
* Partially supported by a fellowship from the Center for Applied Mathematics at the University
of Notre Dame.
Correspondence to: P. Loustaunau

AAECC 8, 469—483 (1997)

On the Decoding of Cyclic Codes Using Gröbner Bases
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Abstract. In this paper we revisit an algorithm presented by Chen, Reed, Helleseth,
and Troung in [5] for decoding cyclic codes up to their true minimum distance
using Gröbner basis techniques. We give a geometric characterization of the
number of errors, and we analyze the corresponding algebraic characterization.
We give a characterization for the error locator polynomial as well. We make these
ideas effective using the theory of Gröbner bases. We then present an algorithm for
computing the reduced Gröbner basis over F

2
for the syndrome ideal of cyclic

codes, with respect to a lexicographic term ordering. This algorithm does not use
Buchberger’s algorithm or the multivariable polynomial division algorithm, but
instead uses the form of the generators of the syndrome ideal and an adaptation of
the algorithm introduced in [11]. As an application of this algorithm, we present
the reduced Gröbner basis for the syndrome ideal of the [23, 12, 7] Golay code,
and a decoding algorithm.
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1 Introduction

From an algebraic viewpoint, cyclic codes have a very rich structure. Because of
this, many elegant decoding procedures have been developed for codes in this class.
Some of the classical ones are presented in [2, 20, 21]. Recently, several authors
(e.g. [5, 6, 7, 8, 16]) have applied the theory of Gröbner bases to the problem of
decoding cyclic codes. In [16] the author uses the theory of Gröbner bases to solve
the key equation and presents a method for decoding with complexity equal to
that of the Berlekamp-Massey algorithm [3]. In [7, 8] the author presents
a method for decoding cyclic codes up to their true distance. This methods uses



elimination theory and requires the computation of a Gröbner basis for every
non-zero syndrome received. This is clearly undesirable given the fact that
Gröbner bases computation (via Buchberger’s algorithm) have exponential com-
plexity. In [5, 6] the authors revisit the algorithm presented in [7, 8] and attempt
to improve this algorithm by proposing the computation of a ‘‘generalized’’
Gröbner basis to be done at the beginning, for a generic syndrome. Using this
‘‘generalized’’ Gröbner basis, the authors propose a decoding method for cyclic
codes similar to the method proposed in [7, 8], now eliminating the need for
a Gröbner basis computation at each step. However, the complexity of computing
this ‘‘generalized’’ Gröbner basis using Buchberger’s algorithm (with lexicographic
ordering) increases significantly, since the number of variables is much larger in the
‘‘generalized’’ Gröbner basis case than in the case of the Gröbner basis used in [7, 8],
making the approach in [5] also impractical. In particular, if n is the length of the
code, and t is the number of errors it can correct, then an estimate for the complexity
of computing a Gröbner basis for the polynomials given in [6] with respect to the
lexicographic ordering using Buchberger’s algorithm is +(n#1)O(t3) (see [4, 11]).
The method we propose will reduce this complexity to +(n#1)O(t) (see Section 4).

The idea of applying Gröbner bases techniques and elimination theory for
decoding is quite nice and was originally presented by Cooper in [7, 8]. We note
however, that in [5], the authors attempt at generalizing this method is incom-
plete. In particular, after Theorem 2.3 in that paper, the authors claim that the
reduced Gröbner basis for a zero-dimensional ideal in the variables x
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. They then go on to build their entire

algorithm on this claim. This claim is clearly not true (see the examples contained
in this paper). Furthermore, as we mentioned above, the computation of Gröbner
bases via Buchberger’s algorithm has exponential complexity, thus severely limit-
ing the size of cyclic codes to which the algorithm in [5] can be applied. In fact, on
a Sun SparcStation 10 with 32 megs of memory, running SunOs 4.1.3, we were not
able to compute the Gröbner bases, using CoCoA, MACAULAY or the GB package
in MAPLE’s share library, even for small examples of cyclic codes.

In this paper we do two things. First, we put on solid theoretical grounds the
techniques presented in [5] of using Gröbner bases for decoding cyclic codes, and
we present an algorithm, based on these ideas, for the decoding of cyclic codes.
Second, we show that one can compute a Gröbner basis for the syndrome ideal
using an adaptation of the algorithm of Faugère, Gianni, Lazard, and Mora
presented in [11].

The paper is structured as follows. In Section 2 we describe the ideal and the
variety generated by the set of equations arising from the non-zero syndromes of
a code C. Then in Section 3 we use elimination and Gröbner bases theory to relate
the error locator polynomial to a certain elimination ideal of the syndrome ideal.
In Section 4 we outline a method for computing the reduced Gröbner basis for the
syndrome ideal with respect to the lexicographic term ordering. In Section 5 we
discuss some improvements on this algorithm when applied to the problem of
computing Gröbner bases for binary cyclic codes. Finally, in Section 6, we present
the reduced Gröbner basis for the syndrome ideal of the [23, 12, 7] Golay code.

Throughout this paper we use fundamental notions concerning Gröbner bases
and coding theory. We assume that the reader is familiar with the basic principles
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in each of these areas. We refer the reader to [1, 9] for a comprehensive introduc-
tion to the theory of Gröbner bases and to [19] for a comprehensive introduction
to the theory of cyclic codes. For further applications of Gröbner bases to
error-correcting codes see [14, 15, 22]. For an overview of the applications of
Gröbner bases to error-correcting codes, as well as an alternative set of equations
for decoding the Golay code via Gröbner bases see [10].

