can be exhibited by defining

q := min

{
bi

ai
: ai > 0, bi > 0

}
.

Indeed, firstly this definition implies that qaj ≤ bj , also in the case that aj and
bj are both negative. To prove this, consider ai, bi > 0 such that q = bi/ai;
then, qaj = −qAj ≤ −qBjai/bi = −Bj = bj , so we are done. Furthermore,
the remaining case ai ≤ 0 ≤ bi is trivially satisfied by q. For showing that βL �⇒
βM it is enough to exhibit an element Z such that φ(Z) > 1 = ψ(Z), because
we can subsequently obtain the desired sequence by slightly modifying Z (using
a continuity argument over (1,∞)k). Let us write φ,ψ respectively as φ̃yaii y

aj
j ,

ψ̃y
bi
i y

bj
j . Thus, φ̃, ψ̃ do not depend on yi and yj . According to Theorem 2.3, we

can find two sequences which satisfy βM and βM respectively. As a consequence,
again due to continuity, there exists a sequence Y which makes ψ(Y ) equal to 1.
Let us set K := ψ̃(Y ) = Y

Bj
j /Y

bi
i ; if we choose any number Zj ≥ Yj and define

Zi :=
(
Z
Bj
j

K

)1/bi

, Zs := Ys ∀i �= s �= j,

then we obtain a correct sequence Z still with the property that ψ(Z) = 1. More-
over, for some positive number C,

φ(Z) =
(
Z
Bj
j

K

)ai/bi

· Z−Aj

j φ̃(Y ) = CZ
aiBj/bi−Aj

j

and if we choose Zj large enough, the condition aiBj > Ajbi implies the existence
of a sequence Z′ which makes φ(Z) greater than 1. The second assert can be
similarly established. ✷
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Proof of Theorem 4.3. If L �<w M then βM �⇒ βL as a consequence of the two
lemmas above. Moreover, the ‘if’ part is easily derivable by the definition of weak
comparability. That is, each map of the class Z is easily seen to represent some
correct inference between the involved inequalities; thus, βL can be deduced from
βM through a finite sequence of inferences. ✷
COROLLARY 4.7. If L,M, {ai}, {bi} are as above, then the following facts are
equivalent:

(a) L <w M <w L.
(b) βL ⇔ βM .
(c) There exist q, q ′ ∈ Q+ such that qai ≤ bi, q

′ai ≥ bi for all i.
(d) M = qL for some q ∈ Q+.

Proof. The equivalence between a and b is a straightforward consequence of
Theorem 4.3, as well as the two lemmas above, together with the ‘if’ part of the
theorem, make a and c equivalent. d implies of course b. It suffices to prove that c
implies d. By the assumption, it follows that aibi ≥ 0 for all i. Furthermore, since
as > 0, at < 0 for some indices s, t , we have

q ′ ≥ max

{
bi

ai
, ai > 0

}
≥ min

{
bi

ai
, ai > 0

}
≥ q,

q ′ ≤ min

{
bi

ai
, ai < 0

}
≤ max

{
bi

ai
, ai < 0

}
≤ q,

whence q = q ′. Therefore, we obtain bi = qai ∀i, that is v′i − u′i = q(vi − ui) ∀i.
The last equality, together with uivi = u′iv

′
i = 0 ∀i, leads to the conclusion. ✷

The argumentation used in the proof of Lemma 4.5 yields the

COROLLARY 4.8. The relation <w can be defined more simply through

L <w M ≡ ∃c, d,H ∈ N+ : cL, dM ∈ W k
H , cL < dM.

In other words, if we consider the logarithmic version of our inequalities, the above
claim characterizes the derivable inequalities by means of a proper subclass of
all the allowed linear combinations. In particular, the multiplication by positive
numbers (namely, d and 1/c) need to be performed only in the beginning and
in the end respectively, whereas the intermediate steps (related to the order <)
represent summations with the inequalities xi < xj , i < j , together with possible
subtractions of the equalities xi = xi .

The proof of the following fact does not require any result of the above ones. It
might have been obtained directly by the definition of�. Anyway, the formalism
developed in this section will add some more clearness to the argumentation.

