
International Journal of Algebra, Vol. 5, 2011, no. 12, 579 - 589

The Symmetric Algebra for Certain

Monomial Curves1

Debasish Mukhopadhyay

Acharya Girish Chandra Bose College
35, Scott Lane, Kolkata, WB 700009, India

mdebasish01@yahoo.co.in

Abstract. Let p ≥ 2 and 0 < m0 < m1 < . . . < mp be a sequence of positive
integers such that they form a minimal arithmetic sequence. Let ℘ denote the
defining ideal of the monomial curve C in Ap+1

K , defined by the parametrization
Xi = Tmi for i ∈ [0, p]. Let R denote the polynomial ring K[X1, . . . , Xp, X0].
In this article, we construct a minimal Gröbner basis for the symmetric algebra
for such curves, as an R-module and what is interesting is that the proof does
not require any S-polynomial computation.
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1. Notation

Let N denote the set of non-negative integers and the symbols
a, b, d, i, i′, j, j′, l, l′,m, n, p, q, s denote

non-negative integers . For our convenience we define [a , b] = {i | a ≤ i ≤
b} ,

ε(i , j) =

{
i+ j if i+ j < p

p if i+ j ≥ p
and τ(i , j) =

{
0 if i+ j < p

p if i+ j ≥ p

2. Introduction

A class of rings, collectively designated Blowup Algebras, appear in many con-
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structions in Commutative Algebra and Algebraic Geometry. The ancestor of
the blowup algebra is the symmetric algebra. Given an R-module M , the sym-
metric algebra of M is an R-algebra S(M) which together with an R-module
homomorphism

π : M −→ S(M)

solves the following universal problem: For a commutative R-algebra B and
any R-module homomorphism ϕ : M −→ B, there exists a unique R-algebra
homomorphism ϕ : S(M) → B such that ϕ = ϕ ◦ π. Thus, if M is a free
module then S(M) is the polynomial ring R[T1 , . . . , Tm],
where m = rank(M). More generally, when M is given by the presentation

Rr ϕ−→ Rm −→M −→ 0 , ϕ = (aij),

its symmetric algebra is the quotient of the polynomial ring R[T1 , . . . , Tm] by
the ideal generated by the 1-forms

fj = a1jT1 + · · ·+ amjTm, j = 1, . . . , r.

Conversely, any quotient ring of the polynomial ring R[T1, . . . , Tm]/L, with L
generated by the 1-forms in the Ti’s is the symmetric algebra of a module.

3. Monomial Curves

Let p ≥ 2 and 0 < m0 < m1 < . . . < mp is an arithmetic sequence of integers
with mi = m0 + id for i ∈ [1, p] and d ≥ 1. We also assume that m0 = ap + b
with a ≥ 1 and b ∈ [1, p] . Let Γ denote the numerical semigroup generated by
m0, . . . , mp i.e., Γ :=

∑p
i=0 Nmi. We further assume that gcd(m0, d) = 1 and

the set S = {m0, . . . , mp} forms a minimal set of generators for Γ.
Let K be a field and X1, . . . , Xp, X0, T are indeterminates. Let ℘ denote the
kernel of the K-algebra homomorphism η : R := K[X1, . . . , Xp, X0] → K[T ],
defined by η(Xi) = Tmi for i ∈ [0, p] . The prime ideal ℘ is an one-dimensional
perfect ideal and it is the defining ideal of the affine monomial curve given by
the parametrization Xi = Tmi for i ∈ [0, p]. It is easy to verify that ℘ is gener-

ated by binomials of the form Xα1
1 · · ·Xαp

p Xα0
0 − Xβ1

1 · · ·Xβp
p Xβ0

0 with

p∑
i=0

αimi =

p∑
i=0

βimi .

The structure of the semigroup Γ was given by Patil & Singh (1990) under a
more general assumption of almost arithmetic sequence on the integers m0 <
m1 < . . . < mp. Subsequently, Patil (1993) constructed a minimal generating
set G for ℘ which was proved to be a Gröbner basis by Sengupta (2003a). Al-
Ayyoub(2009) pointed out a gap in Sengupta’s proof(2003a) in one particular
case. However, it is still not known whether the minimal generating set G
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for ℘ in that particular case is a Gröbner basis with respect to some suitable
monomial order.
We restrict our attention only in the case of an arithmetic sequence. A com-
plete description of all the syzygy modules was given by Sengupta (2003b),
when p = 3 and m0 < m1 < . . . < mp forms an arithmetic sequence. An
explicit description of a minimal generating set G for ℘ case of arithmetic se-
quence is given in Sengupta (2000) and in Maloo-Sengupta (2003). We recall
the set putting Y = Xp :