2 The Syndrome Variety

First we recall some basic facts about cyclic codes. Let C be a rate k/n cyclic code
defined over F

q
with generator polynomial g (x) of degree r"n!k, where we

assume gcd(n, q)"1. It is well known (see e.g. [19]) that C can be equivalently
described as the set of polynomials f (x) over F

q
having degree less than n that

vanish at the roots of g (x). Let a3F
qm

be a primitive n-th root of unity, where F
qm

is
the splitting field of xn!1. Let ai1, ai2, . . . , air be the roots of g (x), and
Mi

1
, i

2
, . . . , i

r
N-M0, 1, 2, . . . , n!1N. Then C can be viewed as the F

q
-kernel of the

parity check matrix:

(1) H"A
1 ai1 a2i1 2 a(n~1)i1

1 ai2 a2i2 2 a(n~1)i2

F F F } F

1 air a2ir 2 a(n~1)irB .

Let c3Fn
q

be a code word and let cJ be the received message, then cJ"c#e,
where e"(e

0
, e

1
, . . . , e

n~1
)@3Fn

q
is the error vector. To compute e we first

compute the syndrome s"(s
1
, s

1
, . . . , s

r
)@"HcJ"He3Fr

qm
and we solve the

following system of r equations:

(2) e
0
#e

1
aij#e

2
a2ij# . . .#e

n~1
a(n~1)ij"s

j
, j"1, . . . , r.

If we assume that the minimum distance of C is 2t#1 and that there are at
most t errors, and hence at most t non-zero coordinates in the vector e, then there
are several well-known algorithms (see e.g., [2, 20, 21] and more recently [6, 12,
13, 16]) to solve the system defined by (2). All of these are based on the following
fundamental theorem:

Theorem 2.1 ¸et C be a rate k
n
code of distance d72t#1. ¹o each error pattern

e with wt(e)6t there corresponds one and only one syndrome s.

In what follows, we present an algorithm that solves System (2) using the theories
of Gröbner bases and elimination.

For the remainder of this paper we will assume that the distance of C is at least
2t#1 and that the weight of the error vector e is q where q6t. We now express
the solutions of System (2) as points in a variety defined by multivariable poly-
nomials. As in [5], we introduce variables x

j
, zi and yi for j"1, . . . r and

i"1, . . . , t and we consider the following polynomials

f
j
"y

1
zij
1
#y

2
zij
2
# . . .#y

t
zij
t
!x

j
, j"1, . . . , r,

(3) hi"zn`1i !zi , i"1, . . . , t,

li"yq~1
i !1, i"1, . . . , t.
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Next, we let

(4) F"M f
j
D j"1, . . . , rNXMhi Di"1, . . . , tNXMli Di"1, . . . , tN.

Let I be the ideal generated by F, and letV(F ) be the variety defined by F, that is

V(F )"Mp3Fr2t
qm

D f
j
( p)"hi ( p)"li ( p)"0, j"1, . . . , r, i"1, . . . , tN"V (I).

It is easy to see that V (F) contains (q!1)t(n#1)t points, and so I is a zero-
dimensional ideal. We will refer to V (F) as the syndrome variety and I as the
syndrome ideal. Note that the varietyV(F ) contains all the information needed to
decode any received word cJ . Indeed, given a syndrome s"HcJ"He, where
wt(e)6t, there are points p3V(F ) that uniquely determines the error locations
and error values corresponding to e, namely

(5) p"(s
1
, s

2
, . . . , s

r
, 0, . . . , 0, al1, al2, . . . , alq, *, . . . , *, b

1
, b

2
, . . . , bq),

hgigj hgggigggj hgggigggj
x-#003$*/!5%4 z-#003$*/!5%4 y-#003$*/!5%4

where the non-zero entries of e are located in the l
1
, l

2
, . . . , lq coordinates and

have values b
1
, b

2
, . . . , bq respectively, and where * indicates that this coordinate

can be any non-zero element of F
q
(there are t!q such y-coordinates, correspond-

ing to the t!q zero z-coordinates). In fact there are ( tq )q! (q!1)t~q such points in
V(F ) corresponding to the syndrome s: points that are obtained from (5) by
a permutation of the z-variables and the corresponding permutation of the y-
variables. Let V

s
be the set of the ( tq )q!(q!1)t~q points corresponding to the

syndrome s. Let S be the set of all possible non-zero syndromes corresponding to
error patterns with weight at most t. Define E"X

s3S
V

s
. It is easy to see that

E contains (q!1)t+t
j/1

(n
j
)( t

j
)j ! points. Also, all the information needed to decode

any received message is in the set E. Therefore it is natural to study the set E,
however, the polynomials in (3) define a much larger variety V(F).

Example 2.2 Consider the primitive narrow sense BCH code with q"2, n"31,
k"11, and t"5. It follows from the above discussion that:

DE D"(q!1)t
t
+
j/1

(n
j
) ( t

j
) j !"24444275

DV(F ) D"(q!1)t(n#1)t"33554432.

SoV (F) has over nine million more points that E, or in other words, over 25% of
the points in V (F) are not in E and so do not correspond to error vectors.

