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Abstract: A linear code over a prime field can be described by a binomial
ideal in a polynomial ring given as the sum of a toric ideal and a nonprime
ideal. A Groebner basis for such an ideal can be read off from a systematic
generator matrix of the corresponding code. In this paper, a similar result will
be presented for linear codes over GF(4). To this end, the extented alphabet
GF(4) is dealt with by enlarging the polynomial ring.
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1. Introduction

Data signals sent over a noisy channel are protected against errors during trans-
mission by adding redundancy. In algebraic coding theory, codes have an un-
derlying algebraic structure and are studied with respect to key properties like
number of codewords, number of detectable or correctable errors, and complex-
ity of encoding and decoding. A well-investigated class of codes are the linear
codes which are subspaces of an ambient vector space over a finite field [13, 14].

Groebner basis theory and algorithms have been originally devised by Buch-
berger in order to solve fundamental problems in commutative algebra [5, 6],
Since then, Groebner bases have become a powerful and widely used tool in al-
gebraic geometry and commutative algebra to handle a large variety of problems
which can be represented by multivariate polynomials [10, 11, 12, 15, 19].
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Recently, binary linear codes were linked to binomial ideals [4]. In [16, 17,
18] it has been shown that a linear code over a prime field GF(p) or local ring
Zpm can be described by a binomial ideal given as the sum of a toric ideal and a
nonprime ideal and that the reduced Groebner basis of this ideal (with respect
to a lexicographic order) can be read off from the systematic generator matrix
of the code. The calculations can be carried out in a polynomial ring over an
algebraically closed field of characteristic 0 which provides the most comfortable
situation in commutative algebra and algebraic geometry. However, the results
do not directly carry over to linear codes over a finite extension field, since the
representation of a code as an ideal heavily depends on the underlying alphabet.

This paper establishes an analogous result for linear codes over GF(4).
However, in contrast to the case of linear codes over a prime field, the alphabet
GF(4) needs special attention by enlarging polynomial ring.

For more details on the required background, we refer to the literature:
Groebner bases [1, 2, 10, 11, 15, 19], toric ideals [3], and linear codes [13, 14].

2. Linear Codes over GF(4) and Groebner Bases

Let GF(4) = {0, 1, α, α2 = α + 1} be the Galois field with four elements. Let
C be a linear code of length n and dimension k over GF(4) with systematic
generator matrix G = (gij) = (I | A), i.e., C = {uG | u ∈ GF(4)k}, I is the
k×k identity matrix, and A is a k×(n−k) matrix over GF(4). Note that there
is an isomorphism φ : GF(4) → Z2 × Z2 of abelian groups, where φ(0) = (0, 0),
φ(1) = (1, 0), φ(α) = (0, 1), and φ(α2) = (1, 1).

In view of the polynomial ring K[Z] = K[{Z
(k,l)
i | 1 ≤ i ≤ n, 0 ≤ k, l ≤ 1}],

associate with each vector c = (c1, . . . , cn) ∈ GF(4)n the monomial

Z
c = Z

φ(c1)
1 · · ·Zφ(cn)

n . (1)

Put Z
(0,0)
i = 1, Z

(1,0)
i = Xi, Z

(0,1)
i = Yi, and Z

(1,1)
i = XiYi, 1 ≤ i ≤ n.

In this way, each monomial Zc becomes an element of the polynomial ring
K[X ,Y ] = K[X1, . . . ,Xn, Y1, . . . , Yn], e.g.,

Z
(0,1,α,α2,1,α,0) = X2Y3X4Y4X5Y6.

The ideal in the polynomial ring K[X,Y ] associated to the code C is defined
as

IC = 〈Zc+ −Z
c− | c+ − c− ∈ C〉+ 〈X2

i − 1, Y 2
i − 1 | 1 ≤ i ≤ n〉. (2)
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Note that each binomial of the form Z
c+ − Z

c− in IC is equivalent to the
binomial Zc+−c− −1 modulo IC . Indeed, if XiY −Z lies in IC , then Y −XiZ =
Xi(XiY −Z)−Y (X2

i −1) is also in IC ; similarly, if YiX−Z belongs to IC , then
X − YiZ = Yi(YiX − Z)−X(Y 2

i − 1) lies in IC , 1 ≤ i ≤ n.
In the following, let ai denote the length-n vector containing the i-th row

of the submatrix A; that is,

ai = (0, . . . , 0, gi,k+1, . . . , gi,n), 1 ≤ i ≤ k. (3)

Subsequently, take the lexicographic order on the polynomial ring K[X,Y ] such
that

X1 ≻ . . . ≻ Xk ≻ Y1 ≻ . . . ≻ Yk ≻ Xk+1 ≻ . . . ≻ Xn ≻ Yk+1 ≻ . . . ≻ Yn. (4)

Theorem 1. In view of the monomial order (4), the ideal IC has the
reduced Groebner basis

G = {Xi −Z
ai , Yi −Z

α·ai | 1 ≤ i ≤ k} (5)

∪{X2
i − 1, Y 2

i − 1 | k + 1 ≤ i ≤ n}.