G = {ξi , j | i, j ∈ [1, p−2]}∪{φi | i ∈ [0, p−2]}∪{ψb , j | j ∈ [0, p−b−1]}∪{θ}
where

• ξi , j =

⎧⎨⎩XiXj −Xi+jX0 if i+ j ≤ p− 1

XiXj −Xi+j+1−pXp−1 if i+ j ≥ p

• φi = Xi+1Xp−1 −XiXp , ψb , j = Xb+jX
a
p −XjX

a+d
0 and θ =

Xa+1
p −Xp−bX

a+d
0

Let us construct the set G′ = {φ(i , j) | i, j ∈ [1, p − 1]} ∪ {ψ(b , i) | i ∈
[0, p− b]} where

φ(i , j) = XiXj −Xε(i , j)Xi+j−ε(i , j) and ψ(b , i) = Xb+iX
a
p −XiX

a+d
0

It is easy to verify that

• ξi , j = φ(i , j) if i, j ∈ [1, p− 2] and i+ j ≤ p− 1

• ξi , j + φi+j−p = φ(i, j) if i, j ∈ [1, p− 2] and i+ j ≥ p

• φi = φ(i+ 1, p− 1) if i ∈ [0, p− 2]

• ψb , i = ψ(b , i) if i ∈ [0, p− b− 1] and θ = ψ(b , p− b)

Therefore, the set G is contained in the ideal generated by the set G′ as well
as their cardinalities are equal. Also note that G′ ⊆ ℘ . Hence, G′ is a minimal
generating set for the ideal ℘ .
Our aim is to describe a minimal Gröbner basis for the symmetric algebra
for ℘. We start by proving that G′ is a Gröbner basis with respect to a
suitable monomial order in Section 4. This is necessary for computing the
generators of the symmetric algebra in the subsequent sections, which is the
main theme of this article. We construct a set of linear relations among the
binomials in G′ . Finally we prove that the set is a minimal Gröbner basis
for the first syzygy module of ℘ with respect to a suitable monomial order
in Section 5. We use numerical method to show that the leading monomials
of the generating sets indeed generate the initial ideals of the defining ideals.
The advantage of this method is that it does not require any S-polynomial
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computation. In this regard we refer to Conca, A., Herzog, J., Valla, G.
(1996) . We use the notations LT and LM to mean leading term and leading
monomial. For details of Gröbner bases we refer to Eisenbud (1995) and
Cox-Little-O’Shea (1996). This work initiates the process of computing all
relations (linear as well as non-linear) among the binomials in G, culminating
in a structure of the Rees algebra of ℘ (Mukhopadhyay & Sengupta (2009)),
which is essential for understanding smoothness of the symbolic blow-ups of
such curves (Mukhopadhyay & Sengupta (2009)).

4. Gröbner basis for ℘

Every monomial of R can be expressed in the form

(
p∏

i=1

Xαi
i

)
Xα0

0 . We

identify the monomial,

(
p∏

i=1

Xαi
i

)
Xα0

0 with the ordered tuple (α1, . . . , αp, α0) ∈ Np+1

. Let us define a weight function ω

on the monomials of R by the following :

• ω(Xi) = mi ; i ∈ [0, p] .

• ω(fg) = ω(f) +ω(g) ; for any two monomials f and g of R .

We say that f =

p∏
i=1

Xαi
i X

α0
0 >R g =

p∏
i=1

X
α′

i
i X

α′
0

0 if and only if one of the

following holds :

• ω(f) > ω(g) .

• ω(f) = ω(g) and the right-most non-zero entry in the difference

(α1 − α′
1 , . . . . . . , αp − α′

p , α0 − α′
0) is negative .

Remark 4.1. Let f and g are two monomials of R . One can easily check
that:

• f − g ∈ ℘ ⇐⇒ η(f − g) = 0 ⇐⇒ ω(f) = ω(g)

• ω(Xi) �= ω(Xj) for i �= j and i, j ∈ [0, p]

• ω(Xi) + ω(Xj) = ω(X0) + ω(Xi+j) for i+ j < p and i, j ∈ [1, p− 1]

• ω(Xi) + ω(Xj) = ω(Xp) + ω(Xi+j−p) for i+ j ≤ p and i, j ∈ [1, p− 1]

