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ABSTRACT

Polynomial composition is the operation of replacing the
variables in a polynomial with other polynomials. In this
paper we give sufficient and necessary conditions on a set Y of
non-commutative polynomials to assure that the set G + Y of
composed polynomials is a Gröbner basis in the free asso-
ciative algebra whenever G is. The subject was initiated by
Hong, treating the commutative analogue in (1998, J. Symb.
Comput. 25, 6437663).
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INTRODUCTION

In the recent paper [6], Hoon Hong addresses the problem of the
behavior of (commutative) Gröbner bases under composition of poly-
nomials. More precisely, let Y be a set of polynomials, as many as the
variables in our polynomial ring. The question then is under which condi-
tions on these polynomials it is true that for an arbitrary Gröbner basis G
(under some term ordering), also the composed set G + Y is a Gröbner basis
(under the same ordering). The main result in [6] is that this happens if and
only if the composition is ‘‘compatible’’ with the ordering and the non-
divisibility (see Section 2).

Since many of the basic properties of Gröbner bases transfer to the
non-commutative polynomial ring, it seems natural to ask under which
conditions non-commutative Gröbner bases are preserved after composition
by a set of (non-commutative) polynomials. The main contribution of this
paper is to show that this is the case if and only if the composition is
compatible with the ordering, and the set of leading words of Y is combi-
natorially free.

Not surprisingly, the non-commutative case gets considerably more
complicated, but we can still use some of Hong’s ideas; e.g. Lemma 3 (and
its proof ) below is identical with the corresponding in [6].

Finally we mention that the subject, for the commutative case, has
been studied further by Hong in [5], and by Gutierrez and San Miguel in [4].
The first of these papers is devoted to the case where the composed Gröbner
bases may be under a possibly different ordering, the second concerns
reduced Gröbner bases under composition.

1 BASIC DEFINITIONS AND NOTATION

Let X ¼ fx1; x2; . . . ; xng be a finite alphabet, and let KhXi denote the
free associative algebra over the arbitrary field K. We will assume that n � 2,
for Khx1i is equal to K½x1� (the commutative polynomial ring), and this case
is covered by [6]. Denote by W the set of all words in X, including the empty
word 1 (i.e. W is the free monoid generated by X ).

We will always in what follows assume that W is given an admissible
ordering, i.e. a well-ordering preserving multiplication: f < g implies
hfk < hgk for all f ; g; h; k 2 W , and the smallest word is the unity 1.

In the examples below we will use the following admissible ordering
called deglex (degree lexicographical): If juj denotes the length of u 2 W ,
then we let u > v if either juj > jvj, or juj ¼ jvj but u is larger than v lexico-
graphically with xn > � � � > x1.
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When we have chosen an admissible ordering we can, if terms with
identical words are collected together using the operations over K, with
every non-zero element f 2 KhXi associate its leading word f̂ 2 W , i.e. the
word in f that is larger (relative the ordering) than every other word
occurring in f . We also define, for a subset F � KhX i, bF ¼ f f̂ j f 2 Fg. The
leading coefficient of f 2 KhX i, i.e. the coefficient of f̂ , will be denoted lcf .

If u; v 2 W, and u is a (not necessarily proper) subword of v, then we
write u j v. In this case we have, since our ordering is preserved by multi-
plication, u 
 v. We will use this frequently in the form

u > v ¼) u j--v ð1Þ

( j-- meaning that u is not a subword of v).

1.1 Gröbner Bases

We here gather the theory concerning non-commutative Gröbner
bases that we will need. For a more complete exposition we refer to [8].

Definition 1. A subset G of an ideal I (always two-sided) in KhX i is called a
Gr�obner basis for I if 0 =2G, and for every f 2 I , f 6¼ 0, there is g 2 G such
that ĝ j f̂ .

We can show that if G is a Gröbner basis for I, then G generates I. We
may (and will) therefore simply say that G is a Gröbner basis, meaning that
G is a Gröbner basis for the ideal generated by G.

We borrow the following terminology from [1] and [3].

Definition 2. We will call a subset fw1;w2; . . .g � W combinatorially free if

1. whenever wi ¼ uivi and wj ¼ ujvj for ui; vi; uj; vj 2 W n f1g we have
vi 6¼ uj, and

2. no wi is a subword of wj for i 6¼ j.

A pair wi;wj violating one of the conditions above is said to form an overlap.

Remark 1. If two words wi;wj 2 W form an overlap, then we have

1. wiu ¼ vwj (alt. uwi ¼ wjv), juj < jwjj; jvj < jwij, if wi;wj violate the
first condition above, or

2. wi ¼ uwjv (alt. uwiv ¼ wj) if the second condition is violated.

Here u; v 2 W, not equal to 1 in case 1, possibly equal to 1 in case 2. If we are
only interested in whether a given set W 0 � W is combinatorially free, then
we can of course interchange the meaning of wi;wj 2 W 0. We will thus in the
sequel consider only those overlaps above without brackets.

NON-COMMUTATIVE GRÖBNER BASES 4833



We will also call the explicit representations wiu ¼ vwj and wi ¼ uwjv

overlaps. Note that a pair of words then can form several overlaps; e.g.
w1 ¼ x2

1 and w2 ¼ x2
1x2 form the overlaps w1x1x2 ¼ x1w2 and w1x2 ¼ w2.

Moreover, a single word, e.g. w ¼ x3
1, can form (several) overlaps with itself.

Definition 3. If the leading words of f1; f2 2 KhX i form an overlap, then we
call (f1; f2) a critical pair. We then define the overlap relations of (f1; f2) as
f1u � cvf2 for each overlap f̂1u ¼ v f̂2, and f1 � cuf2v for each overlap
f̂1 ¼ u f̂2v. Here c 2 K is equal to lcf1

divided by lcf2
, i.e. such that the leading

words in the relations cancel.

