
GROEBNER BASES OF THE IDEAL OF A SPACE CURVE

T.G.BERRY

ABSTRACT. Detailed descriptions of Groebner bases of affine ideals
of space curves in general position are given, subject to restric-
tions on the singularities of the curves. For complete intersections
and curves on quadrics Groebner bases for graded reverse Lex are
also found, and some specific examples given.
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1. INTRODUCTION

In this paper we describe in detail the structure of Groebner bases
of the affine ideal of a space curve for elimination orders. The princi-
pal results are stated as theorems 5 and 8. Examples are worked out
for complete intersections and curves on quadrics and the resulting
bases compared with graded reverse Lex. The results are relevant
to the general question of the structure of Groebner bases for differ-
ent types of ideal and different term orders, (c.f. [8, 3, 5]) and more
specifically, to the question of the feasibility of using Groebner bases
for computations with space curves. This work in fact originated
in a study of the applicability of Groebner basis methods to tracing
space curves, a problem which arises in Computer Aided Geometric
Design. This will be reported on elsewhere.

2. NOTATION AND BASIC DEFINITIONS

We first fix some notation. We work over an arbitrary field
�
, and

all geometric objects are assumed defined over
�
. In particular, ���

means � � � . Homogeneous coordinates in ��� are ���
	��
	���	���� ; we
think of � ��� as the plane at infinity, and its complement as “the
finite space,” with corresponding affine coordinates ����������	�� �
�!�"�#	�$%�&�'�"� . We identify �)( with the plane �*�+� in �)� and
use the corresponding coordinates, homogeneous and affine. Both
capital and small letters are ordered �-,.�/,0�1,0� .
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Let
��� � � be a curve of degree � and arithmetic genus � ,�� , not

lying in a plane (The case � � � is simpler, and is described in [10]).
Let � ��� � � ���
	 � �� �
� � be the affine ideal of

�
in
��� � 	�� 	�$�� . Our

aim is to describe certain Groebner bases of � .
Let � denote the restriction to

�
of the projection from � � 	�� 	���	�� � to

the � �
	�� 	���� -plane, i.e., of ������	 � � 	�� 	��"	�� ����� � ( given by ���
	��
	���	�� ����
� � 	�� 	�� � , and let

��� � � � � � . We assume that
�

satisfies the follow-
ing, to be referred to as GPH (General Position Hypothesis):

1.
�

does not pass through � � 	�� 	��"	��"� , the hyperplane at infinity
� � � is transversal to

�
, and all singularities of

�
lie in the

finite space.
2. �"! � � ��� is birational. To avoid trivial cases, we assume that
� is not an isomorphism.

3. All singularities caused by projection are ordinary double points
at finite distance. That is, for almost all points # $ � 	&% $��� 	'� �(#�� �)% , the natural map �

�* !,+ *.- /10 � +32 - / is an iso-
morphism; if it is not an isomorphism then % is an ordinary
double point of

���
in the finite plane, so that �5476 �(%�� consists of

two non-singular finite points of
�

.

If
�

is infinite, and if
�

is non-singular then
�

will satisfy 1, 2, 3
after it is moved by a general projectivity. If

�
is singular then it

will satisfy 1, 2 after a general projectivity, but it will only satisfy 3 if
restrictions are made on the nature of its singularities. It is sufficient
that
�

lie on a non-singular surface. The same considerations hold
if
�

is finite and sufficiently large (with respect to 8:9�; � ). It is worth
mentioning this case because most of the experiments which led to
the results of this paper were made using Macaulay, Macaulay2, and
CoCoA, working over Macaulay’s canonical field, < � �(=>�@?A?�� � .

We shall in fact need also some further conditions: we shall as-
sume that each of a given finite set of given polynomials is dense, i.e.,
contains all monomials consistent with its degree with non-zero co-
efficients (for our purposes it would be enough to assume all mono-
mials of highest degree occur with non-zero coefficients). For ex-
ample, if B � � 	 � � � � is the equation of

�C�
(a notation to be used

throughout), then 8:9�;DB*�E� by GPH(2), and we shall assume that
�GF occurs in B . Providing we are dealing with finite sets of polyno-
mials and a field

�
of characteristic either 0 or sufficiently large, the

condition can be achieved by applying a general projectivity.
Let H � �.� � 	�� 	�$�� ��� be the affine coordinate ring of

�
, and H � ���� � 	��
� � �(B�� be the coordinate ring of

�C�
, so that on these affine rings

� corresponds to the map �
�
!IH � � H induced by the inclusion
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��� � 	��
�I� �.� � 	�� 	�$�� . We shall denote the passage to a quotient in H
and H � by

� �� �� . We extend this notation slightly, for example for� $ ��� � 	��
� , we write �� � �� � � 	 � � � � � �� 	 �� � .