To deal with this, one could add new polynomials to F that would restrict the
variety V(F ) to E. Indeed, if we add the ( t

2
) polynomials zizj (zni~znj

zi~zj
) to the set F,

then the variety corresponding to the enlarged set of polynomials is E. This follows
from the fact that the new polynomials force zi and zj to be such that either at least
one of them is zero, or they are both non-zero and they are distinct. But this
approach makes the computational treatment of the variety V(F ) prohibitively
expansive. So we will develop a method which will allow us to extract the decoding
information from V(F ), which is located in E, without computing E explicitly.

The key to decoding using the variety V(F) is to observe that the number of
errors is t minus the number of zero z-coordinates in the point p in (5), and that the
number of zero z-coordinates in the point p can be computed by looking at various
projections of the variety V(F ) onto (x, z

1
, . . . , z

k
)-planes, k"1, . . . , t. Since
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projection corresponds to the elimination of variables in the ideal I, and since the
presence of the origin in a variety can be determined easily by inspecting the
constant terms of the polynomials of the defining ideal, we have a method for
decoding. We now make these ideas more precise.

First, recall the notion of projection.

Definition 2.3 ¸et XLFb
qm

. For any a6b we define the projection of X onto the
first a coordinates by:

(6) <
a
(X)"Mp3Fa

qm
D&pJ 3Fb~a

qm
such that ( p, pJ )3XN.

Now we state the main result of this section relating the number of errors to the
projections of V(F).

Theorem 2.4 ¸et fi be the 1]i zero vector. Given cJ3Fn
q

and its corresponding
syndrome s"HcJ , there are q errors in cJ if and only if (s, fi)3<

r`i(V(F )) for all
i6t!q and (s, f

t~q`1
) N <

r`t~q`1
(V(F )).

Proof. Let s be a syndrome corresponding to an error vector of weight q, 16q6t.
Then a point p as in (5) is in (V (F) and so we have (s, fi)3<

r`i(V (F)) for all
i6t!q. Now suppose that pJ "(s, f

t~q`1
)3<

r`t~q`1
(V(F )). Then pJ extends to

a point p
0
"( pJ , pL

0
)3V(F ). Let

pL
0
"(c

1
, c

2
, . . . , cq~1

, g
1
, g

2
, . . . , g

t
)"(c, g).

hggiggj hgigj
z-#003$*/!5%4 y-#003$*/!5%4

Clearly c is not the zero vector since this would imply that s"0. Also, the
non-zero coordinates of c cannot all be distinct, since if they were, the non-zero
coordinates of c would represent an error pattern. Therefore we would have two
distinct error vectors associated to the same syndrome (they arise from the two
distinct points p and p

0
), contradicting Theorem 2.1. Therefore we must have

c
i
"c

j
for some i, j (in particular, p

0
NE). By the symmetry of (3) we can assume

without loss of generality that c
1
"c

2
. Now consider the point

pL
1
"G

(0, c
2
, c

3
, . . . , cq~1

, g
1
, g

1
#g

2
, g

3
, . . . , g

t
) if g

1
#g

2
O0

(0, 0, c
3
, c

4
, . . . , cq~1

, g
1
, g

2
, . . . , g

t
) otherwise.

Then it is easy to check that p
1
"( pJ , pL

1
)3V(F). We can proceed in this manner,

eliminating all repeated coordinates in the c vector. The remaining non-zero
distinct coordinates of the resulting c vector represent an error vector which
corresponds to the syndrome s, but with weight strictly less than q. This is
a contradiction to Theorem 2.1. Therefore (s, f

t~q`1
) N <

r`t~q`1
(V (F)).

For the converse, suppose that (s, fi)3<
r`i(V(F )) for all i6t!q and

(s, f
t~q`1

) N <
r`t~q`1

(V (F)). Then (s, f
t~q) extends to a point p3V(F ). Further-

more, using the same argument as above, this point can be related to a unique
error vector of weight exactly q. K
The next corollary follows directly from the proof of Theorem 2.4.

Corollary 2.5 ¸et !"Mp3V(F) Dp"(s, f
t~q , *, *, . . . , *)N. ¹hen <

r`t~q`1
(C)

contains exactly q distinct points of the form (s, f
t~q , a

l
i ), where the error locations of

cJ are given by l
i
, 16i6q.

In the next section we turn our attention to developing a method for decoding
cyclic codes using polynomial representations of these projections.
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3 Elimination Theory and Decoding

Recall that the syndrome ideal I, is the ideal in F
q
[x, y, z] generated by the

polynomials in F, where we denote the variables x
1
, . . . , x

r
by x the variables

y
1
, . . . , y

t
by y, and the variables z

1
, . . . , z

t
by z. Clearly we have V (I)"V(F).

The following lemma is well-known and can be found in [1, Theorem 2.5.3]. By
relating projection to elimination, it provides one of the two keys for developing
the computational treatment of the Gröbner bases method for decoding.

Lemma 3.1 <
r`i (V(F ))"V (IWF

q
[x, z

1
, . . . , zi]).

The proof of Lemma 3.1 uses the fact that V(F) is finite, therefore any
projection of the variety V(F ) is finite, and hence closed in the Zarisky topology
over F

q
or its algebraic closure.

The second key to the decoding algorithm is the theory of Gröbner bases. We
now review some basic notions that will be important for the actual implementa-
tion of this method. We refer the reader to [1] for a comprehensive introduction to
the theory of Gröbner bases.

First we impose the lexicographic term ordering on F
q
[x, y, z] with

(7) x
1
( . . .(x

r
(z

1
( . . .(z

t
(y

1
( . . .(y

t
.