LEMMA 4.9. Each (Dk
h,�) is a lattice.
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Proof. Let u, v be incomparable elements of a fixed Dk
h. Then, we have that

v − u ∈ Ek
0 . Hence

u+
∑
i∈I

aili = v +
∑
j∈J

bj lj =: z,

∃I �= ∅ �= J, I ∩ J = ∅, ai > 0 ∀i, bj > 0 ∀j.
Notice that u, v are both under z. We will show that z = u∨ v, by proving that any
w �= z which is over these two elements, is also over z. By the hypothesis, there
exist some sets S, T such that

w − u =
∑
s∈S

Asls, w − v =
∑
t∈T

Bt lt , As > 0 ∀s, Bt > 0 ∀t,

and S ∩ T is possibly non-empty. Therefore,∑
t∈T

Bt lt −
∑
s∈S

Asls =
∑
j∈J

bj lj −
∑
i∈I

ai li,

whence, for example, I ⊆ S and Ai ≥ ai for all i ∈ I . It follows that

w = u+
∑
s∈S

Asls

= u+
∑
s∈I

Asls +
∑
s∈S\I

Asls

= u+
∑
s∈I

as ls +
∑
s∈I

(As − as)ls +
∑
s∈S\I

Asls

= z +
∑
s∈I

(As − as)ls +
∑
s∈S\I

Asls � z.

Similarly, the greatest lower bound can be proved to exist for every pair. ✷

5. A Sharper Result for D3
h, h ≤ 4

Here we show that the weak comparability in W 3
4 can be defined by means of

inferential sequences which remain inside W 3
4 itself. Moreover, the extension from

< to <w carries only a slight change to the structure, whereas in the cases W 3
h ,

h = 2, 3, the relation <w collapses to <.

PROPOSITION 5.1. Let L = {u, v},M = {u′, v′} be elements of W 4
3 . If L <w M

then, an inferential sequence {L0, . . . , Ln} related to L,M can be chosen in such
a way that Li ∈W 4

3 for all i.
Proof. Since βM ⇒ βL, Lemma 4.6 guarantees the existence of a positive ra-

tional number q such that qai ≥ a′i for all i, where as usual v − u = ∑0≤i≤2 aili ,
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v′ − u′ = ∑
0≤i≤2 a

′
i li . If q = 1, then we get the assertion because L < M after

a brief calculation. Now assume that q := min{q : qai ≥ a′i ∀i} > 1; let ai be
negative, for some index i. Then, a′i < ai (otherwise qai < a′i) and q ≤ a′i/ai .
Furthermore, there exists some positive element aj . We claim that a′s − a′t ≤ 4 for
all s, t . Indeed, a′1 − a′0 = u′1 − v′1 ≤ 4, and a similar equality holds whenever s, t
are consecutive. Furthermore, by Property 4.4, a2 − a0 = u′1 − v′1 + u′2 − v′2 ≤ 4,
and we are done. As a consequence we have that ai ≥ −3, for otherwise every
at ≤ 0 is actually equal to zero, whence L �∈W 4

3 ; the same argument yields aj ≤ 3
(of course nothing changes if we replace as with a′s).

Thus, we may distinguish three cases. (A) ai = −2, a′i = −3. Then, any a′j
positive is equal to 1, which implies that q = 1 is large enough to provide the
weak comparability (notice that a′j > 0 implies aj > 0, because qaj ≥ a′j by
hypothesis). It follows that L < M. (B) ai = −1, a′i = −3. We use the same
argumentation. (C) ai = −1, a′i = −2. Then, the hypothesis q > 1 implies that
at least one couple {aj , a′j } is equal to {1, 2} (here we also use a′j ≤ 2). Let k
denote the remaining index. Firstly, let us suppose that a′k ≤ 0; then, the hypothesis
qak ≥ a′k implies that ak ≥ −1, because in any case a′k ≥ −2 (otherwise
a′j − a′k ≥ 5). If ak = −1, then a′k = −2 and we get the assert; otherwise, if
ak ≥ 0, then we decrease it to 0 (if ak > 0), multiply by 2 the element obtained
(namely 〈i : −1, j : 1, k : 0〉) and, if a′k < 0, decrease 0 to a′k. Hence we obtain
the element 〈i : −2, j : 2, k : a′k〉. Now suppose that a′k > 0. Then, ak > 0, and
one can easily check that k, j must be consecutive; moreover, a′k ≤ 2 (otherwise
a′k − a′i ≥ 5). It follows that a′k = 2 is an admitted value (this is not trivial only
when a′k = 1); we can therefore decrease ak to 1, in case, then multiply by 2 the
new element and finally decrease the k-th entry (equal to 2) to a′k, if necessary.
Since the decreasing procedure gives rise to a greater element (with regard to the
order <), than the whole procedure yields a suitable sequence. The case 0 < q < 1
is interpreted as M >w L together with r := 1/q > 1 such that rai ≤ a′i for all i.
Now an argument similar to the one above leads to the conclusion. ✷
In Figure 4 we provide a representation of (W 3