Proof. Claim that the elements of G lie in the ideal IC . Indeed, the binomials
Xi −Z

ai and Yi −Z
α·ai , 1 ≤ i ≤ k, correspond to the rows of the matrices G

and αG, respectively. This proves the claim.
Conversely, claim that the generators of IC lie in the ideal generated by G.

To see this, first consider the binomial X2
i −1, 1 ≤ i ≤ k, which can be reduced

modulo G as follows:

rem(X2
i − 1,G) = rem(X2

i − 1−Xi(Xi −Z
ai),G) = rem(XiZ

ai − 1,G)

= rem(XiZ
ai − 1−Z

ai(Xi −Z
ai),G) (6)

= rem((Zai)2 − 1,G).

The occuring exponents are even and thus further reduction by the binomials
X2

j − 1 and Y 2
j − 1, k + 1 ≤ j ≤ n, leads to zero.

Second, in a similar way, the binomials Y 2
i − 1, 1 ≤ i ≤ k, can be reduced

modulo G to the binomial (Zαai)2 − 1 and then further to zero.
Third, consider the generators of the code C given by the rows of the matrix

G. For this, let ei denote the i-th unit vector, i.e., ei is the vector with a 1 in
the i-th component and zeros elsewhere, 1 ≤ i ≤ n. First, the binomial Zc − 1
corresponding to the generator c = ei + ai, 1 ≤ i ≤ k, reduces modulo G as
follows:

rem(Zei+ai − 1,G) = rem(XiZ
ai − 1−Z

ai(Xi −Z
ai),G)
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= rem((Zai)2 − 1,G). (7)

Second, the binomial Zc−1 associated with the scalar multiple c = α(ei+ai),
1 ≤ i ≤ k, gets reduced mod G in the following way:

rem(Zα(ei+ai) − 1,G) = rem(YiZ
αai − 1−Z

αai(Yi −Z
αai),G)

= rem((Zαai)2 − 1,G). (8)

Third, the binomial Zc − 1 related to the scalar multiple c = α2(ei + ai),
1 ≤ i ≤ k, is reduced as follows:

rem(Zα2(ei+ai) − 1,G) =

= rem(XiYiZ
α2

ai − 1− YiZ
α2

ai(Xi −Z
ai),G)

= rem(YiZ
aiZ

α2
ai − 1,G) (9)

= rem(YiZ
aiZ

α2
ai − 1−Z

aiZ
α2

ai(Yi −Z
αai),G)

= rem(ZaiZ
αaiZ

α2
ai − 1,G),

where the last binomial is equal to

n
∏

j=k+1

ai,j 6=0

X2
j Y

2
j − 1. (10)

More generally, let Z
c+ − Z

c− be an element of IC with c+ − c− ∈ C.
By the remarks prior to the theorem and the fact that the binomials X2

i − 1
and Y 2

i − 1 reduce to zero modulo G, it is sufficient to consider the equivalent
binomial Zc − 1, where c = c+ − c− ∈ C. Successive reduction of this binomial

by using (7) to (9) leads to a binomial of the form X
dk+1

k+1 Y
ek+1

k+1 · · ·Xdn
n Y en

n − 1,
whose exponents dk+1, ek+1, . . . , dn, en are even. This binomial can in turn be
reduced to zero by the binomials X2

i − 1 and Y 2
i − 1, k + 1 ≤ i ≤ n, proving

the claim. Hence, the ideal generated by G equals the ideal IC of the code C.
Next, claim that G is a Groebner basis for IC . Indeed, Buchberger’s S-

criterion leads to the following cases: First, let 1 ≤ i < j ≤ k. The S-polynomial

S(Xi −Z
ai ,Xj −Z

aj ) = XiZ
aj −XjZ

ai

is divided by G as follows:

rem(XiZ
aj −XjZ

ai ,G) =

= rem(XiZ
aj −XjZ

ai −Z
aj(Xi −Z

ai),G)
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= rem(−XjZ
ai +Z

ajZ
ai ,G)

= rem(−XjZ
ai +Z

ajZ
ai +Z

ai(Xj −Z
aj ),G)

= rem(ZajZ
ai −Z

aiZ
aj ,G) = 0.