Example 1. Consider F ¼ f f1 ¼ x2
2 � x2

1; f2 ¼ x2x2
1 � x2

1x2g using deglex
(x2 > x1). We have bF ¼ f f̂1 ¼ x2

2; f̂2 ¼ x2x2
1g, and the overlaps of bF are

f̂1x2 ¼ x3
2 ¼ x2 f̂1 and f̂1x2

1 ¼ x2
2x2

1 ¼ x2 f̂2. The overlap relations become

f1x2 � x2f1 ¼ ðx2
2 � x2

1Þx2 � x2ðx2
2 � x2

1Þ ¼ x2x
2
1 � x2

1x2

and

f1x
2
1 � x2f2 ¼ ðx2

2 � x2
1Þx2

1 � x2ðx2x
2
1 � x2

1x2Þ ¼ x2x
2
1x2 � x4

1:

We will also use the characterization of Gröbner bases presented in the
following theorem. The proof is essentially the same as the proof of e.g.
Theorem 3.3 (in particular Lemma 2.4) in [8].

Theorem 1. A set G is a Gröbner basis if and only if each overlap relation of
every critical pair (g; g0) of G either is equal to zero, or can be written

gu� cvg0 ¼
Xt

k¼1

ckwkL
gkwkR

; wkL
ĝkwkR

< ĝu ¼ vĝ0 8k ð2Þ

alternatively

g� cug0v ¼
Xt

k¼1

ckwkL
gkwkR

; wkL
ĝkwkR

< ĝ ¼ uĝ0v 8k; ð3Þ

where ck 2 K, gk 2 G and wkL
;wkR

2 W for all k. Furthermore, we can then
assume that w1L

ĝ1w1R
> � � � > wtL

ĝtwtR
.

We will need the following Gröbner bases later on.

Lemma 1. The following subsets of KhX i are all Gröbner bases (in every
admissible ordering):

i. fxk
i g; k � 1

ii. fxi þ 1g
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iii. fðxixjÞ
kg; k � 1

iv. fxixj þ 1g; i 6¼ j

v. fxi; xjg
vi. fxi þ 1; xjg; i 6¼ j

vii. fðxixjxiÞ
kg; k � 1

viii. ff1 ¼ xixjxi þ xj; f2 ¼ xixjxj � xjxjxig
ix. fu � cv; vg; c 2 K; u; v 2 W ; u > v

Proof. Every set consisting only of words is a Gröbner basis, for every
overlap relation is then equal to zero. This proves i, iii, v and vii. In ii, iv and
vi, we have no overlaps, and thus no overlap relations. For ix, we note that
the ideal generated by F1 ¼ fu � cv; vg is the same as the one generated by
F2 ¼ fu; vg, and bF1 ¼ bF2 (u > v). Since fu; vg is a Gröbner basis, the same
must then be true for ix. In viii, either xixjxj > xjxjxi or vice versa. Assuming
the first (the other being symmetrical), we can write the two possible overlap
relations as

f1xjxi � xixj f1 ¼ �f2; f1xjxj � xixj f2 ¼ f2xjxi þ xjxj f1:

Using xixjxj > xjxjxi, we see that these are representations as in Theorem 1,
and our lemma is proved.

1.2 Composition of Polynomials

We now define the process of composition of polynomials.

Definition 4. Let Y ¼ fy1; . . . ; yng be a subset of KhX i(=Khx1; . . . ; xni),
and let f 2 KhX i. We define the composition of f by Y, written f + Y , as the
polynomial obtained from f by replacing each occurrence of the xi with yi. We
also define, for F � KhX i, F + Y ¼ f f + Y jf 2 Fg.

We clearly have, for f; g 2 KhXi,

ð fgÞ + Y ¼ f + Y g + Y ; ð4Þ
ð fþ gÞ + Y ¼ f + Y þ g + Y : ð5Þ

Since our ordering is preserved by multiplication, we also have, for every
word w 2 W,

dw + Y ¼ w + bY: ð6Þ

Definition 5. We say that composition by Y commutes with Gr�obner
bases computation if for every Gröbner basis G, also G + Y is a Gröbner basis
(under the same ordering as G).
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As mentioned before, our main task in this paper will be to decide
under which conditions composition by Y commutes with Gröbner bases
computation.

Remark 2. In Hong’s paper, the counterpart of Definition 5 requires that if
G is a Gröbner basis for the ideal generated by a set of polynomials F, then
G + Y is a Gröbner basis for the ideal generated by F + Y . That this implies
the statement in Definition 5 is clear (take F ¼ G). The two formulations are
in fact equivalent since it is easy to prove that hGi ¼ hFi implies hG + Y i ¼
hF + Y i. Here we have used the notation hFi for the ideal generated by F.

Definition 6. We say that composition by Y is compatible with our
given ordering if for all words u; v 2 W , we have

u > v ¼) u + bY > v + bY: ð7Þ

Now, let f 2 KhXi be written as a linear combination of words in
decreasing order: f ¼ c1w1 þ � � � þ csws, w1 > � � � > ws. If composition by Y
is compatible with our ordering, then we have w1 + bY > � � � > ws + bY, so
using (5) and (6) we get

df + Y ¼ f̂ + bY: ð8Þ

2 COMPARISON WITH THE COMMUTATIVE CASE

The main theorem in Hong’s paper [6] is the following, where of course
all statements are in a commutative meaning.

Theorem 2 (Theorem 3.1. in [6]). Composition by Y commutes with Gröbner
bases computation if and only if both of the following conditions hold:

1. Composition by Y is compatible with the ordering and
2. for all monomials (commutative words) m1;m2 2 K½X �, m1 j-- m2

implies m1 + bY j--m2 + bY.

In [6], it is constantly used that condition [2] above is equivalent to thatbY is a permuted powering, i.e. bY ¼ fx
l1

pð1Þ; . . . ; x
ln

pðnÞg for some permutation
p 2 Sn and some l1; . . . ; ln > 0. This is not the case in our non-commutative
setting; it is not hard to see that e.g. bY ¼ fx2

1x2; x1x2
2g � Khx1; x2i fulfills the

non-commutative version of condition 2 above.
However, if bY is a permuted powering, then it is easy to see that

condition 2 (in a non-commutative sense) is true for Y. The following
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example then shows that conditions 1 and 2 above are not sufficient in the
non-commutative case.