3. GROEBNER BASES

Now we turn to the study of Groebner bases for � . By the term
“Gbasis” of � we always understand the reduced Groebner basis for
� , which is uniquely defined by � (the term order being given). Thus
if � is a Gbasis then (1) the lead term of any element of � is a multiple
of the leading term of some element of � and � is minimal with
respect to this property, i.e., contains no redundant elements, and,
(2) if � $�� then � is monic and none of its monomials is a multiple
of the lead term of any element of � �I	��G� . For all this, see [4].

Let us choose an elimination order for $ on
��� � 	 � 	�$ � . Recall that

this means that polynomials in
�.� � 	�� 	�$�� are ordered first by their de-

gree in $ , and ties are broken by some fixed, but for the moment ar-
bitrary, order on

��� � 	��
� . Let � denote the Gbasis for � for this order.
We first make some general remarks on the nature of � .

By the fundamental property of elimination orders, � � ��� � 	��1� is
a Gbasis for � � ��� � 	 �
� , hence consists of the single element B ��� 	�� � .
All other polynomials in � must contain $ explicitly. Since by GPH�

does not pass through � � 	�� 	��"	�� � there are polynomials in � which
are monic in $ ; since polynomials are ordered in the first instance by
$ -degree, there must be some such polynomial in � , and this polyno-
mial is of minimal degree in $ among polynomials in � , monic in $ . If
this degree is 1, i.e., if there exists in � a polynomial $�� � ��� 	�� � then it
is easy to see that � is an isomorphism

� � �C� , a situation we have
excluded. By prop.4 below, there do exist polynomials in � which are
monic of degree 2 in $ . Then some such polynomial � $	� and no
other polynomial of $ -degree 
�� can belong to � . We already know
that the only polynomial in

��� � 	 �
� in � is B , so all other polynomials
in � must be linear in $ , thus of the form $
��� � where

� 	�� $ ��� � 	��1� ,
� �� ������8 B . Following classical terminology we call such polyno-
mials monoids. It is clear that we understand � when we understand
the monoids.

To understand the monoids we call on the theory of adjoint curves.
If � $ ��� � 	 �
� annihilates the

��� � 	��1� -module H � H � then we call � an
adjoint polynomial. A projective plane curve is an adjoint curve if its
restriction to the finite plane is defined by an adjoint polynomial. (In
both these definitions it would be more correct to say adjoint to

� �
.
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The definitions are only reasonable because
� �

is non-singular at in-
finity.) This terminology is not the classical usage when

�
is singular.

The adjoint curves of
�C�

in classical terminology are curves coming
from the conductor of the integral closure of H � in its quotient field;
when

�
is singular, so that

�C�
has more singularities than the dou-

ble points caused by projection, this integral closure will be strictly
larger than H .

Let
� / be the divisor on

�
which is the sum of all the points

# $ � at which � is not an isomorphism, and let
� /10 be the set

of points on
���

which lie under points of
� / . Classically

� / is the
“double point divisor” and

� / 0 is the “set of double points of
�C�

caused by projection.” Let ��� denote the dimension of the space of
adjoint curves of

�C�
of degree � . Then ��� � 8�� � 	�� $ ��� � 	��1� 	&8>9�; ���

� and � is an adjoint polynomial � . (The “ � ” is because we are us-
ing affine coordinates.) Then the properties of adjoints that we need
are summarised in the following theorem. For

�
non-singular the

proof can be found in [6], or indeed in any classical text on algebraic
curves. The results extend to singular Gorenstein curves, as is ex-
plained in [9, 2]. One has only to interpret the canonical class as the
linear system associated to the dualizing sheaf on

�
.

Theorem 1.
1. A polynomial � $ ��� � 	��1� is adjoint to

�C�
if and only if the plane curve

� � � passes through all points of
� /10 .

2. The set
� / 0 imposes independent conditions on curves of degree 


� �"= .
3. Adjoints of any degree cut, residual to

� / , complete linear systems
on
�

.
4. Adjoints of degree � � = cut the canonical class on

�
, hence � F&4 � � � .