4 ,<
w) based on a horizontal Hasse

diagram of (W 3
4 ,<). The reader should identify the top with the bottom, so as

to get a cylinder. The pairs within the grey connected regions are the ones which
contradict antisymmetry. Also the thick segments come from the extension of <
by the weak comparability, though they are compatible with the rank function of
the initial poset. Notice that the extension involves pairs which contain always one
element of W 3

4 \W 3
3 . Therefore, the weak comparability is precisely the relation <

in the cases W 3
h , h = 2, 3.

It is worth observing that Theorem 4.3 sheds very little light on the classification
of β-linearizations, essentially because it takes account of the only combinatorial
structure of (Dk

h,�), leaving aside almost all the restrictions due to the infer-
ences among inequalities. The following brief analysis aims to emphasize this
aspect.
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Figure 4. (W3
4 ,<

w).

DEFINITION 5.2. A set S ⊆ (W k
h ,<

w) is an ideal if

(L ∈ S,M <w L) implies M ∈ S,
for every pair L,M.

In particular, if <w is a partial order, the notions of ideal and order ideal coincide.
Theorem 4.3 implies that a fixed β-linearization of (Dk

h,�), say λs , may be associ-
ated to an ideal of (W k

h ,<
w)which contains either L or L and not both, for everyL.

This ideal is defined as {L : βL(s) holds }. If k = 3 and h = 2, 3, then every ideal
is an order ideal of (W 3

h ,<). Nevertheless, many ideals are not associated to any
β-linearization. Let us consider for example (W 3

2 ,<), represented in Figure 5. If
we denote by L,M,N the elements with the same rank in the left component,
from left to right, then an elementary calculation yields βL ∧ βN ⇒ βM and
βL ∧ βN ⇒ βM , which is an obstruction to the choice of order ideals representing
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Figure 5. (W3
2 ,<) = (W3

2 ,<
w).

β-linearizations, e.g. {L,M,N, {0200, 1001}, {1001, 0020}} is not allowed. We
hope that some basic information is nested in some fixed level, as the middle one
in the above case. Probably, Theorem 4.3 together with an adequate investigation
on levels may lead to some more interesting conclusion. Notice that the above
counterexample is valid for every h ≥ 2, k ≥ 3. In the general case, the struc-
ture depicted in Figure 5 is properly contained in W k

h , and the ideal generated by
L,N,M is not allowed.

Following the above example, we conclude this section with the natural gener-
alization of Property 3.6.

PROPERTY 5.3. If k ≥ 3 and h ≥ 2, the β-linearizations of (Dk
h,�) are properly

contained in the class of all the linearizations of the poset.
Proof. Assume that h = 2H . Then, the three pairs of elements

{2He1,H(e0 + e2)}, {H(e1 + e2),H(e0 + e3)}, {2He2,H(e1 + e3)}
have rank equal to 2H, 3H, 4H respectively. One can therefore construct 23 lin-
earizations by firstly orienting these pairs. On the other hand, the obstruction car-
ried by the related inequalities (similar to the above one) reduces the choice of the
three orientations for obtaining a β-linearization. The same proof can be adapted
to the odd case, by adding 1 to some fixed coordinate throughout. ✷

6. The Interpretation inside N

If p0 < p1 < · · · < pk are prime numbers, then the weight order determined by
(logp0, . . . , logpk) is a total order. This is a straightforward consequence of the
Unique Factorization Theorem. Indeed,

k∑
i=0

ci logpi = 0⇔
k∏

i=0

p
ci
i = 1⇔ ci = 0 ∀i,

for otherwise, if the second equivalence did not hold, by separating the positive
exponents from the negative ones we could prove the existence of some natural
number having two distinct factorizations. As a consequence,<(log p0,...,logpk) in-
duces a β-linearization in each Dk

h. In this section we prove the following ‘prime
number’ version of Theorem 2.3.
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THEOREM 6.1. Given u �= v in Dk
h, u � v if and only if (1) holds for any

increasing sequence of k + 1 prime numbers q0 < q1 < · · · < qk. Thus, for any
fixed Dk

h, the relation� is the intersection of all the weight orders <(logp0,...,logpk),
restricted to Dk

h, such that p0 < · · · < pk are primes.