Example 2. Let G ¼ fx2 � x1g � Khx1; x2i and Y ¼ fy1 ¼ x2
1; y2 ¼ x2

2g
ð¼ bYÞ. It is obvious that G is a Gröbner basis, and that composition by Y is
compatible with the deglex ordering (x2 > x1). But G + Y ¼ fx2

2 � x2
1g is not

a Gröbner basis since for example

f ¼ ðx2
2 � x2

1Þx2 � x2ðx2
2 � x2

1Þ ¼ x2x
2
1 � x2

1x2 2 G + Y ;

and x2
2 j-- f̂ ¼ x2x

2
1. The (reduced) Gröbner basis for G + Y is the completed

set fx2
2 � x2

1; x2x
2
1 � x2

1x2g (compare Example 1).

The crucial condition we can generalize from the commutative case is
whether the least common multiples coincide in the sense that

lcmðm1;m2Þ + bY ¼ lcmðm1 + bY;m2 + bYÞ ð9Þ

for all monomials m1;m2 2 K½X�. We can not define the least common
multiple in the non-commutative case, but this role is in some sense played
by the overlaps in Definition 2. The counterpart of (9) will be handled in
Lemma 2 below.

That bY is a permuted powering implies, in our non-commutative
setting, that there are no overlaps formed by two different words from bY.
But this is not sufficient; we saw in Example 2 that a word can form an
overlap with itself. To handle such ‘‘self-overlaps’’, we need to replace
condition 2 with the statement that bY must be combinatorially free.

The fact that a word can form an overlap with itself will cause most
difficulties in Section 3.2 below. Compared to the commutative case, we will
need a lot more Gröbner bases as counterexamples to show the necessity in
our main theorem.

3 MAIN THEOREM

We now state our main result.

Theorem 3. Composition by Y commutes with Gröbner bases computation if
and only if both of the following conditions hold:

1. Composition by Y is compatible with the ordering and
2. bY is combinatorially free.

We will prove this theorem in the following two sections. We start with
the easiest part; to show that the two conditions above are sufficient for the
commutation. In the second section we show that these conditions are also
necessary.
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3.1 Proof of Sufficiency

Condition 1 is used to obtain (8): df + Y ¼ d
f + bY for all f 2 KhXi. The

second condition will ensure that every overlap relation of G + Y corre-
sponds to an overlap relation of G.

The key to the sufficiency in Theorem 3 is the following lemma.

Lemma 2. Assume that composition by Y is compatible with the ordering,
and that bY is combinatorially free. If (g + Y ; g0 + Y) is a critical pair of
G + Y , then (g; g0) is a critical pair of G. Moreover, each overlap relation of
(g + Y ; g0 + Y) is of the form

g + Y u + bY� c1v + bYg0 + Y ðalt: g + Y � c2u + bYg0 + Y v + bYÞ;

where gu � cvg0 (g � cug0v) is an overlap relation of (g; g0),
c1 ¼ c lcv +Y =lcu +Y and c2 ¼ c lcu +Y lcv +Y .

Proof. Assume that ĝ ¼ xi1
� � � xis

and ĝ0 ¼ xj1
� � � xjt

. By (8) we have e.g.dg+Y ¼ ĝ + bY, so the leading words of g +Y and g0 +Y are products of words
from bY; in our case dg+Y ¼ ŷi1

� � � ŷis
and dg0 +Y ¼ ŷj1

� � � ŷjt
. If (g +Y ; g0 +Y )

is a critical pair, then dg+Y and dg0 +Y form at least one overlap, i.e. the two
products of words from bY ‘‘intersect’’ (recall Definition 2). Since bY is
combinatorially free, there can not be any overlaps among the ŷk . This
means that if an overlap is of the form dg+Y u0 ¼ v0 dg0 +Y , then we must have
the situation

d
g�Y u0 ¼ zffl}|ffl{ŷi1

� � � zffl}|ffl{
ŷik�1 zffl}|ffl{ŷik

� � � zffl}|ffl{ŷis zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{u0

v0
d
g0�Y ¼ |fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v0
|ffl{zffl}
ŷj1

. . . |ffl{zffl}
ŷjl

|ffl{zffl}
ŷjlþ1

. . . |ffl{zffl}
ŷjt

;

and yik ¼ yj1 ; . . . ; yis ¼ yjl . The latter implies xik ¼ xj1 ; . . . ; xis ¼ xjl , so (g; g0)
is a critical pair of G. If we let u ¼ xi1 � � � xik�1

and v ¼ xjl � � � xjt , then we see
that u0 ¼ u + bY; v0 ¼ v + bY and ĝu ¼ vĝ0. The statement about the overlap
relations is thus clear, except maybe for the constant c1. Since lcgu ¼ lccvg0 we
also have lcg + Y u + Y ¼ lccv + Y g0 + Y . (The compositions of gu and vg0

involves, since ĝu ¼ vĝ0, exactly the same yi at the leading words.) It now
follows that lcu + Y g + Y u + bY and c lcv + Y v + bYg0 + Y have equal leading
coefficients (u + bY and v + bY are words). Dividing by lcu + Y we get the
constant c1.

The overlaps dg + Y ¼ u0 dg0 + Y v0 are treated by the same principle.

4838 NORDBECK



Proposition 1. If composition by Y is compatible with the ordering and bY is
combinatorially free, then composition by Y commutes with Gröbner bases
computation.

Proof. For an arbitrary Gröbner basis G, we need to show that also G + Y
is a Gröbner basis. We will use Theorem 1, so let (g + Y ; g0 + Y ) be a critical
pair of G + Y .