We have

Lemma 2. The map $ � � � �� � is an isomorphism (of
��� � 	 �
� -modules)

between the monoids in � and the ideal of adjoint polynomials. This isomor-
phism induces a bijection between monoids in � and the Gbasis of the ideal
of adjoint polynomials in

��� � 	��1� , the term order being the restriction of the
elimination order on

��� � 	�� 	�$�� .
Proof. If � $ �.� � 	��1� is an adjoint then � �$ � �� for some

� $ ��� � 	��1�
whence $ � � � $ � . Conversely if $ � � � $ � then it is easy to see
that �%� � passes through all points of

� /10 , hence is an adjoint by
theorem 1(1). This establishes the first assertion of the lemma. The
second follows easily from considerations of leading terms.
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Lemma 3. If $ � � � is a monoid and either the projective curve defined
by � � � does not have any points at infinity in common with

���
, or

8:9�; � � � ��� , then
� � � � � �
8 B , where 8:9 ; � � � 8:9 ; � � � . In particular

if $ � � � $ � then 8:9�; � � 8:9 ; � � �
Proof. The rational functions �$ 	 �� 	 �� have simple poles at all points at
infinity, as follows from the representations �$)�-�!�"� (restricted to

�
),

etc. and the hypothesis that the plane at infinity is transversal to
�

.
The first assertion of the lemma is a straightforward consequence of
this observation, and the second then follows because � is a reduced
Groebner basis.

The existence of the polynomial described in the following propo-
sition, without the degree bounds, is also proved in [1] and [10].

Proposition 4. There exists in � a polynomial of the form

$ ( ��� ��� 	�� � ��� � � 	�� �(3.1)

of total degree � � � � . If
�

is linearly normal, then the total degree is
� � � = .
Proof. Let ��� denote the divisor cut out on

�
by the plane at infinity.

As observed in the previous lemma, �$ 	 �� 	 �� have simple poles at in-
finity. Thus �$ ( has only double poles at infinity and therefore belongs
to 	 ��
��
� � , for any 
 
�� . Define

� ��
 � ��� ���� �� � 	�� � � ��
���� � �$ ���� �� � 	�� � � ��
 � ���
	
and let

� � ��
 � be the
�
-linear span of

� ��
 � � H . If, for some 
 

� , � � ��
 � ��	 ��
��
� � , then �$ ( can be written as a linear combination
of elements of

� ��
 � ; pulling back this relation to
��� � 	��1� gives an

equation of the form (3.1) of total degree 
 . But
� � ��
 ����	 ��
��
� � ;

thus to show the two spaces are equal it is enough to show they have
the same dimension. For 
 
 � � = the divisor 
���� is non-special,
so by Riemann-Roch � ��
���� �
� 
 � � � � � . As for 8�� � � � ��
 � , an easy
count gives ! � ��
 �"!"� ��
 � � � ( , for any 
 , but there are in general lin-
ear dependencies among the elements of

� ��
 � . Assume now 
 �
����� . Any relation of linear dependence between elements of

� ��
 �
can be written, on collecting terms, in the form �$ � � �� 	 �� � �

� � �� 	 �� � � � ,
where 8>9�; � �#
 � �"	'8:9�; � � 
 . Here �� �� � , since if �� � � we would
have �� � � � �� 	 �� � � � , hence the polynomial

� ��� 	�� � vanishes on
�C�

, a
contradiction since 8>9�; � ��
%$ � � 8:9�; �C� . We conclude (using also
Lemma 3) that relations of linear dependence in

� ��
 � correspond
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bijectively to reductions � �
8 � of monoids $ � � � , with 8:9�; � ��
 � � ,
and these in their turn (by lemma 2) correspond to adjoints � of

� �
of degree ��
 � � . Suppose now 
 � ��� � . Then adjoints of degree
 � � � � � = cut the canonical class, hence span a � -dimensional
space, so 8 � � � � �(� � ��� ��� � � � � (�� � � � � �(� � �"� �
� � which estab-
lishes the first statement of the proposition. Suppose now

�
linearly

normal. To determine the linear dependencies in
� � �(���
= � we need

the adjoint polynomials of degree � ��� � of
�C�

. Adjoining an appro-
priate multiple of a line to such an adjoint gives a canonical adjoint,
so the space of adjoints of degree � � � �

is equal to the space of
canonical adjoints of

�C�
containing a line, and this lifting to

�
is just	 ��� / � �
� � , which has dimension ������� � . Since we know, by the

hypothesis of linear normality, that � ��� � �
� �
, we find by Riemann-

Roch that ��� �
� ��� � � �
� � � � � ��� � ��� ��� ��� = � , and again we
conclude 8�� � � � � � � = �
� � � � �"� ( � � ��� � � � = � � � � � � � = � � � � � �� � � � � = � ��� � and the final assertion of the Proposition follows.