Then we define lt( f ) to be the leading term of f with respect to the term ordering,
where f3F

q
[x, y, z]. A generating set G"Mg

1
, . . . , g

t
N for the ideal I is a Gröbner

basis for I if and only if

Lt(I)"Slt( f ) D f3IT"S lt(g
1
), . . . , lt(g

t
)T"Lt(G ).

Gröbner bases can be computed using Buchberger’s algorithm, and many com-
puter algebra packages have this algorithm implemented (but not over arbitrary
finite fields). Gröbner bases allow us to compute elimination ideals as the following
theorem shows (see, for example, [1, Theorem 2.3.4]).

Theorem 3.2 ¸et G be a Gröbner basis for I with respect to the term ordering
described above. ¹hen

Gi"GWF
q
[x, z

1
, . . . , zi]

generates IWF
q
[x, z

1
, . . . , zi], and is a Gro( bner basis for that ideal.

The ideals SGiT are known as elimination ideals. In view of Lemma 3.1 and
Theorem 3.2 we can restate Theorem 2.4 and Corollary 2.5 in the following form:

Theorem 3.3 ¹here are q errors in cJ if and only if for every g3Gi , we have
g(s, fi)"0 for all i6t!q and g(s, f

t~r`1
)O0 for some g3G

t~r`1
.

Corollary 3.4 ¸et G
t~r`1

"Mg
1
, g

2
, . . . , g

u
N and let n

t~q be the vector (s, f
t~q, z),

where z is a new variable. ¹hen the ideal SG
t~q`1

(n
t~q)T"Sg

1
(n

t~q), g
2
(n

t~q),
. . . , g

u
(n

t~q)T3F
q
[z] is generated by the error locator polynomial. Furthermore1,

the error locator polynomial is in Mg
1
(n

t~q), g
2
(n

t~q), . . . , g
u
(n

t~q)N.

1 The authors thank Prof. Teo Mora for pointing out references [17] and [18] which allowed the
inclusion of this last statement in the corollary, and which improved the paper.
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Proof. The first part of the Corollary follows directly from Theorem 2.4, Corollary
2.5, and Theorem 3.3. To prove the second part of the Corollary it is enough to
show that G

t~q`1
(n

t~q) is a Gröbner basis for the ideal SG
t~q`1

(n
t~q)T, since, in the

case of one variable, a generating set G for an ideal J is a Gröbner basis for J if and
only if the gcd is in G. But G

t~r`1
(n

t~q) is the evaluation at all but one variable of
a Gröbner basis, with respect to the lexicographic term ordering, for a zero
dimensional ideal, namely I. That such an evaluation gives a Gröbner basis was
proved in [17] and [18]. K

Remark 3.5. One could use the ideal SG
t~q(nt~q~1

)T to compute the error locator
polynomial, since this ideal is generated by z times the error locator. This follows
from the fact that, in this case, the variety corresponds to projection of points of
E alone. Indeed, points of V(F), with x-coordinates equal to some syndrome s,
which are not in E, can be thought of as points inV

s
where two or more of the zero

z-coordinates have been replaced by the same element of F
qm

(this follows from the
argument in the proof of Theorem 2.4). Since the t!q elimination ideal leaves only
one z-variable zero, this situation cannot occur. The same argument can be used to
see that the generator for SGi (ni~1

)T is zn`1!z, for i(t!q.
We now have a method to decode any incoming message. Indeed, given

a syndrome, s, we can evaluate the generators of Gi , i"1, . . . , t successively, at
x"s, and check whether the constant terms of the evaluated polynomials are zero.
Once the first non-zero constant term is found, the error locator is computed and
factored. The advantage of this method is that the difficult computation is done
once, using the generic x-, y-, and z-variables. After the elimination ideals have been
computed with the generic variables, then finding the error locator is reduced to
evaluating polynomials at the syndromes. We now take a detailed look at a simple
example to emphasize the points discussed thus far:

Example 3.6 We consider the 3 error correcting [15, 5, 7] BCH code over F
2
.

Since t"3, we have 3 z-variables, and since we are working over F
2
, there are no

y-variables. So the polynomials in (3) are then

z
1
#z

2
#z

3
#x

1
, z3

1
#z3

2
#z3

3
#x

2
, z5

1
#z5

2
#z5

3
#x

3
,

z16
1
#z

1
, z16

2
#z

2
, z16

3
#z

3
.

The Gröbner basis computation with respect to the lexicographic term ordering,
with x

1
(x

2
(x

3
(z

1
(z

2
(z

3
, gives us the following results (we omit the

polynomials in the x-variables alone, since they evaluate to zero at x"s):