Assume first that this critical pair has overlaps of the first type in
Remark 1. By Lemma 2, each overlap relation is of the form
g + Y u + bY� c1v + bYg0 + Y , where gu� cvg0 is an overlap relation of the
critical pair (g; g0) of G, and c1 is as above. Since G is a Gröbner basis,
we get from (2) in Theorem 1, composing by Y and using (4), (5), (6)
and (7),

g + Y u + Y � cv + Y g0 + Y

¼
X
k

ckwkL + Y gk + YwkR + Y ;wkL +
bY dgk + YwkR +

bY < dg + Y u + bY

¼ v + bY dg0 + Y 8k:

Rewriting, we see that this can be written

lcu + Y g + Y u + bY� c lcv + Y v + bYg0 + Y

¼
X

ckwkL + Y gk + YwkR + Y � g + Y ðu + Y � lcu + Y u + bYÞ

þ cðv + Y � lcv + Y v + bYÞg0 + Y :

It is clear that both g + Y ðu + Y � lcu + Y u + bYÞ and ðv + Y � lcv + Y v + bYÞ
g0 + Y have leading words smaller than dg + Y u + bY ¼ v + bY dg0 + Y . (The
leading words cancel in the parentheses.) By expanding ðu + Y � lcu + Y
u + bYÞ; ðv + Y � lcv + Y v + bYÞ and each wkL + Y ;wkR + Y to words, and
dividing by lcu + Y , we then have a representation of our overlap relation
g + Y u + bY� c1v + bYg0 + Y as in Theorem 1.

If our critical pair has overlaps of the second type in Remark 1, then
each overlap relation is of the form g + Y � c2u + bYg0 + Y v + bY with c2 as
above, corresponding to the overlap relation g� cug0v (again by Lemma 2).
In the same way as above we get, now using (3) in Theorem 1,
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g + Y � cu + Y g0 + Y v + Y

¼
Xt

k¼1

ckwkL + Y gk + YwkR + Y ;wkL +
bY dgk + YwkR +

bY < dg + Y

¼ u + bY dg0 + Y v + bY 8k:

We then use the rewriting

u + Y g0 + Y v + Y

¼ lcu + Y u + bYg0 + Y v + Y þ ðu + Y � lcu + Y u + bYÞg0 + Y v + Y

¼ lcu + Y lcv + Y u + bYg0 + Y v + bYþ ðu + Y � lcu + Y u + bYÞg0 + Y v + Y

þ lcu + Y u + bYg0 + Y ðv + Y � lcv + Y v + bYÞ

to obtain

g + Y � c lcu + Y lcv + Y u + bYg0 + Y v + bY
¼

X
ckwkL + Y gk + YwkR + Y � cðu + Y � lcu + Y u + bYÞg0 + Y v + Y

� c lcu + Y u + bYg0 + Y ðv + Y � lcv + Y v + bYÞ:

In the same way as before, we see that this is a representation as (3) in
Theorem 1, and the proposition is proved.

3.2 Proof of Necessity

The strategy we have to use in this section is clear: Assuming one of the
two conditions in Theorem 3 not true, we need to find a suitable Gröbner
basis, contradicting the commutation of Gröbner bases computation.

To prove the necessity of condition 1 in Theorem 3, we can use the
same counterexample as in the commutative case.

Lemma 3. If composition by Y commutes with Gröbner bases computation,
then composition by Y is compatible with the ordering.

Proof. If u; v 2 W are two words with u > v, then we have to show that
u + bY > v + bY. Let c 2 K be such that lcu + Y ¼ c lcv + Y . By Lemma 1-ix,
G ¼ fu � cv; vg is a Gröbner basis, so G + Y ¼ fu + Y � cv + Y ; v + Y g
must also be a Gröbner basis.
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Assume first that u + bY < v + bY. We then have dG + Y ¼ fv + bYg, and
v + bY j--u + bY (by (1)). Since

u + Y ¼ ðu + Y � cv + Y Þ þ cv + Y 2 hG + Y i;

G + Y is not a Gröbner basis, so composition by Y does not commute with
Gröbner bases computation.

The case remaining to exclude is when u + bY ¼ v + bY. If u + Y ¼
cv + Y , then 0 ¼ u + Y � cv + Y 2 G + Y , so G + Y is not a Gröbner basis.
Otherwise we have f ¼ u + Y � cv + Y 6¼ 0 and f̂ < u + bY (by our choice of
c). Since f 2 hG + Y i and dG + Y ¼ fu + bYg, G + Y is not a Gröbner basis
(again using (1)).

Also in the following proof we use a technique inspired by Hong.
A similar argument is sufficient to show the necessity of the counterpart of
condition 2 in the commutative case.

Lemma 4. If composition by Y commutes with Gröbner bases computation,
then bY does not contain any overlaps of the second type in Remark 1.

Proof. We begin by noting that ŷi 6¼ 1 for all yi 2 Y. This follows from
Lemma 3, since xi > 1 implies ŷi ¼ xi + bY > 1 + bY ¼ 1.

Now assume that we have an overlap ŷi ¼ uŷjv for some yi; yj 2 Y
and u; v 2 W. We know that both fyi; yjg and fyi þ 1; yjg must be Gröbner
bases (Lemma 1-v, vi). Applying (3) of Theorem 1 on fyi þ 1; yjg, we
can write

ðyi þ 1Þ � cuyjv ¼
X
k

ckwkL
yjwkR

;

where the sum in the right hand side might be empty (i.e. equal to zero). We
have no terms involving yi þ 1 in this sum since this clearly would contradict
the inequality in (3). Rewriting, we get

1 ¼
X

ckwkL
yjwkR

� yi þ cuyjv 2 hyi; yji:

Since also fyi; yjg is a Gröbner basis we then have ŷi j 1 or ŷj j 1, which is
absurd. We conclude that fyi; yjg and fyi þ 1; yjg can not both be Gröbner
bases, a contradiction.

To handle the overlaps of the first type in Remark 1, we need
some combinatorics. From [2] we borrow the following definition and
proposition.

Definition 7. For every word u 2 W , we define the root of u as the (unique)
shortest word of which u is a power.
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So for example the root of u ¼ x1x2x1x2x1x2 is x1x2, but for
u ¼ x1x

2
2x1x2 it is u itself.

Proposition 2. For two non-empty words u; v 2 W , uv ¼ vu if and only if
u and v have the same root.

Since the following situation will appear several times, we give it an
own definition.

Definition 8. We say that u 2 W is a non-trivial subword of u2 if u can be
placed in u2 in a position different from the beginning and the ending of u2,
i.e. u is not merely a left and right subword of u2.

Lemma 5. Let u 2 W be a non-empty word (i.e. 6¼ 1). If u is a non-trivial
subword of u2, then u=wk , k � 2, w the root of u. (I.e. u is not the root of
itself.)