There now follows the first of our two main theorems.

Theorem 5. Let ��� denote the reduced Gbasis for � for pure Lex order.
Set � � � F&476 ��� F&4 ( �( � � . Then ��� has four elements. The matrix of leading
terms is 	 �GF 	�$�( 	�$ � 	�$���

� where the first entry is the initial term of the
polynomial B , the second term is the leading term of a polynomial $ ( �� � � � $ � � ��� 	�� � , where 8>9�; � � � � � , 8:9�; � � � the third term is the
leading term of a monoid of degree � , and the last term is the leading term
of a monoid of degree � � � .
Proof. B $ � for any elimination order and by general position B
contains the monomial � F , which is thus the leading term of B in Lex.
We next show that the Gbasis in Lex for the adjoint ideal of

� �
con-

sists of polynomials � � � � � � 	�� � � � , where 8>9�; � � � � ��	&8:9�;�� � � .
By Lemma 2 this gives the monoid terms in the Gbasis of � . (the
total degrees of the monoids are given by lemma 3). We establish
the adjoint ideal Gbasis by showing that � is the minimum degree
of adjoints which are polynomials in � alone, and that there exists an
adjoint of the form � � � � � � , 8:9 ; � � ��� � , but no adjoints of this form
with 8>9�; � $ � � � . In fact for � � � � $ ��� �
� to be an adjoint it is neces-
sary and sufficient that the set of horizontal lines �
� � should pass
through all points in

� /10 and there are � of these by the classical
formula for the genus of a plane curve. By general position no two
double points lie on the same horizontal line, so the minimal num-
ber of horizontal lines necessary to form an adjoint, i.e., the minimal
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degree of � satisfying these conditions, is � . Taking � � � � � ��� � �where the ��� � 	�� � ��	��!� �����	��� are the double points, gives an adjoint
of the desired type which is, a priori, defined only over the algebraic
closure of

�
. However, it is easy to see, using the fact that

� / 0 is an
algebraic set defined over

�
, that in fact � is defined over

�
. Finally, a

polynomial whose lead term in Lex is � has the form � � � � � � , � $ ��� �
� .
For this to be an adjoint we need � � � � �
� � � � � 	 � � ������� � and by La-
grange interpolation such a polynomial exists, of degree ��� � � . It
follows from theorem 1(2) that the degree is precisely � � � . Again, it
is easy to see that the interpolant is defined over

�
. Finally, we have

already noted the Gbasis must contain a polynomial monic of degree
2 in $ ; in view of the existence of leading terms $ � 	�� 
 in GL, which
is reduced, such a polynomial must have the given form. The degree
bounds on � � � � 	 � ��� 	�� � , are determined as in the proof of prop. 4: the
monomials �$ �� � 	�� ��� �#� � � , �� � �� � 	�� ��� � � � �"	�� � � �#� are linearly
independent and therefore span � ��� � � � , by a dimension count. But
�$�( $ � ��� �
� � and the result follows.

The next theorem will show that the situation is very different if
the elimination order is graded when restricted to

��� � 	��1� . We may
take the restriction as graded Lex. In the following lemma, ! � ! de-
notes the cardinality of the set � .