G
1
"Mz16

1
#z

1
, z3

1
x
2
#z3

1
x3
1
#z2

1
x
1
x
2
#z2

1
x4
1
#z

1
x
3
#z

1
x2
1
x
2

#x
1
x
3
#x2

2
#x3

1
x
2
#x6

1
,

z3
1
x
3
#z3

1
x5
1
#z2

1
x
1
x
3
#z2

1
x6
1
#z

1
x9
2
x2
3
#z

1
x3
1
x8
2
x2
3

#z
1
x4
2
x2
3
#z

1
x9
1
x
2
x2
3
#z

1
x2
1
x
3
#z

1
x10
1

x9
2
#z

1
x13
1

x8
2
#z

1
x10
1

x4
2

#z
1
x4
1
x
2
#z

1
x7
1
#x

1
x9
2
x2
3
#x4

1
x8
2
x2
3
#x

1
x4
2
x2
3
#x10

1
x
2
x2
3

#x
2
x
3
#x11

1
x9
2
#x14

1
x8
2
#x11

1
x4
2
N
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G
2
"G

1
XMz16

2
#z

2
, z

1
z2
2
#z2

2
x
1
#z2

1
z
2
#z

2
x2
1
#z2

1
x
1
#z

1
x2
1
#x

2

#x3
1
, z2

2
x
2
#z2

2
x3
1
#z

1
z
2
x
2
#z

1
z
2
x3
1
#z

2
x
1
x
2
#z

2
x4
1

#z2
1
x
2
#z2

1
x3
1
#z

1
x
1
x
2
#z

1
x4
1
#x

3
#x2

1
x
2
,

z2
2
x
3
#z2

2
x5
1
#z

1
z
2
z
3
#z

1
z
2
x5
1
#z

2
x
1
x
3
#z

2
x6
1
#z2

1
x
3
#z2

1
x5
1

#z
1
x
1
x
3
#z

1
x6
1
#x9

2
x2
3
#x3

1
x8
2
x2
3
#x4

2
x2
3
#x9

1
x
2
x2
3
#x2

1
x
3
#x10

1
x9
2

#x13
1

x8
2
#x10

1
x4
2
#x4

1
x
2
#x7

1
N

G
3
"G

2
XMz

3
#z

2
#z

1
#x

1
N.

This computation was done using the algorithm presented in Section 4.
Now we can apply the results of Section 3. Let a be a primitive element of F

24 ,
with a4#a#1"0. Suppose that the zero codeword is sent and that the received
message has one error in the second position. Then s

1
"a, s

2
"a3 and s

3
"a5 and

we have

G
1
(n

0
)"Mz16#zN, G

2
(n

1
)"Mz16#z, za2#z2aN, G

3
(n

2
)"Mz#aN.

BothV(G
1
(n

0
)) and V(G

2
(n

1
)) contain zero (with confirms, by Theorem 3.3, that

there is one error), and G
3
(n

2
) gives the error locator polynomial, by Corollary 3.4.

Note that the generator of SG
2
(n

1
)T is z2#za"z (z#a), that is, as mentioned

above, SG
2
(n

1
)T is generated by z times the error locator polynomial.

Now suppose that the received message has two errors, say in the second and
fourth positions. Then s

1
"a#a3"a9, s

2
"a and s

3
"a2#a#1"a10 and we

have

G
1
(n

0
)"Mz16#z, z3a13#z2a7#za2, z3a5#z2a14#za9N,

G
2
(n

1
)"Mz16#z, z2a9#za3#a13, z2a13#za7#a2, z2a5#za14#a9N.

V(G
1
(n

0
)) contains zero (which confirms, by Theorem 3.3, that there are 2 errors),

and SG
2
(n

1
)T gives the error locator polynomial, by Corollary 3.4. The poly-

nomials in G
2
(n

1
) which are not z16#z can be factored as follows:

z2a9#za3#a13"a9 (z2#za9#a4)"a9(z#a)(z#a3),

z2a13#za7#a2"a13(z2#za9#a4)"a13 (z#a)(z#a3),

z2a5#za14#a9"a5 (z2#za9#a4)"a5(z#a)(z#a3).

Note also that the two polynomials in G
1
(n

0
) which are not z16#z are z times the

error locator polynomial.
Finally suppose that the received message has three errors, say in the second,

fourth, and seventh positions. Then s
1
"a#a2, s

2
"a#a3 and s

3
"a5 and we

have

G
1
(n

0
)"Mz16#z, z3a7#z2a12#za8#a2, z3#z2a5#za#a10N.

Since V(G
1
(n

0
)) does not contain zero, there are 3 errors by Theorem 3.3, and

G
1
(n

0
) gives the error locator polynomial (by Corollary 3.4)

z3a7#z2a12#za8#a2"a7(z3#z2a5#za#a10)"a7 (z#a)(z#a3)(z#a6).
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4 Fast Computation of Gj

Computing Gröbner bases is in general very difficult, with doubly exponential
complexity for arbitrary ideals and exponential for zero-dimensional ideals (such
as I ). In [5] the authors suggest using Buchberger’s Algorithm for computing the
Gröbner basis for I. In our situation though, we can improve greatly the computa-
tion with the following simple lemma:

Lemma 4.1 ¹he set F of generators for I is a Gröbner basis with respect to the
lexicographic term ordering with

(8) y
1
( . . .(y

t
(z

1
( . . .(z

t
(x

1
( . . .(x

r
.

Indeed, with any term ordering where the x-variables are greater than both the z-
and y-variables, the leading terms of the polynomials given in F are relatively
prime, and it is well-known that this condition implies that the set is a Gröbner
basis. The problem with this is that it is a Gröbner basis for I but not with respect
to the right term ordering. Instead of computing the desired Gröbner basis using
Buchberger’s algorithm, we can use linear algebra to transform the given Gröbner
basis F into the desired one. The technique was introduced in [11], works only for
zero-dimensional ideals, and has polynomial complexity in the degree of the ideal.
We now outline this method.

Let (
1
be the term ordering given by (8) and let (

2
be the term orderng given

by (7). We want to compute the reduced Gröbner basis G for I with respect to (
2
.