Second, let 1 ≤ i, j ≤ k. The S-polynomial

S(Xi −Z
ai , Yj −Z

αaj) = XiZ
αaj − YjZ

ai

reduces modulo G as follows:

rem(XiZ
αaj − YjZ

ai ,G) =

= rem(XiZ
αaj − YjZ

ai −Z
αaj (Xi −Z

ai),G)

= rem(−YjZ
ai +Z

αajZ
ai ,G)

= rem(−YjZ
ai +Z

αajZ
ai +Z

ai(Yj −Z
αaj ),G)

= rem(ZαajZ
ai −Z

aiZ
αaj ,G) = 0.

Third, let 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. The S-polynomial

S(Xi −Z
ai ,X2

j − 1) = Xi −X2
jZ

ai

is reduced mod G in the following way:

rem(Xi −X2
jZ

ai ,G) =

= rem(Xi −X2
jZ

ai − (Xi −Z
ai),G)

= rem(−X2
jZ

ai +Z
ai ,G)

= rem(−X2
jZ

ai +Z
ai +Z

ai(X2
j − 1),G)

= rem(Zai −Z
ai ,G) = 0.

Fourth, let 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. The S-polynomial

S(Xi −Z
ai , Y 2

j − 1) = Xi − Y 2
j Z

ai

provides the following remainder modulo G:

rem(Xi − Y 2
j Z

ai ,G) =

= rem(Xi − Y 2
j Z

ai − (Xi −Z
ai),G)

= rem(−Y 2
j Z

ai +Z
ai ,G)

= rem(−Y 2
j Z

ai +Z
ai +Z

ai(Y 2
j − 1),G)

= rem(Zai −Z
ai ,G) = 0.
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Fifth, let 1 ≤ i < j ≤ k. The S-polynomial

S(Yi −Z
αai , Yj −Z

αaj ) = YiZ
αaj − YjZ

αai

gets reduced to zero mod G analogously to the first case.
Sixth, let 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. The S-polynomial

S(Yi −Z
αai ,X2

j − 1) = Yi −X2
jZ

αai

gets divided into G as follows:

rem(Yi −X2
jZ

αai ,G) =

= rem(Yi −X2
jZ

αai − (Yi −Z
αai),G)

= rem(−X2
jZ

αai +Z
αai ,G)

= rem(−X2
jZ

αai +Z
αai +Z

αai(X2
j − 1),G)

= rem(Zαai −Z
αai ,G) = 0.

Seventh, let 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. The S-polynomial

S(Yi −Z
αai , Y 2

j − 1) = Yi − Y 2
j Z

αai

is reduced to zero mod G similarly to the third case.
Eighth, let k + 1 ≤ i < j ≤ n. Then

S(X2
i − 1,X2

j − 1) = X2
i −X2

j = (X2
i − 1)− (X2

j − 1).

Nineth, let k + 1 ≤ i, j ≤ n. Then

S(X2
i − 1, Y 2

j − 1) = X2
i − Y 2

j = (X2
i − 1)− (Y 2

j − 1).

Tenth, let k + 1 ≤ i < j ≤ n. Then

S(Y 2
i − 1, Y 2

j − 1) = Y 2
i − Y 2

j = (Y 2
i − 1)− (Y 2

j − 1).

In the last three cases, the S-polynomials are linear combinations of elements
lying in G and thus get divided by G to zero. This establishes the claim. Finally,
it is clear that the basis G is reduced. Hence, the result follows.

Example 1. The hexacode [8] is a linear code H of length 6 and dimen-
sion 3 over GF(4) given as

H = {(a, b, c, f(1), f(α), f(α2)) | f(x) = ax2 + bx+ c, a, b, c ∈ GF(4)}. (11)
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This code has 64 codewords: 45 codewords of Hamming weight 4, 18 codewords
of weight 6, and the zero word. By (11), a systematic generator matrix for the
hexacode is the following:





1 0 0 1 α2 α

0 1 0 1 α α2

0 0 1 1 1 1



 .

By Theorem 1, the reduced Groebner basis for the associated ideal IH with
respect to the lexicgraphic order (4) has the following elements:

X1 −X4X5Y5Y6, X2
4 − 1,

X2 −X4X5X6Y6, X2
5 − 1,

X3 −X4X5X6, X2
6 − 1,

Y1 − Y4X5X6Y6, Y 2
4 − 1,

Y2 − Y4X5Y5X6, Y 2
5 − 1,

Y3 − Y4Y5Y6, Y 2
6 − 1.
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