Lemma 4.2. Let m be the smallest integer which satisfies the relation mmp =
nm0 + mi with m, n ≥ 1 and 0 ≤ i < p then : m = a + 1 , i = p − b
and n = a+ d.
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Proof. mmp = nm0 + mi =⇒ mpd = (n − m + 1)m0 + id =⇒ mp − i =
0(modulo mo) since gcd(m0, d) = 1. There exist q ∈ N such that mp − i =
qmo . Note that q = 0 implies mp = i which is absurd and so q ≥ 1. Therefore,
mp − i = q(ap + b) with q ≥ 1 and hence m ≥ a + 1 since, 0 ≤ i < p and
b ∈ [1, p]. At this point note that (a + 1)mp = (a + d)m0 + mp−b. Hence,
m = a+ 1 ,n = a+ d and i = p− b.

Corollary 4.3. Let n be the smallest integer which satisfies the condition
nm0 = mmp +mi with m, n ≥ 1 and 0 < i ≤ p then : n = a+ d , i = b
and m = a.

Proof. Note that mmp + mi = nm0 =⇒ (m + 1)mp = (n − 1)m0 + m0 +
(p − i)d =⇒ (m + 1)mp = (n − 1)m0 + mp−i . Rest of the proof follows from
Lemma 4.2.

Lemma 4.4. If we assume that m �= n ≥ 0 and i �= j ∈ [0, p] and l ∈ {0, p}
then ω(Xn

l Xi) �= ω(Xm
l Xj) .

Proof. ω(Xn
l Xi) = ω(Xm

l Xj) =⇒ either sml +mi = mj or sml +mj =
mi for some s . This contradicts that Γ is minimally generated by the set S .
Hence the proof .

Lemma 4.5. If g = Xm
0 Xj with m ≥ 0 and j ∈ [1 , p− 1] and

• f1 = Xn
pXi with i ∈ [1 , p− 1] and 1 ≤ n ≤ a− 1

• f2 = Xn
pXi with i ∈ [1 , b− 1] and 1 ≤ n ≤ a

then g − fq /∈ ℘ for q = 1, 2 .

Proof. ω(Xn
pXi) = ω(Xm

0 Xj) implies that there exist s ≥ 0 such that either
nmp = mm0 +sd or nmp +sd = mm0 . Rest of the proof follows from Lemma
4.2 and Corollary 4.3.

Lemma 4.6. If g = Xm
0 X

n
p with m ≥ 0 and n ∈ [0 , a] and

• f1 = X l
pXi 1 ≤ l ≤ a− 1 and i ∈ [1 , p− 1]

• f2 = X l
0Xi l ≥ 0 and i ∈ [1 , p− 1]

• f3 = X l
pXi 1 ≤ l ≤ a and i ∈ [1 , b− 1]

then g − fq /∈ ℘ for q = 1, 2, 3.

Proof. The following cases will arise depending on m , n , l :

1. mi ∈ 〈S \mi 〉
2. n(ap+ b) = (m+ 1)(ap+ b) +mpd+ id
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3. m(ap+ b) = (n+ 1)(ap+ b) + id

Case(i) contradicts that Γ is minimally generated by the set S . Lemma 4.2
and Corollary 4.3 take care of Case(ii) and Case(iii) . Hence the proof .

Theorem 4.7. The set G′ is a Gröbner Basis for ℘ with respect to >R.

Proof. If f is a monomial of R and
f /∈ LT(G′) = {XiXj | i j ∈ [1 , p− 1] }∪ {Xb+iX

a
p | i ∈ [0, p− b] } then f

must be of the following form :

• Xm
p Xi : 1 ≤ m ≤ a− 1 and i ∈ [1, p− 1]

• Xm
0 Xi : i ∈ [1, p− 1] and m ≥ 0 is an integer

• Xm
0 X

n
p : 0 ≤ n ≤ a and m ≥ 0 is an integer

• Xm
p Xi : 1 ≤ m ≤ a and i ∈ [1, b− 1]

Let f , g /∈ LT(G′) are two distinct monomials of R . Now apply Lemma 4.4
to Lemma 4.6 to conclude that f − g /∈ ℘. Therefore LT(℘) = 〈LT(G′) 〉 .
Hence the proof .

Theorem 4.8. The set G′ is a minimal Gröbner Basis for ℘ with respect to
>R .

Proof It is enough to note that no two distinct elements of LT(G′) can divide
each other.