First we define the following map:

(9) R :F
q
[x, y, z]PF

q
[x, y, z]/I

f >r#I,

where r is the unique remainder of the division of f by F using (
1

(the uniqueness
follows from the fact that F is a Gröbner basis with respect to (

1
).

Remark 4.2. Since F is a Gröbner basis with respect to (
1
, the above map is

a vector space homomorphism. We will make use of the map R to compute
a Gröbner basis for the kernel with respect to (

2
. Also note that F

q
[x, y, z]/I is

isomorphic to FD
q
, where D"(n#1)t (q!1)t. In fact a basis for this space is easily

deduced from the structure of F and consists of all monomials of the form
<t

i/0
yai
i
zbi
i
, where 06a

i
6q!2, and 06b

i
6n.

Next, we order the power products X
i
(i.e. the monomials in F

q
[x, y, z]) using

(
2

X
0
(

2
X

1
(

2
X

2
(

2
. . .(

2
Xg(2

. . .

Now any power product X
i
is either reduced with respect to G, a leading power

product of some polynomial in G, or a multiple of a leading power product of some
polynomial in G. Moreover, a polynomial with leading power product Xg (with
respect to (

2
) is in I if and only if there exists p"(p

0
, p

1
, . . . , pg)3Fg

q
such that:

RA
g
+
i/0

p
i
X

iB"
g
+
i/0

p
i
R(X

i
)"0.

So the problem of deciding whether a polynomial with leading power product Xg
is in G translates into finding an element p in the kernel of the (g#1)]D matrix
defined by the R(X

i
)’s. Since there are only finitely many reduced power products,
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there are only finitely many such systems to solve. Moreover, once a polynomial in
G has been found, we do not need to consider any power products which are
a multiple of the leading term of that polynomial. We now outline the algorithm
below (see [11] for a more detailed presentation).

INPUT:
(

1
and F.

OUTPUT:
G, the reduced Gröbner basis for I with respect to (

2
.

LOCAL VARIABLES:
PowerProducts - the list of power products to be considered,

ordered with respect to (
2
.

LPP - a list containing the leading power products of G
MBasis - a list of pairs of the form [X

i
, R(X

i
)] where X

i
is a basis element of F

q
[x, y, z]/SGT

SUBROUTINES:
R - as defined by (9).
NextMonom - removes first element from PowerProducts and

returns null if empty.
InsertNexts (X

i
) - adds to the list PowerProducts the elements
x
1
X

i
, . . . , x

r
X

i
, z

1
X

i
, . . . , z

t
X

i
, y

1
X

i
, . . . , y

t
X

i
,

and orders them with respect to (
2BEGIN

LPP :"[ ]; G :"[ ]; MBasis :"[ ];
PowerProducts :"[ ]; X

i
:"1;

WHILE X
i
Onull DO

IF X
i
is not divisible by some element of LPP

THEN:
compute R (X

i
);

IF there exists a linear relationR(X
i
)"+R(X

j
)3M"!4*4

p
j
R(X

j
)

THEN:
g
i
:"X

i
!+

Xj
3Mbasis pj

X
j

G :"[g
i
, G];

LPP :"[X
i
, LPP];

ELSE:
Mbasis :"[[X

i
, R(X

i
)], MBasis];

InsertNexts (X
i
);

X
i
:"NextMonom;

END: G

There is no need to compute the entire Gröbner basis in our case. Since we are
only interested in the Gi , one could even limit the list PowerProduct to be only
the list of monomials not containing any y

j
by changing the definition of the

command InsertNexts. Of course, when q'2, one could compute the entire
Gröbner basis and use the ideas presented in Section 3 to obtain the error
evaluator polynomial as well. However, there are more efficient ways to compute
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the error evaluator polynomial given the error locator polynomial (which we have
computed once we have all the polynomials in the x- and z-variables in the
Gröbner basis G).

The standard implementation of the map R(X
i
) is via the multivariable

division algorithm, and making use of the fact that the elements of MBasis are
already partially reduced. An alternative way to compute theR (X

i
) is presented in

[11]. The vectors in MBasis can be quite large even for relatively small cyclic
codes. For the code presented in Example 3.6, the vectors R(X

i
) contain

212"4096 elements. It follows from the structure of F that the R (X
i
)’s will be

relatively sparse, so techniques for computing with sparse matrices must be
employed. We will present a number of improvements in the implementation of
this algorithm in the next section for the case of binary cyclic codes.

Finally, we note that in [11] the authors estimate the complexity of their
algorithm for finding a Gröbner basis with respect to (

2
, given a Gröbner basis

with respect to (
1
, as O(lD3), where l is the number of variables and D is the

number of points in the variety (counting multiplicity). From (3), we see that
l"2t#r and D"(n#1)t. Since 2t#r(2(n#1) we can approximate the
complexity of this algorithm in terms of n and t as O ((n#1)3t`1).

5 Computing Gj over F
2

There are several improvements one can make when applying the algorithm of the
previous section to the class of binary cyclic codes. The most obvious simplifica-
tion in the binary case is that there is no need to consider the y-variables. From this
observation several things follow.