Lemma 6. Let � � ��� � 	��
� be a 0-dimensional ideal, with Gbasis � in
graded Lex. For each integer � let �
� � � denote the polynomials of degree � �
in � and let � � � � denote the polynomials of degree exactly � in � , and let
� � � 8�� ��� � � ��	
� � ��� � ��� � 476 	�� � ��� � ��� � 476 . Let �
� � ���G	 � !�� � � � ��
� � ��� and let 
/� � ��� 	 � ! � � $ �
�����
� � � � � . Finally, assume that there is a
basis for the space � ��
 � consisting of dense polynomials (c.f. the remarks
in � 2). Then ! ��! ����� � ��
 ��� � � � , ! � � ! � � if � �$ � � 	�
 � , ! � ��� �"! ��� � ,
and, for � � � � � ��
 , ! � � � � ! ��� � � � .
Proof. First we evaluate the ! � � � �"! . It is clear that ! � � � � ! � � for
� �!� � � . Let "�
� � � �#�
� � � � � � � � � � (we call "� the space of polynomi-
als of strict degree � in � ); then 8�� � "� � � � �#� � �$� � 476 �%� � . The den-
sity hypothesis implies that "�
� � � can be identified with a subspace
of �
� � � which has a basis of polynomials whose leading terms run
through the first � � monomials of degree � . With this identification
it follows easily, by considering initial terms, that the polynomials of
� � � � form a vector space basis of "� � � � � �&"� � � � � � � �'"� � � � � � . Sup-
pose first that �
�(� . Then � ��� � is a vector space basis of � �
� � and! � �
� � ! �)�*�)���+� . Suppose now � � � � � . Then, applying the above
argument, �,��� "� � � � � ��� � � � 476 	 � � 4 ( � 	��	��� 	 � � 4+-/.�021 � -/.3021 476 � . It follows
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that �
��� � "�
� � � � � � � � "� � � � � � � � � � � 	��	��� 	 � � 4+-/.�021 � -/.3021 � and has car-
dinality � � 476 � � . We conclude that ! � � � � !���� � � ��� � 476 � � � �)� � � �
and �,��� � � � � � consists of the � � monomials of degree � between the
� � 476 th and the � � th, as described. Finally, ! � ! � � �

��� � ! � � � � ! �
� ��� ��
 ��� � � � (the sum telescopes).

Lemma 7. For the adjoint ideal of
� �

, the integer 
 defined in lemma 6 is
� � � .
Proof. By (4) of theorem 1 the linear system cut by adjoints of degree
� ��� � has dimension � F&4 ( � ��� � � � . Since � F&4 � � � , the space
of adjoints of strict degree ��� � has dimension � � � , and this is pre-
cisely the number of monomials of degree ��� � in � 	�� . By general
position, a generic adjoint of degree � � � contains all these monomi-
als with non-zero coefficients and we conclude that there is a basis
for the space of adjoints of strict degree � � � which consists of � � �
polynomials whose leading terms run through all monomials in � 	��
of degree � �	� . In particular there is an adjoint with lead term �:F&4 ( ,
whence 
 ��� � � . Suppose 
 ����� = . Then there is an adjoint of
degree � � = with lead term �>F&4 � . Arguing as before this implies that
the space of adjoints of strict degree ��� = has dimension � � � , the
number of monomials of degree � �"= in � 	�� , so � F&4 � � � F�4�� � � � � ,
which gives, since � F&4 � � � , � F&4�� � � � � � � . But (c.f. the proof of
prop. 4) � F�4�� � � � � / � �
� � �#������� � , and

� ���
� � � ��� �
� � � � � � ��� �
But � � �
� � 
 �

, whence � F&4�� � �����
� ��
 � � � � = , a contradiction.

Theorem 8. Let � � � � 6 � � 	 + / � � � � for � $ < . and let � �����
	�	 � ! � � ��
��� . Let ��� be the Gbasis of � for the elimination order which restricts to
graded Lex on

��� � 	��
� .
1. ��� has cardinality � �
� . ��� contains the polynomial B , a polyno-

mial with lead term $ ( and degree � � � � , or � � � = if
�

is linearly
normal, and � ��� � � monoids.

2. Set � � � ��� 4 � � ��� 4 ��� 6 , � � �)� � ��� � 476 . Then the � ��� � � monoids
in ��� fall into blocks of degree � ��� ��� � � , � � � ��� � � . The
block of degree � � � ��� has cardinality � � , and for � 
 � the block of
degree � �	� ��� � � has cardinality � � � � , and the leading terms of
its monoids are $ 
 � , where � � 476 � � � � � � � � � and 
 � denotes
the j’th monomial of degree � � � ��� � � � � in � 	�� .

Proof. As in the proof of theorem 5, the key point is to determine
the Gbasis of the adjoint ideal of

�C�
; this is provided by lemmas 6
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and 7. In the notation of lemma 6 � � � � � for any integer � . Now
� 6 � � 	 + / � � � � � � � � � 	 + / � � / � � �
� � � � � F�4 �'4 � . Thus by the defini-
tion of � we have � � � � = � � , whence � � � � � � � � � � ��� 4 � . Lemma 7
gives 
�� � � � . Thus, applying lemma 6, we obtain a Gbasis for the
adjoint ideal which translates, via lemma 2, to the asserted descrip-
tion of the monoids in � � . The rest of the theorem now follows as
in the proof of theorem 5.