5. Symmetric Algebra

Let R̂ denote the polynomial ring K[X , Ψb , Φ] with old indeterminates
X = {X1, . . . , Xp, X0}
and the new ones of the set Ψb = {Ψ(b , j) | j ∈ [0, p − b]} and the set

Φ = ∪p−1
i=1 Φ(p-i) such that

Φ(i) = {Φ(i , i),Φ(i− 1 , i), . . . ,Φ(1 , i)} for every i = 1, . . . , p− 1 .

Let R[t] be a polynomial ring with indeterminate t and ϕ : R̂ −→ R[t] is
a K-algebra homomorphism defined by

• ϕ(Ψ(b , i)) = ψ(b , i)t for all i ∈ [0, p− b]

• ϕ(Φ(i , j)) = φ(i , j)t for all i, j ∈ [1, p− 1]

• ϕ(r) = r for all r ∈ R
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Hence the Symmetric Algebra of the ideal ℘ is the polynomial ring R̂/L
where the ideal L ⊆ Kernel(ϕ) is generated by the set of polynomials which
are linear with respect to the variables Ψ(b , i) and Φ(i , j) .

Let us write M = {
∑
i,j

fi,j Φ(i , j) +
∑

l

flΨ(b , l) : fi,j , fl ∈ R}.

It is easy to check that under usual addition and scalar multiplication M ⊆ R̂
is a module over R. The module N = M∩ Kernel(ϕ) is a submodule of M
and is called the first syzygy module of the ideal ℘. First agree that every
monomial of M is of the form Xαe where either e = Ψ(b , i)

or e = Φ(i , j). Hence, every element H of M can be expressed uniquely

as H =
∑

i

Xαi
ei where, αi = (α1(i) , . . . , αp(i), α0(i)) ∈ Np+1 and either

ei = Ψ(b , l(i)) or ei = Φ(l(i) , j(i)) with

l(i) , j(i) ∈ N. Note that this is a finite sum because every element H of M
is a polynomial in R̂.

Before we proceed further, let us record the following remark.

Remark It is interesting to note that φ(i , j) = φ(j , i) for all i, j ∈ N.
Therefore, ϕ(Φ(i , j)) =

ϕ(Φ(j , i)) for all i, j ∈ [1, p − 1]. Henceforth, throughout the rest of this
section we write φ(i, j),Φ(i, j)

to mean that i ≤ j.

Let us define a function � on the set of monomials of M by

�(XαΨ(b , i)) = XαXa
pXb+i ; with i ∈ [0 , p− b]

and �(XαΦ(i , j)) = XαXiXj ; with i , j ∈ [1 , p −
1] .

We now define a monomial order >M on M by Xαe >M Xα′
e′ iff one of

the following holds :

1. �(Xαe) >R �(Xα′
e′)

2. �(Xαe) = �(Xα′
e′) , and one of the following holds :

• e = XαΨ(b , i) and e′ = Xα′
Ψ(b , j) and i < j

• e = XαΨ(b , i) and e′ = XαΦ(l , j)

• e = XαΦ(i , j) and e′ = XαΦ(i′ , j′) and either j > j′ or j = j′

and i > i′
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Remark 5.1. It is interesting to note that �(F ) = LM(ϕ(F )) for every
monomial F of M .

Definition 5.2. An element H �= 0 in M is called a relation if ϕ(H) = 0. A
relation H is called a reduced relation if H = FG with F ∈ R , G ∈ M and
ϕ(G) = 0 implies that F = 1. A reduced relation H is called a basic relation
if H = F +G with ϕ(F ) = 0 and ϕ(G) = 0 implies that either F = 0 or
G = 0.

Remark 5.3. Note that, by the definition of ϕ , every relation can be writ-
ten as a finite linear combination of basic relations over R. Therefore, we
may assume that the generators of the module N over R are basic relations.
Henceforth, the term relation stands for a basic relation.

For our convenience from now on we will use underlined terms to represent
leading terms. Unless otherwise specified, the symbols Hl, cl for each integer l
will represent a monomial of M and an element of K respectively. Throughout
the rest of this article, α0 , αp ∈ N and α , β ∈ Np+1 .

Lemma 5.4. If H = c1H1 +
∑

l

clHl is a relation, then there exist l′ such that

LM(ϕ(H1)) = LM(ϕ(Hl′)) with Hl′ �= H1 .

Proof. Follows from definition of ϕ and monomial order >M .

Lemma 5.5. If H = c1X
αΨ(b , i) +

∑
l

clHl is a relation then Xα �= Xα0
0 .