The above result will be derived by the following proposition, whose basic number-
theoretic ingredient is Bertrand’s postulate (see, for example, [6]):

∀x ∈ N \ {0, 1}∃p prime : x < p < 2x.

PROPOSITION 6.2. If there exists a sequence of real numbers 1 < x0 < · · · < xn
which satisfies finitely many inequalities of the form

n∏
i=0

x
ai
i <

n∏
i=0

x
bi
i

for some nonnegative real numbers {ai}, {bi}, then there exist prime numbers
q0 < · · · < qn such that the same inequalities hold when each xi is replaced by
qi throughout.

Proof. A fixed inequality can be rewritten as
∏

i x
bi−ai
i > 1, whence some

number N large enough can be chosen in such a way that

(
n∏
i=0

x
bi−ai
i

)N

> 3(n+1)
∑

i ai .

Let M be the maximal value of N among all the inequalities; we can assume that
xM0 ≥ 2. Let us set r0 := -xM0 .. By Bertrand’s postulate, there exists a prime
q0 ∈ (r0, 2r0). Then,

xM0 ≤ r0 < q0 < 2r0 < 3xM0 .

We choose q0 as the first prime of the sequence. The construction of the other
primes is done by induction: suppose that qi has been defined for some i < n. Set
ri+1 := -qi(xi+1/xi)

M.. Again by Bertrand’s postulate, we can find ri+1 < qi+1 <

2ri+1 so as to get

qix
M
i+1

xMi
≤ ri+1 < qi+1 < 2ri+1 < 3

qix
M
i+1

xMi
.

Thus, the primes {qi} are increasing and verify

xM0 < q0 < 3xM0 ;
(
xi+1

xi

)M

<
qi+1

qi
< 3

(
xi+1

xi

)M

, 0 ≤ i ≤ n− 1.
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Now the following calculation, performed for each fixed inequality, leads to the
conclusion.

n∏
i=0

q
ai
i = q

n∑
i=0

ai

0

n−1∏
i=0

((
qi+1

qi

) n∑
j=i+1

aj
)

< 3

n∑
i=0

ai
x

M
n∑
i=0

ai

0

n−1∏
i=0

(
3

n∑
j=i+1

aj ·
(
xi+1

xi

)M
n∑

j=i+1
aj
)

≤ 3
(n+1)

n∑
i=0

ai
x

M
n∑
i=0

ai

0

n−1∏
i=0

(
xi+1

xi

)M
n∑

j=i+1
aj

= 3
(n+1)

n∑
i=0

ai
( n∏
i=0

x
ai
i

)M

<

( n∏
i=0

x
bi
i

)M

= x

M
n∑
i=0

bi

0

n−1∏
i=0

(
xi+1

xi

)M
n∑

j=i+1
bj

< q

n∑
i=0

bi

0

n−1∏
i=0

(
qi+1

qi

) n∑
j=i+1

bj

=
n∏
i=0

q
bi
i . ✷

We are now ready for the

Proof of Theorem 6.1. We prove the nontrivial implication. Assume that u �� v;
then, by Theorem 2.3 there exists an increasing sequence of real numbers {xi}
which does not satisfy (1). We can suppose that x0 > 1. Now Proposition 6.2
ensures the existence of a prime sequence which contradicts (1). The last assert is
proved in the same fashion of Corollary 2.4. ✷
As a further consequence of Proposition 6.2, we can define the classes of
β-linearizations by replacing real numbers with primes in Definition 2.5, according
to the straightforward

COROLLARY 6.3 (to Proposition 6.2). Every β-linearization is induced by some
sequence of primes.

Therefore, we also obtain a new proof of the first part of Property 2.6. Finally, the
proof of Theorem 4.3 can be adapted to obtain the

THEOREM 6.4. Let P denote the set of primes. Then βM ⇒P βL if and only if
L <w M.

Proof. We proceed analogously to the basic case, using Proposition 6.2 in the
end of Lemma 4.6 to guarantee a prime sequence {xi} satisfying either (6) or the
system with reversed inequalities. By doing so, we obtain the ‘prime number’
version of Lemma 4.6. Subsequently, we follow the argumentation of the basic
case. ✷



COMBINATORIAL ASPECTS OF TOTAL WEIGHT ORDERS 261

The above results show that prime sequences may provide a valid tool for relating
the β-linearizations to arithmetical questions. We will give some more details in
the next section.

7. Colored β-Linearizations

This section is devoted to the initial motivation which led us to the current analysis.
Admittedly we have not been able, so far, to find connections worth mentioning
between the coloring properties here described and the concept of β-linearization.