Proof. We have u2 ¼ v1uv2 for some v1; v2 2 W ; v1; v2 6¼ 1. It is easy to see
that u ¼ v1w1 ¼ w2v2, w1;w2 2 W ;w1;w2 6¼ 1, where u ¼ w1w2 is a decom-
position of the u in v1uv2. Since uw2 ¼ v1u, we have jv1j ¼ jw2j. But since also
u ¼ v1w1 ¼ w2v2, we must then have v1 ¼ w2. We conclude that u commutes
with v1 ¼ w2. Since v1 clearly is shorter than u, it follows from Proposition 2
that u can not be the root of itself.

Lemma 6. Let u; v1; v2 2 W be three words with v1; v2 < u. If u4 is a
subword of u3v1uv2u3, then v1u ¼ uv or uv2 ¼ v0u (or both) for some v;
v0 2 W .

Proof. Let u ¼ wk , w the root of u. Then our task is to place w1 ¼ w4k in
w2 ¼ w3kv1wkv2w3k . We know from the previous lemma that w is not a non-
trivial subword of w2, for then w can not be a root. This means that we must
try to ‘‘fit the w of w1 exactly over the w of w2’’.

If we start to place the w of w1 over some of the first w in w2 (i.e. to the
left of v1), then we have at least k copies of w from w1 left when we reach v1u

in w2. It then clearly follows that v1u ¼ uv for some v. Using the same
argument in the other direction, i.e. trying to place the end of w1 over some
of the w to the right of v2, then we obtain uv2 ¼ v0u.

But w1 is sufficiently long for us to be able to conclude that we must
have at least one of the situations above. (Since v1; v2 < u ¼ wk, it follows
from (1) that v1; v2 can not contain more that k� 1 copies of w.) To illus-
trate, we try to place w1 in the ‘‘middle’’ of w2. We must place some wk of w1

exactly over the middle u ¼ wk of w1 (otherwise we have a non-trivial sub-
word). Then we have 3k copies of w left, so on one side of the middle u we
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have � 3k=2 copies (certainly > 3k=2 if k is odd), let say to the left. Since
v1 < u ¼ wk, we then have � k=2 copies of w to place to the left of v1. Not
allowed to have any non-trivial subword, we must then have the case further
up in this proof.

We will need one more purely combinatorial result. The following
proposition is the main result in [7]. (This paper is devoted to free groups,
but the result is valid also in our free monoid W.)

Proposition 3. Let u; v;w 2 W be three words satisfying the equality
ukvl ¼ wm with k; l;m � 2. Then u, v and w all have the same root.

We now return to our Gröbner bases.

Lemma 7. Let p and q be two polynomials with p � q 6¼ 0 and dp � q < ŷi for
some yi 2 Y. If composition by Y commutes with Gröbner bases computation,
then yi p � qyi 6¼ 0.

Proof. We will use that fyi þ 1g must be a Gröbner basis (Lemma 1-ii).
If yip � qyi ¼ 0, then

0 6¼ p� q ¼ ðyi þ 1Þp� qðyi þ 1Þ 2 hyi þ 1i:

But since dp� q < ŷi, we can not have dyi þ 1 ¼ ŷi j dp� q, a contradiction.
In the proof of the following lemma, we will use a technique that will

be applicable also in the proofs of Lemma 10 and Lemma 11 below.

Lemma 8. Assume that composition by Y commutes with Gröbner bases
computation. If some ŷi (yi 2 Y) form an overlap with itself, then ŷi ¼ wk ,
k � 2, w the root of ŷi.

Proof. Let the overlap be ŷiu ¼ vŷi. Using Proposition 2, we see that we
are done if u ¼ v (since juj ¼ jvj < jŷij), so assume u 6¼ v. Assume further
that we have chosen an overlap (if there are more than one possibility) with
juj ¼ jvj minimal. Since fyig must be a Gröbner basis, we have by
Theorem 1,

yiu� vyi ¼
Xt

k¼1

ckwkL
yiwkR

; wkL
ŷiwkR

< ŷiu ¼ vŷi 8k: ð10Þ

The inequality clearly implies wkL
< v ð< ŷiÞ and wkR

< u ð< ŷiÞ for all k.
The conditions in Lemma 7 are fulfilled with p ¼ u; q ¼ v, so we

conclude that yiu� vyi 6¼ 0, i.e. the sum in the right hand side of (10) is non-
empty. Recall that we can assume that this sum is written with its terms in
decreasing order, so the leading word is w1L

ŷj1
w1R

.
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If w1L
or w1R

is equal to 1, let say w1L
(the other case being symme-

trical), then we can write

yiðu� c1w1R
Þ � vyi ¼

Xt

k¼2

ckwkL
yiwkR

:

The new sum in the right hand side has leading word smaller than the
original sum in (10). Continuing in the same way (first considering
w2L

ŷiw2R
), we end up with

yiðu� pÞ � ðv� qÞyi ¼
Xt

k¼m

ckwkL
yiwkR

; ð11Þ

where for the leading word wmL
ŷiwmR

of the sum, wmL
;wmR

6¼ 1. Here every
word in the polynomial p is smaller than u, and every word in q is smaller
than v, so we can again deduce from Lemma 7 that the sum in (11) is non-
empty.

We now multiply equation (11) by y3
i from left and right to obtain

y4
i ðu� pÞy3

i � y3
i ðv� qÞy4

i ¼
Xt

k¼m

cky
3
i wkL

yiwkR
y3
i :

It follows that

S ¼
Xt

k¼m

cky
3
i wkL

yiwkR
y3
i

is in the ideal hy4
i i. We then know, since fy4

i g must be a Gröbner basis, that
ŷ4
i is a subword of Ŝ ¼ ŷ3

i wmL
ŷiwmR

ŷ3
i . We can now use Lemma 6 (with

u ¼ ŷi; v1 ¼ wmL
; v2 ¼ wmR

) to conclude that wmL
ŷi ¼ ŷiw or ŷiwmR

¼ w0ŷi for
some w;w0 2 W.