Proof. If possible assume that H = c1X
α0
0 Ψ(b , i) +

∑
l

clHl. According to

Lemma 5.4., there exist

l′ such that LM(ϕ(Hl′)) = LM(ϕ(Xα0
0 Ψ(b , i))) = Xα0

0 Xa
pXb+it. It is clear

from the explicit

description of LT(G′), that no such Hl′ exist. Hence the proof .

Lemma 5.6. If H = c1X
αΦ(i , j) +

∑
l

clHl is a relation then Xα �= Xα0
0 .

Proof. Similar to Lemma 5.5.

Lemma 5.7. If H = c1X
αΨ(b , p− b) +

∑
l

clHl is a relation then

Xα /∈ {Xαi
i X

q
j : j ∈ [0, p] and i ∈ {0 , p} and q ∈ {0, 1} }.
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Proof. If possible assume that H = c1X
αi
i X

q
j Ψ(b , p− b)+

∑
l

clHl. Accord-

ing to Lemma 5.4.,

there exist l′ such that LM(ϕ(Hl′)) = LM(ϕ(Xαi
i X

q
j Ψ(b , p−b))) = Xαi

i X
q
jX

a+1
p t.

From the explicit

description of LT(G′), it is clear that for q = 0 or, for j /∈ [b, p− 1] no such Hl′

exist and for

j ∈ [b, p − 1] one can write Hl′ = Xαi
i XpΨ(b , j − b) but then LM(H) = Hl′

will contradict the leading

monomial assumption. Hence the proof.

Lemma 5.8. If H = c1X
αΦ(i , j) +

∑
l

clHl is a relation then Xl′ | Xα for

some 0 < l′ < j.

Proof. If possible assume that H = c1X
αΦ(i , j) +

∑
l

clHl and Xl′ � Xα

where 0 < l′ < j.

According to Lemma 5.4., there exist q such that LM(ϕ(Hq)) = LM(ϕ(XαΦ(i , j))) =
XαXiXjt.

From the explicit description of LT(G′), it is clear thatHq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
XβΦ(i , l) with l > j

XβΦ(j , l) with l ≥ j

XβΦ(s , l) with s, l ≥ j

Therefore in all the cases LM(H) = Hq. This contradiction proves the result.

6. Gröbner basis for the first syzygy module

For systematic reason set Φ(i , j) = Φ(j , i) and Φ(i , j) = 0 if i, j /∈
[1, p− 1] .

Let us construct the set Ĝ whose elements are the following(with underlined
leading terms) :

• A(i ; b , j) = XiΨ(b , j)−Xb+i+j−ε(i , b+j)Ψ(b, ε(i , b+ j)− b)−Xa
pΦ(i , b+ j)

+Xa+d
0 [Φ(i , j) − Φ(b+ i+ j − p , p− b)]
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• B(i , j) = XiXjΨ(b , p− b)−Xε(i , j)Xi+j−ε(i , j)Ψ(b , p−b)−ψ(b , p−b)Φ(i , j)

• L(l ; i , j) = XlΦ(i , j) −XjΦ(i , l)+Xτ(i , j)Φ(i+j−τ(i , j) , l)−Xτ(i , l)Φ(i+
l − τ(i , l) , j)

Our aim is to prove that the set

Ĝ = {A(i ; b , j) | i ∈ [1, p] and j ∈ [0, p − b − 1]} ∪ {B(i , j) | i, j ∈
[1, p− 1]}

∪ {L(l ; i , j) | l, i, j ∈ [1, p− 1] with i ≤ j and l < j}
is a minimal Gröbner basis of N . Note that Ĝ ⊆ N .

Theorem 6.1. Ĝ is a Gröbner basis for the first Syzygy module of ℘ with
respect to >M.

Proof. If f is a monomial of M and f /∈ LT(Ĝ) where,

LT(Ĝ) = {XiXjΨ(b , p−b) | i, j ∈ [1, p−1]} ∪ {XlΦ(i , j) | l < j and i ≤ j}
∪ {XlΨ(b , j) | l ∈ [1, p] and j ∈ [0, p− b− 1]}

then f must be one of the following :

Case(i) : Xα0
0 Ψ(b , i) Case(ii) : Xα0

0 XiΨ(b , p − b) Case(iii) :
X

αp
p XiΨ(b , p− b)

Case(iv) : XαΦ(i , j) with Xl � Xα for 0 < l < j

Rest of the proof follows from Lemma 5.5. to Lemma 5.8.

Theorem 6.2. The set Ĝ is a minimal Gröbner basis for the first Syzygy
module of ℘.

Proof. It is enough to note that no two distinct elements of LT(Ĝ) can divide
each other.
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