Finally, we remark that our results for space curves extend trivally
to curves in � � , as follows.

Theorem 9. Let
� � � � ( � 
 �

) be a curve in general position, not
lying in any hyperplane, with degree � and genus � . Let � � � 	������ 	 � � �be homogeneous coordinates on � � with corresponding affine coordinates
� � � � � � � � , ordered by � � 
 � � if � 
 � . Then the Gbasis for the affine
ideal of

�
, for a term order which eliminates successively � � , � ��� �����&= has

the form

� � � �
�
� 476 	 � � 476 �

�
� 4 ( 	��	��� 	 � � �

�
� 	 �
�
�

where
�
� $
��� � � 	����	� 	 � � � , 8:9 ;

�
� � � � � , �

�
is the Gbasis of the affine ideal

of the projection of
�

to �)� and has the form described in theorems 5 and
8, where the numerical invariants �"	 � � of theorem 8 are calculated on

�
.

Proof. Elimination of variables corresponds to successive projections� � � � �
�
� 476 �	���G�

�
� where

�
�
� � � . The projections are bireg-

ular, by general position. Then �
�
� � � �.� � � 	 � 6 	 � ( � is a Gbasis for�

� , so is given by theorems 5 and 8, where the numbers �"	 � � etc can
be calculated on

�
since they are invariant. For � � � 
 � 
 = , the

projections
�
� � 6 �

�
� induce isomorphisms on affine rings; since

the affine ring of
�
� is a quotient of

��� � � 	��	��� � � � it readily follows that
� � � 6 �

�
� $ � �

�
� � 6 � for some

�
� $
�.� � � 	����	� � � � . Such a polynomial, with

LT= � � � 6 , certainly belongs to � . The degree of
�
� can be bounded

using the technique of the proof of theorem 4. The coordinates func-
tions � � , viewed as rational functions on

�
(or, equivalently on any� � ) have simple poles at infinity, thus lie in � � � � � � for any � 
 � .

By the generalized Castelnuovo theorem of Gruson, Lazarsfeld and
Peskine (c.f., [7]) hypersurfaces of degree � ��� � � cut a complete
linear system on any curve

�
of degree � in � � , which is equiva-

lent to the statement that monomials of this degree, considered as
rational functions on

�
, span 	 � �(� ��� � � � ��� . The required bound

follows.
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Theorem 9 applies in particular to give the Gbasis of the ideal
generated by a general regular sequence of � � � polynomials in��� � � 	������ � � 476 � .

EXAMPLES

Theorems 5 and 8 confirm the inferiority of Lex as an elimination
order. Pursuing this theme further, we calculate the Gbases for com-
plete intersections and curves on quadrics, and compare with the
corresponding bases in graded reverse Lex (henceforth referred to
as DegRevLex), these being cases in which completely explicit calcu-
lations are possible.

Example 1. Complete Intersections.

If
�

is a complete intersection of surfaces of degree 
 	 � 	 
 � � ,
then

�
is projectively normal, of degree 
 � , and the canonical class

is cut by surfaces of degree 
 � � � �
(see, e.g. [2]). It follows that

� � ��� � 
 � ��
 � ��� � � , � � 
 � � � � , and � � � � � � � � ��
 � � � 	 � ��
 �
� �!� � � � 	�
 � � � � �"� ��� � � ��
 � � �"� � , from which the precise
form of the Gbasis can be written down. In particular the cardinality
of ��� is 
 � � ��
 � � � � �!� ��
 � � � �
� � � � � = , the least degree of
monoids in � � is ��
 � � � ��� � � � � � and the maximum is ��
 � � �"� � � .
Proposition 10. Let

�
be a complete intersection of surfaces of degree 


and � . Then the Gbasis for Graded Reverse Lex has cardinality 
 � � and
lead term matrix� $ � 	�$ � 476 � � 4 � � 6 	�$ � 4 ( � � 4 � � � 	������ 	�$ � � � � 4 ( 	 � � � � 476 ���
The proof is direct, taking into account that the Castelnuovo-Mumford
regularity of a complete intersection is 
 � � � � (so the ideal is gen-
erated in degree ��
 � � � � ).