Assume first that wmL
ŷi ¼ ŷiw. Since both wmL

and v then are left
subwords of ŷi, and wmL

< v, we have jwmL
j < jvj. But since wmL

6¼ 1,
wmL

ŷi ¼ ŷiw is an overlap contradicting the minimality of juj ¼ jvj. The same
argument applies if ŷiwmR

¼ w0ŷi, now using that wmR
6¼ 1 is shorter than u.

Thus the lemma is proved.

We now have enough tools to exclude more overlaps.

Lemma 9. If composition by Y commutes with Gröbner bases computation,
then no leading words of two different polynomials from Y form an overlap of
the first type in Remark 1.

Proof. Assume that we have an overlap of this type, i.e. ŷju ¼ vŷi for some
yi; yj 2 Y and u; v 2 W . Then ŷiŷj forms an overlap with itself:
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In the proof of the previous lemma, we used the Gröbner bases i and ii of
Lemma 1 (the latter indirectly by Lemma 7). If we instead use iii and iv, then
we see that the proof of the previous lemma goes through if we replace yi
with yiyj. We conclude that ŷiŷj ¼ wk, k � 2. If ŷi ¼ wk1 and ŷj ¼ wk2 , then
one of them is a subword of the other, contradicting Lemma 4. The same
must be true if ŷi or ŷj is a subword of w. Thus ŷi and ŷj meet ‘‘in the middle’’
of a w in the sense of the following figure:

We see that a (proper) right subword of ŷi is a left subword of w, and then of
course also a left subword of ŷi itself. In the same way we see that a left
subword of ŷj is a right subword of ŷj. We conclude that ŷi and ŷj both must
form overlaps with themselves. We can then use Lemma 8 again to get
ŷi ¼ wl

1, l � 2, and ŷj ¼ wm
2 , m � 2.

Summarizing, we get the equality ŷiŷj ¼ wl
1w

m
2 ¼ wk with k; l;m � 2.

But then w1 and w2 (and w) have the same root by Proposition 3, so ŷi and ŷj
must also have the same root. It follows that one of ŷi or ŷj must be a
subword of the other (or both if ŷi ¼ ŷj), i.e. ŷi and ŷj form an overlap of the
second type in Definition 2. We can consequently apply Lemma 4 to get a
contradiction, and our lemma is proved.

We have now proved that two different words from bY can not form an
overlap (of either type) if composition by Y commutes with Gröbner bases
computation. The only thing we have left to show, to be able to conclude
that bY must be combinatorially free, is that no word from bY forms an
overlap with itself. We have proved in Lemma 8 that such a word must be of
the form wl with l � 2. We will also need the following.

Lemma 10. Assume that composition by Y commutes with Gröbner bases
computation. If some ŷi (yi 2 Y) forms an overlap with itself, then the root of
ŷi can not form an overlap with itself.

Proof. We know from Lemma 8 that ŷi ¼ ul; l � 2, where u is the root of
ŷi. Assume that u forms an overlap with itself, i.e. uw1 ¼ w2u for some
subwords w1;w2 of u. Assume further that we have chosen an overlap with
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jw1j ¼ jw2j minimal. We must have w1 6¼ w2. Otherwise u commutes with
w1 ¼ w2, and by Proposition 2, u can not be a root.

Multiplying the overlap above by ul�1 from both left and right, we
obtain ŷiw1u

l�1 ¼ ul�1w2ŷi, which is an overlap of ŷi. We then have, since
fyig must be a Gröbner basis,

yiw1u
l�1 � ul�1w2yi ¼

Xt

k¼1

ckwkL
yiwkR

; wkL
ŷiwkR

< ŷiw1u
l�1

¼ ul�1w2ŷi: ð12Þ

The inequality implies wkL
< ul�1w2 and wkR

< w1u
l�1 for all k.

We note that w1u
l�1 6¼ ul�1w2. Otherwise, since uw1 ¼ w2u, both w1

and w2 are left subwords of u, i.e. w1 ¼ w2 (since jw1j ¼ jw2j). We conclude,
using Lemma 7, that the sum in (12) is non-empty (w1ul�1; ul�1w2 < ŷi).

We will later need that some wkL
;wkR

are not powers of u. So assume
(the sum written in decreasing order) that e.g. w1L

¼ us, the case w1R
being

symmetrical. If s ¼ 0 (i.e. w1L
¼ 1), then we just move c1yiw1R

to the left
hand side of (12). Since w1L

< ul�1w2, we can not have s � l, and for
1 
 s 
 l � 1, yiu

s � usyi is an overlap relation. This means (since fyig is
Gröbner basis) that we can replace usyi with yiu

s and a sum with terms
~cjvjL

yivjR
smaller than usŷi ¼ w1L

ŷi:

w1L
yiw1R

¼ usyiw1R
¼ yiu

sw1R
þ

X
~cjvjLyivjR

	 

w1R

;

vjL ŷivjRw1R
< w1L

ŷiw1R
:

Moving c1yiu
sw1R

to the left hand side of (12), we have in the right hand side
of (12) a sum with terms smaller than w1L

ŷiw1R
. Continuing in the same way

with this sum, we end up with

yiðw1u
l�1 � pÞ � ðul�1w2 � qÞyi ¼

Xt0
k¼m

c0kw
0
kL
yiw

0
kR
; ð13Þ

where, assuming that w0
mL
ŷiw

0
mR

is the leading word of the sum, w0
mL
;

w0
mR

6¼ us. (It may happen, during the process just described, that we get
terms in the sum with equal leading words. However, we will still end up
with (13), but should maybe say that w0

mL
ŷiw

0
mR

is one representation of the
leading word.) We must also have w0

mL
< ul�1w2 ð< ŷiÞ and

w0
mR

< w1ul�1 ð< ŷiÞ. Since the leading word of ðw1ul�1 � pÞ � ðul�1w2 � qÞ
is still w1ul�1 or ul�1w2, the sum in the right hand side of (13) is non-empty
by Lemma 7.
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Multiplying by y3
i from left and right, we obtain