DEFINITION 7.1. Let (xnxn−1 . . . x0)2, (ynyn−1 . . . y0)2 be the binary represen-
tations of the nonnegative integers x, y for some suitable n large enough. The
exclusive or between x and y is the nonnegative integer x ⊕ y = (znzn−1 . . . z0)2

such that for all i, zi := xi⊕yi , recalling that⊕ is the exclusive or (XOR) between
two binary digits.

DEFINITION 7.2. For a fixed u = (u0, . . . , uk) ∈ Dk
h, let I ⊆ {0, 1, . . . , k} be

such that i ∈ I ⇔ ui is odd. By definition, the map ckh sends u to
⊕

i∈I i if I �= ∅,
to 0 otherwise, e.g.

c3
2(1001) = 3 = c3

2(0110), c3
6(4200) = 0 = c3

5(0131).

DEFINITION 7.3. Let {qi}0≤i≤k be an increasing sequence of primes and
n ∈ Ak

h(q0, . . . qk). The color of n is defined as c(n) := ckh(u), where u ∈ Dk
h

and ui is the power of qi in the factorization of n.

If k = 3 and {qi} = {2, 3, 5, 7}, following the above examples we get c(14) =
c(15) = 3, c(144) = c(2625) = 0. Now we expose the two symmetries mentioned
in the Introduction.

FACT 7.4. Let {νi}1≤i≤35 be the enumeration of the elements of A3
4(2, 3, 5, 7) such

that i < j ⇒ νi < νj . Then, for any index i, c(νi) = c(ν36−i). That is, the string
consisting of the colors of A3

4(2, 3, 5, 7), ordered with respect to the usual ordering
in N, is palindrome.

FACT 7.5. Let {ηi}1≤i≤20 be the enumeration of the elements of A3
3(2, 3, 5, 7)

such that i < j ⇒ ηi < ηj . Then, for any index i, c(ηi) = 3− c(ν21−i).

The latter fact can be regarded as a ‘reversed palindromy’, by associating the colors
as follows: 0↔ 3, 1↔ 2. The reader may check that the the two strings are

0 1 0 2 1 3 3 0 2 2 0 3 3 1 1 2 0 0 0 2 1 1 3 3 0 2 2 0 3 3 1 2 0 1 0,

0 1 0 2 1 3 3 2 2 0 3 1 1 0 0 2 1 3 2 3.

These two symmetries are not a full consequence of the given combinatorial defini-
tions; one can easily see this by changing the prime numbers involved and checking
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Figure 6. (D3
4,�) colored.

the strings obtained. We wish to understand whether the information carried by the
coloring is a proper tool for investigating the β-linearizations. In Figure 6 we have
depicted (D3

4,�) with colors in place of vectors (the coloring of any D3
h is easily

seen to be symmetric in the sense that c(s, t, u, v) = c(v, u, t, s)).
By comparing the partial order in Figure 6 to the palindrome string obtained

for A3
4(2, 3, 5, 7) one notices that all the elements of the same level are grouped

together, up to permutations, in the related β-linearization. For clearness, we write
the beginning of the palindrome string using separation marks:

0− 1− 02− 133− 0220 − 3311 − 20002 − · · · .

It might be interesting to understand whether the above phenomenon occurs in
every β-linearization of D3

4 and more generally in everyDk
h. Which are the possible

colored linearizations or β-linearizations of a fixed poset? Which other sequences
of primes behave like 2, 3, 5, 7? Can palindromy provide a way for characterizing a
certain class of prime numbers? In the end of Section 3 we have shortly considered
arithmetical progressions with only three numbers. This kind of investigation might
involve arbitrarily long (finite) arithmetical progressions, by choosing Dk

h with k

large enough. As in the case h = 3, k = 2, it is desirable to show that only certain
β-linearizations may arise. Coloring these linearizations might provide some valid
information. We think that a satisfactory knowledge of the admitted lineariza-
tions might enable us to describe certain properties of N using a combinatorial
language.

To conclude, we remark that some work is in progress in order to rephrase the
above coloring inside a graph-theoretical environment. More precisely, the col-
oring of Dk

h has been interpreted as the greedy edge-coloring of a suitable linear
(k+1)-uniform hypergraph (Bk

h,≺), where≺ is a total order given to the edges (for
the basic definitions related to greedy colorings, see, for example, [4]; for details
concerning the hypergraphs Bk

h , see [9]).
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