To point the moral consider the ideal of a complete intersection of
curves of degrees 3 and 5. Then the Gbasis in Lex contains 4 polyno-
mials, of degrees 15, 60, 60 and 61; the Gbasis � � of theorem 8 has
cardinality 11 and lead term matrix� $ ( 	�$ � � 	�$ � � � ( 	�$ � � � � 	�$ � � � � 	�$ � � � � 	�$ � � � � 	�$ � ( � 6 � 	�$ � � 6 6 	�$ � 6 � 	 � 6 � �
with degrees between 9 and 15, while the Gbasis in DegrevLex has
cardinality 4 and lead term matrix� $ � 	�$ ( � � 	�$ � � 	 � � �
with degrees given by the lead terms.

Example 2. Curves on a quadric.
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Suppose
� � % � �)� where % is a geometrically irreducible non-

singular quadric. Recall the standard facts regarding quadrics (see
e.g. [2]). The Picard group of % is < � < , generated by the classes
of generators of % , so any invertible sheaf on % is � + * � � 	 � � for some
pair of integers � 	 � . We have

� � � + * � � 	 � � �/� � � � � � � � � � � 	 � 	 � 
 � �(3.2)
� 6 � + * � � 	 � � �/� � � � � � � � � � � ��	 � � � � 	 � 
 �(3.3)

or � 
 � 	 � 
 � �
� ( � + * � � 	 � � �/� � � � � � � � � � � 	 � 	 � � � �(3.4)

where it is understood that the � � are zero if � 	 � fall outside the given
ranges.

Let
�

be of type � � 	 � � on % , i.e., + * � � � �
� + * � � � 	 � � � , and let � /
be the ideal sheaf of

�
in + � � . Then there are exact sequences

� � + �)� � � �"��� � / � + * � � � 	 � � � � �
and

� � � / � + � � � + / � �
Twisting these by + � � � � � and taking cohomology, we get

� � � � �!		� / � � � �+� � � � % 	 + * � � � � 	 � � � � �(3.5) � � ��� + � � � � � �"���
� 6 � � � 		� / � � � �+� � 6 � % 	 + � � � � 	 � � � � �(3.6)
� ( � � �!		� / � � � �+� � ( � % 	 + � � � � 	 � � � � �(3.7)

� � 6 � � 	 + / � � � �
A curve of type � �"	 � � is rational, while a curve of type � � 	 � � is a com-
plete intersection. Thus let

�
be a curve of type � � 	 � � on % , where

� � � � � � � . Then one easily calculates, using (3)-(6) above and
the fact that a plane section of % has type � ��	�� � that � � � �#� 	5� �
� � � � � � � � � ��	 � � � ��� 	 � � � � � � � �"	�� � � � 	 � 
 � . Applying
theorem 8, we find that the cardinality of � � is � � � , and the degree
of the members of ��� lie between � � � and � ��� .
Proposition 11. In DegRevLex, the GBasis of the ideal of a curve of type
� � 	 � � 	�� $ � $ � on a quadric, in general position, has cardinality � � � � � ,
and the lead term matrix is� $ ( 	�$ ��� 476 	 ����	�$ ��� 4 ( � 	 ��� 476 � 	������ 	'�
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the final term being � � 4 � � � if � � � � � � � � , and $ � � 4 � 476 � if � � � � � � .
Proof. Note that the lead term matrices in DegRevLex are the same
for the homogeneous ideal and its dehomogenization with respect to
� . By expressions 3.5 and 3.2, one finds easily that the Castelnuovo-
Mumford regularity of the ideal is � , and, for � � ��$ � all mem-
bers of the ideal of degree � are multiples of % , the equation of the
quadric, while in degree � members of � have the form % B � �
where 8:9 ; B � � �	� and � moves in a � � � � � -dimensional space.
The proposition follows from these observations and a little calcula-
tion.

For example, a curve of type � ? 	 � � has lead term matrix in ���� $ ( 	 � 6 � 	�$ � � � � 	�$ � � � ( 	�$ � � � 	�$ � � 	�$ � � � � 	�$ � � � � 	�$ � ( ��� 	�$ � � 6 6 	�$�� 6 � �
while in DegRevLex the lead term matrix is� $ ( 	 � � � 	 ��� 	�$ � � � 	�$ � � �
For ��� , the high-order polynomials have degree 36.
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