y4
i ðw1u

l�1 � pÞy3
i � y3

i ðul�1w2 � qÞy4
i ¼

Xt0
k¼m

c0ky
3
i w

0
kL
yiw

0
kR
y3:
i

We see that the sum is in hy4
i i, so ŷ4

i must be a subword of ŷ3
i w

0
mL
ŷiw

0
mR

ŷ3
i ,

and we can then use Lemma 6 to conclude that w0
mL
ŷi ¼ ŷiw or ŷiw

0
mR

¼ w0ŷi.
Assume first that w0

mL
ŷi ¼ ŷiw, i.e. w0

mL
ul ¼ ulw. We know that

w0
mL

< ul�1w2 and w2 < u. Since w0
mL

6¼ ul�1, we have jw0
mL
j 6¼ jul�1j. If w0

mL
is

shorter that ul�1, then the first u after w0
mL

in w0
mL

ul must be a non-trivial
subword of some u2 in ulw (w0

mL
6¼ us). But this is impossible, since u then can

not be a root by Lemma 5. On the other hand, if jwmL
j > jul�1j, then we must

have wmL
¼ ul�1~w, ~w 6¼ 1; j~wj < jw2j (since ~w;w2 both are left subwords of

u and w0
mL

¼ ul�1~w < ul�1w2). Cancelling the first ul�1 in w0
mL

ul ¼ ulw, we
then get ~wul ¼ uw. But here we have an overlap ~wu ¼ u�w contradicting the
minimality of jw1j ¼ jw2j.

The same argument applies if ŷiw
0
mR

¼ w0ŷi, now using that
wmR

< w1u
l�1 and w1 < u. Thus the lemma is proved.

We can now show our last lemma, and thereby finishing the proof of
Theorem 3. The proof will be similar to the proofs of Lemma 8 and
Lemma 10. We can not apply Lemma 7 directly, but the reader will
recognize the argument.

Lemma 11. If composition by Y commutes with Gröbner bases computation,
then no ŷi (yi 2 Y) forms an overlap with itself.

Proof. Assume on the contrary that there is such a yi 2 Y. Since n � 2,
there is at least one more polynomial yj 2 Y, and ŷi; ŷj must not form an
overlap.

We know from Lemma 8 that ŷi ¼ ul, l � 2, u the root of ŷi. We
then have an overlap ŷiŷjŷiuŷjŷi ¼ ŷiŷjuŷiŷjŷi (formed by ŷiŷjŷi), and since
fyiyjyig is a Gröbner basis, an overlap relation that can be represented as

yiyjyiuŷjŷi � ŷiŷjuyiyjyi ¼
Xt

k¼1

ckwkL
yiyjyiwkR

; ð14Þ

with an inequality that implies wkL
< ŷiŷju and wkR

< uŷjŷi for all k.
To show that the sum in the right hand side of (14) is non-empty, we

will use the Gröbner basis

G ¼ fxixjxi þ xj; xixjxj � xjxjxig

(Lemma 1-viii). Assuming the sum empty, we have
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ðyiyjyi þ yjÞuŷjŷi � ŷiŷjuðyiyjyi þ yjÞ ¼ yjuŷjŷi � ŷiŷjuyj 2 hG + Y i:

The leading words of the two terms in the right hand side can not be equal,
for then ŷi and ŷj would form an overlap, which is impossible by previous
lemmas. Thus some word of dG + Y must be a subword of the largest of
ŷjuŷjŷi; ŷiŷjuŷj. But it is not hard to see that neither of ŷiŷjŷi; ŷiŷjŷj; ŷjŷjŷi can
be a subword of ŷjuŷjŷi or ŷiŷjuŷj, without ŷi; ŷj forming an overlap (recall
that ŷi ¼ ul).

We will later need that wkL
6¼ ŷiŷj;wkR

6¼ ŷjŷi and wkL
;wkR

6¼ 1. Assume
that the leading word of the sum in (14) is w1L

ŷiŷjŷiw1L
. If w1L

or w1R
is

equal to 1, then we can do as in previous proofs, i.e. just move c1ŷiŷjŷiw1L

or c1w1L
ŷiŷjŷi to the left hand side of (14). So assume that w1L

¼ ŷiŷj,
the case w1R

¼ ŷjŷi being symmetrical. We then use the overlap relation

yiyjyiŷjŷi � ŷiŷjyiyjyi to, as in the previous proof, replace ŷiŷjyiyjyi with

yiyjyiŷjŷi and a ‘‘smaller sum’’. Moving c1yiyjyiŷjŷiw1R
to the left hand side

of (14), and continuing with the smaller terms in the new sum, we end up
with

yiyjyiðuŷjŷi � pÞ � ðŷiŷju� qÞyiyjyi ¼
Xt0
k¼m

c0kw
0
kL
yiyjyiw

0
kR
;

where, assuming that w0
mL
ŷiŷjŷiw

0
mR

is the leading word (or one representa-

tion of the leading word), w0
mL

6¼ ŷiŷj;w
0
mR

6¼ ŷjŷi and w0
mL
;w0

mR
6¼ 1. We also

have w0
mL

< ŷiŷju ð< ŷiŷjŷiÞ;w0
mR

< uŷjŷi ð< ŷiŷjŷiÞ. The sum can not be

empty, for then the counterexample with G above applies.

Multiplying by ðyiyjyiÞ
3

from left and right, we obtain

ðyiyjyiÞ
4ðuŷjŷi � pÞðyiyjyiÞ

3 � ðyiyjyiÞ
3ðŷiŷju� qÞðyiyjyiÞ

4

¼
Xt0
k¼m

c0kðyiyjyiÞ
3
w0
kL
yiyjyiw

0
kR
ðyiyjyiÞ

3:

We conclude, since fðyiyjyiÞ
4g is a Gröbner basis, that ðŷiŷjŷiÞ

4
must be a

subword of ðŷiŷjŷiÞ
3
w0
mL
ŷiŷjŷiw

0
mR

ðŷiŷjŷiÞ
3
. Applying Lemma 6 (with

u ¼ ŷiŷjŷi), we see that w0
mL
ŷiŷjŷi ¼ ŷiŷjŷiw or ŷiŷjŷiw

0
mR

¼ w0ŷiŷjŷi.
Assume first that w0

mL
ŷiŷjŷi ¼ ŷiŷjŷiw. Since w0

mL
6¼ ŷiŷj, we have

jw0
mL
j 6¼ jŷiŷjj. If jw0

mL
j < jŷiŷjj, then it is easy to see that ŷi and ŷj must form

an overlap (w0
mL

6¼ 1). If jw0
mL
j > jŷiŷjj, then w0

mL
¼ ŷiŷj ~w with j~wj < juj

(w0
mL

< ŷiŷju). It then follows that the first u of the last ŷi ¼ ul in ŷiŷjŷiw
forms an overlap with the first u of the ŷi after w0

mL
in w0

mL
ŷiŷjŷi. But this is

impossible by the previous lemma.
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The case when ŷiŷjŷiwmR
¼ w0ŷiŷjŷi is symmetrical, now using that

w0
mR

6¼ ŷjŷi and w0
mR

< uŷjŷi. Thus this lemma, and also Theorem 3, is

proved.