The first is that the polynomial (+ t
i/1

z
i
)#x

1
is in the desired Gröbner basis G,

and its leading term is z
t
. This follows from the structure of the Gröbner basis for

zero dimensional ideals computed with respect to the lexicographic term ordering
(see e.g. [1, Corollary 2.2.11]). Therefore no polynomial in G, other than
(+ t

i/1
z
i
)#x

1
, contains power products divisible by z

t
, and hence we can remove

the variable z
t
from the list of variables in the subroutine InsertNexts, giving us

one less variable to work with.
The second consequence of the absence of y-variables is that the basis for the

vector space F
q
[x, z]/I simplifies to:

(10) ("Gz D z"
t

<
i/0

zbi
i
, 06b

i
6nH.

( has (n#1)t elements and is obtained from the Gröbner basis F.
The structure of the Gröbner basis F also greatly simplifies the map R. As

pointed out in [11], every monomial in PowerProducts is either x
j
X or z

j
X

where 16j6t (in our case we do not have z
t
X ), and X is a monomial that has

been previously reduced with respect to F. First, we address the case of reducing
monomials of the form z

j
X. Let r

X
be the polynomial corresponding to R(X).

Then, to computeR(z
j
X ) one simply has to multiply each power product in r

X
by

z
j
and replace any zn`1

j
by z

j
. To compute the reduction of monomials of the form

x
j
X, one replaces x

j
by zij

1
#zij

2
# . . .#zij

t
, and one uses the fact that R is linear

to obtain

(11) R (x
j
X)"R(zij

1
X)#R(zij

2
X )# . . .#R(zij

t
X ).
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The computation of the right-hand side is done exactly as indicated above,
reducing the corresponding powers of z

j
that appear in the respective summands.

Hence, the map R in the case of binary cyclic codes is quite simple.
Next, we address the problem of representing the vectors in MBasis. First, we

note that to each element X"<t
i/0

zbi
i

of (, we can associate the unique t-tuple
(b

1
, b

2
, . . . , b

t
)3Zt

`
. Let S be the set of all t-tuples corresponding to elements of (,

and let P(S) be the power set of S. Then define the map s by:

(12)
s : span(()PP(S )

f >Ms Dzs3f N.

Instead of storing binary vectors of length (n#1)t corresponding to R (X
i
) in

MBasis, we store the support set of t-tuples s (R(X
i
)). One can perform the vector

addition R(X
i
)#R(X

j
) using the s-representation.

(13) s (R(X
i
)#R (X

j
))"[s(R (X

i
))Xs(R (X

j
))]minus [s (R(X

i
))Ws(R(X

j
))].

To check for linear relations in the WHILE loop of the algorithm, one can store
a row echelon version of the vectors in MBasis. This requires keeping track of two
additional sets. The first is the list of supports that correspond to the pivots of the
row echelon form of MBasis, denote this set by Pivots. The second is a set that
keeps track of which vectors in MBasis have non-empty support at position j,
where j is not a pivot. We call this set MSupport. Then, after each computation of
R(X

i
), to check for linear relation with the preceding elements of MBasis we

proceed as follows: we intersect s (R(X
i
)) with Pivots, we ‘‘add’’ the supports of the

vectors in MBasis corresponding to s (R(X
i
))WPivots to s(R(X

i
)), and we check

if it is the empty set. If so, we have a new element in the Gröbner basis G, namely
the sum of the corresponding X

i
’s. If it is not empty, we obtain one more element in

the basis MBasis, we then choose one element from the remaining supports, add
this to the set Pivots, and row reduce MBasis using the set MSupport, making
sure to update MSupport as we go along.

To computeR (zb
j
X) using the supports is also straight forward. To do this one

simply adds b to the jth element of each member of s (R(X)) making sure to
identify n#1 to 1 as necessary. Using this and (11), the computation of R(X ) for
any X in PowerProducts becomes relatively simple. As an alternative to storing
t-tuples corresponding to the elements of (, one could store integers correspond-
ing to an ordering of ( and work with sets of integers instead of t-tuples, adjusting
the map R accordingly.

6 Decoding the [23, 12, 7] Golay Code

Using the algorithm presented in Section 4 and the improvements discussed in
Section 5 we now present a method for the decoding of the binary [23, 12, 7]
Golay Code. The following Gröbner basis was computed using a program written
in the MAPLE programming language.

Recall (see e.g. [19, Chapter 7.6]) that the non-primitive BCH code of design
distance 3 and length 23 is equivalent to the [23, 12, 7] Golay Code. Hence, from
(3) we obtain

F"Mx
1
#z

1
#z

2
#z

3
, z24

1
#z

1
, z24

2
#z

2
, z24

3
#z

3
N.
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The Gi’s obtained from the Gröbner Basis for F with respect to (
2

are as follows:

G
0
"Mx2048

1
#x

1
N

G
1
"G

0
XMz

1
#z24

1
,

z3
1
x24
1
#z3

1
x
1
#z2

1
x25
1
#z2

1
x2
1
#z

1
x1337
1

#z
1
x1291
1

#z
1
x1176
1

#z
1
x1153
1

#z
1
x1061
1

#z
1
x1038
1

#z
1
x808
1

#z
1
x785
1

#z
1
x555
1

#z
1
x532
1

#z
1
x440
1

#z
1
x394
1

#z
1
x348
1

#z
1
x325
1

#z
1
x187
1

#z
1
x164
1

#z
1
x95
1
#z

1
x26
1
#x1338

1
#x1292

1
#x1177

1
#x1154

1
#x1062

1

#x1039
1

#x809
1

#x786
1

#x556
1

#x533
1

#x441
1

#x395
1

#x349
1

#x326
1

#x280
1

#x257
1

#x188
1

#x165
1

#x96
1
#x4

1
N

G
2
"G

1
XMz24

2
#z

2
, z2

2
z
1
#z2

2
x
1
#z

2
z2
1
#z

2
x2
1
#z2

1
x
1
#z

1
x2
1
#x256

1
#x3

1
,

z3
2
x24
1
#z2

2
x
1
#z

2
z
1
x24
1
#z

2
z
1
x
1
#z

2
x25
1
#z

2
x2
1
#z2

1
x24
1
#z2

1
x
1

#z
1
x25
1
#z

1
x2
1
#x1337

1
#x1291

1
#x1176

1
#x1153

1
#x1061

1
#x1038

1

#x808
1

#x785
1

#x555
1

#x532
1

#x440
1

#x394
1

#x348
1

#x325
1

#x187
1

#x164
1

#x95
1
#x26

1
N

G
3
"G

2
XMz

3
#z

2
#z

1
#x

1
N

Let s be the syndrome corresponding to a received vector with 3 or fewer
errors. According to Theorem 3.3 and to Corollary 3.4, if exactly one or 3 errors
occur in s, then G

1
and G

3
will give rise to the error locator, and it is clear which

polynomials these will be. However, if exactly two errors occur in s then one of the
two non-trivial polynomials listed in G

2
will give rise to the error locator, these are:

z2
2
z
1
#z2

2
x
1
#z

2
z2
1
#z

2
x2
1
#z2

1
x
1
#z

1
x2
1
#x256

1
#x3

1
,

and

z2
2
x24
1

#z2
2
x
1
#z

2
z
1
x24
1
#z

2
z
1
x
1
#z

2
x25
1
#z

2
x2
1
#z2

1
x24
1

#z2
1
x
1
#z

1
x25
1
#z

1
x2
1
#x1337

1
#x1291

1
#x1176

1
#x1153

1
#x1061

1

#x1038
1

#x808
1

#x785
1

#x555
1

#x532
1

#x440
1

#x394
1

#x348
1

#x325
1

#x187
1

#x164
1

#x95
1

#x26
1

.

Since, in this case, an error does occur, we must have x
1
O0. If we evaluate the first

polynomial at the point (s, 0, z) we get a degree 2 polynomial with leading term sz2,
and hence this is the error locator polynomial for the received word corresponding
to s. Therefore we only need to consider the first polynomial when checking for
two errors. With this in mind, let:

g
1
"z3

1
x24
1
#z3

1
x
1
#z2

1
x25
1
#z2

1
x2
1
#z

1
x1337
1

#z
1
x1291
1

#z
1
x1176
1

#z
1
x1153
1

#z
1
x1061
1

#z
1
x1038
1

#z
1
x808
1

#z
1
x785
1

#z
1
x555
1

#z
1
x532
1

#z
1
x440
1

#z
1
x394
1

#z
1
x348
1

#z
1
x325
1

#z
1
x187
1
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#z
1
x164
1

#z
1
x95
1
#z

1
x26
1
#x1338

1
#x1292

1
#x1177

1
#x1154

1
#x1062

1

#x1039
1

#x809
1

#x786
1

#x556
1

#x533
1

#x441
1

#x395
1

#x349
1

#x326
1

#x280
1

#x257
1

#x188
1

#x165
1

#x96
1
#x4

1

g
2
"z2

2
z
1
#z2

2
x
1
#z

2
z2
1
#z

2
x2
1
#z2

1
x
1
#z

1
x2
1
#x256

1
#x3

1

g
3
"z

3
#z

2
#z

1
#x

1
.

Now we provide an algorithm for decoding the [23, 12, 7] Golay code which uses
only polynomial evaluation. Suppose cJ is our received message. To find the error
locator polynomial we proceed as follows.

Step 1: Compute the syndrome s"HcJ . If s"0 then stop.
Step 2: Compute g

1
(s, 0), if g

1
(s, 0)"0 then go to Step 3; Otherwise, the error

locator polynomial is g
1
(s, z), and stop.

Step 3: Compute g
2
(s, 0, 0), if g

2
(s, 0, 0)"0 then go to Step 4; Otherwise, the error

locator polynomial is g
2
(s, 0, z), and stop.

Step 4: The error locator polynomial is g
3
(s, 0, 0, z), stop.

Note that in the above example the design distance of the code is 3, however the
actual distance is 7. The algorithm presented is able to correct up to three errors,
hence up to the true minimum distance of the code.

References

1. Adams, W. W., Loustaunau, P.: An Introduction to Gröbner Bases, vol. 3. Graduate Studies
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(1996)

16. Fitzpatrick, P.: On the Key Equation. IEEE Trans. Inform. Theory, IT-41(5), 1290—1302
(1995)
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CAL’87, Lecture Notes in Computer Sciences, vol. 378, 282—292. Berlin Heidelberg New
York: Springer 1989

19. MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes. Amsterdam:
North Holland 1977

20. Massey, J. L.: Shift-Register Synthesis and BCH Decoding. IEEE Trans. Inform. Theory,
IT-15 122—127 (1969)

21. Peterson, W. W.: Encoding and Error-Correction Procedures for the Bose-Chaudhuri Codes.
IEEE Trans. Inform. Theory IT-6 459—470 (1960)

22. Poli, A., Huguet, L.: Error Correcting Codes: Theory and Applications. Paris: Masson and
Prentice Hall 1992

.

Decoding of Cyclic Codes Using Gröbner Bases 483