4 COMPATIBLE COMPOSITIONS

Given a finite set Y � KhXi, it is of course not hard to decide whetherbY is combinatorially free. To check the other condition in our main theo-
rem, i.e. if composition by Y is compatible with the current ordering, is
however not a trivial task. In Hong’s paper, the following question is left as
an open problem.

Does there exist a decision procedure that will determine whether a given
composition is compatible with a given term ordering?

We will answer this question for two examples of non-commutative
admissible orderings. We start with deglex.

Proposition 4. Composition by Y is compatible with the deglex ordering if
and only if jŷij ¼ jŷjj for all yi; yj 2 Y, and ŷi > ŷj if xi > xj.

Proof. Assume first that composition by Y is compatible with the deglex
ordering, and for some ŷi; ŷj, their lengths are different. Let for example
xi > xj and jŷij ¼ k; jŷjj ¼ l. We necessarily have k > l. Note that

kðlþ 1Þ ¼ klþ k > lðkþ 1Þ ¼ klþ l:

We have xkþ1
j > xlþ1

i . But the length of xkþ1
j + bY ¼ ŷkþ1

j is lðkþ 1Þ, and then
xkþ1
j + bY is shorter than xlþ1

i + bY ¼ ŷlþ1
i , which has length kðlþ 1Þ. Thus

xkþ1
j + bY < xlþ1

i + bY , a contradiction. That xi > xj must imply ŷi > ŷj is
obvious.

Assume conversely that jŷij ¼ jŷjj for all ŷi; ŷj 2 Y, and ŷi > ŷj if
xi > xj. If juj > jvj (u; v 2 W), then clearly ju + bY j > jv + bY j. We thus have
the case juj ¼ jvj left, which implies ju + bY j ¼ jv + bY j. Since jŷij ¼ jŷjj,
ŷi > ŷj is equivalent to that ŷi is larger than ŷj lexicographically. It is then
easy to see that u > v lexicographically implies u + bY > v + bY lexico-
graphically, and our proposition is proved.

In the commutative case, we have that a composition that allows
commutation of Gröbner bases computation must contain all variables (see
the discussion following Theorem 2). This is not necessary in our non-
commutative setting. It follows from Proposition 5 that any subset
Y ¼ fy1; y2; y3g of Khx1; x2; x3i with for example
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ŷ1 ¼ x3
1x

3
2; ŷ2 ¼ x2

1x2x1x
2
2; ŷ3 ¼ x1x2x

2
1x

2
2

ð) bY combinatorially freeÞ

fulfills the conditions in our main theorem if we use deglex (x3 > x2 > x1).
We now consider the elimination ordering defined in [9]: For u 2 W and

1 
 i 
 n, let degxi
u denote the number of different occurrences of xi in u.

We first use the commutative lexicographic ordering (xn > � � � > x1), i.e. we
let u > v (u; v 2 W ) if degxj

u > degxj
v and degxi

u ¼ degxi
v for i > j. If

degxi
u ¼ degxi

v for all i, then we use our non-commutative lexicographic
ordering. This ordering is called an elimination ordering because it allows us
to use elimination techniques.

Proposition 5. Assume that Y � Khx1 . . . xni consists of n polynomials, and
that bY is combinatorially free. (This is clearly the case we are interested in.)
Then composition by Y is compatible with the elimination ordering above if
and only if ŷi ¼ xi for all i.

Proof. Assume first that composition by Y is compatible with the elim-
ination ordering. Let xi > xj (i.e. i > j), which implies ŷi > ŷj. Denote by
maxx u the largest variable occurring in u 2 W , i.e. the variable with highest
index. Let maxx ŷi ¼ xi0 and maxx ŷj ¼ xj0 ; we clearly have xi0 � xj0 . If xi0 ¼ xj0 ,
then let degxi0

ŷi ¼ k and degxi0
ŷj ¼ l. If m is an integer such that ml > k, then

ŷm
j > ŷi. Since xi > xm

j we get a contradiction, so xi0 > xj0 . It is then easy
to see, since all ŷj 6¼ 1, that maxx ŷi ¼ xi for all i. (Since maxx yi for the
n polynomials yi must form a decreasing sequence.)

Since maxx ŷ1 ¼ x1, we see that ŷ1 contains only x1, so we must have
ŷ1 ¼ x1 (otherwise ŷ1 forms an overlap with itself). Moreover, ŷ2 contains
only x2 and x1, and since ŷ2 can not form an overlap with ŷ1, it follows that
ŷ2 must begin and end with x2. We conclude that ŷ2 ¼ x2. In the same way it
follows that ŷi ¼ xi for all i.

Conversely, it is clear that ŷi ¼ xi for all i implies compatibility with
the ordering, and our proposition is proved.

We see that the elimination ordering is in some sense the worst case.
Because for any ordering, ŷi ¼ xi for all i clearly implies that the two con-
ditions in our main theorem are fulfilled. However, even for the elimination
ordering our theorem is useful; we may e.g. after ŷn in yn have any poly-
nomial in x1; . . . ; xn�1.

Finally we mention that, for some Gröbner basis G, G + Y can of
course be a Gröbner basis even if Y do not fulfill the two conditions in
Theorem 3. By understanding the ideas in this paper we can sometimes,
given G and Y, decide whether G + Y is a Gröbner basis without using our
main theorem.
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