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Finite lattices and Gröbner bases
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Gröbner bases of binomial ideals arising from finite lattices will be studied. In terms of Gröbner bases and
initial ideals, a characterization of finite distributive lattices as well as planar distributive lattices will be given.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let L be a finite lattice and K[L] the polynomial ring in |L| variables over a field K whose variables are the
elements of L. A binomial of K[L] of the form ab − (a ∧ b)(a ∨ b) is called a basic binomial. Let IL denote
the ideal of K[L] generated by basic binomials of K[L]. The ideal IL was first introduced by [3]. It is shown
in [3] that IL is a prime ideal if and only if L is a distributive lattice, see also [2, Theorem 10.1.3]. When L is
distributive, the set of basic binomials of K[L] is a Gröbner basis with respect to any rank reverse lexicographic
order.

In the present paper, by studying Gröbner bases of IL , a Gröbner basis characterization of distributive lattices
as well as planer distributive lattices will be obtained. Moreover, we discuss the problem when IL has a quadratic
Gröbner basis with respect to any monomial order.

2 Characterization of distributive lattices

We refer the reader to [6] for fundamental materials on finite lattices. Let 0̂
(
resp. 1̂

)
denote a unique minimal

(resp. maximal) element of a finite lattice. Recall that a finite lattice L is called modular if x ≤ b implies
x ∨ (a ∧ b) = (x ∨ a) ∧ b for all x, a, b ∈ L. A finite lattice is modular if and only if no sublattice of L
is isomorphic the pentagon lattice of Figure 1. A finite lattice is called distributive if, for all x, y, z ∈ L, the
distributive laws x ∧ (y ∨ z) = (x ∧ y) ∨ (y ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (y ∨ z) hold. Every distributive
lattice is modular. A modular lattice is distributive if and only if no sublattice of L is isomorphic to the diamond
lattice of Figure 1.

A finite lattice is called pure if all maximal chains between 0̂ and 1̂ have the same length. When a finite lattice
is pure, then the rank function of L can be defined. More precisely, if L is a finite pure lattice and a ∈ L, then the
rank of a in L, denoted by rank(a), is the largest integer r for which there exists a chain of L of the form

0̂ = a0 < a1 < · · · < ar = a.

If a finite lattice L is modular, then one has the equality

rank(p) + rank(q) = rank(p ∧ q) + rank(p ∨ q) (2.1)

for all p, q ∈ L.
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Fig. 1

Let K be field and L a finite lattice. We consider the polynomial ring K[L] whose variables correspond to the
elements of L, and define the ideal IL ⊂ K[L] as the binomial ideal whose generators are all basic binomials
attached to L. As explained in the introduction, a binomial of the form ab − cd with c = a ∨ b and d = a ∧ b is
called a basic binomial. The residue class ring K[L]/IL will be denoted by R(L)

We refer the reader to [2] for basic terminologies and notation on Gröbner bases. A rank reverse lexicographic
order on K[L] is the reverse lexicographic order with the property that a > b if rank(a) > rank(b).

Theorem 2.1 Let L be a finite modular lattice. Then the following conditions are equivalent:

(i) L is a distributive lattice;

(ii) IL has a squarefree Gröbner basis with respect to any rank reverse lexicographic order.

P r o o f. The implication (i) ⇒ (ii) is well known, see [3] and [2, Theorem 10.1.3].
(ii) ⇒ (i): Suppose that L is a finite modular lattice which is not distributive. Then L contains the diamond

lattice of Figure 1. Since L is modular, one has the equality (2.1) for all p, q ∈ L. Hence if g = pq − p′q′ is a
basic monomial of IL, then

rank(p) + rank(q) = rank(p′) + rank(q′).

In particular the ranks of b, c and d coincide. We fix a rank reverse lexicographic order < with the property that
d < q for all q ∈ L with rank(q) = rank(d). Our work is to show that in< (IL ) cannot be squarefree. Suppose,
on the contrary, that in< (IL ) is squarefree.

First we claim ad2e ∈ in< (IL ). In fact, ad2e − a2e2 ∈ IL, because

ad2e − a2e2 = d(d(ae − bc) + c(bd − ae)) + ae(cd − ae).

Since in< (IL ) is squarefree and since ad2e ∈ in< (IL ), it follows that ade ∈ in< (IL ). Hence there exists a
binomial f = ade − u ∈ I , where u is a monomial of degree 3, with in< (f) = ade.

Let f =
∑N

i=1 xifi , where each xi is a variable and where each fi = vi − wi is a basic binomial of IL , such
that x1v1 = ade and xiwi = xi+1vi+1 for all 1 ≤ i < N . A crucial fact is that each variable appearing in xifi

belongs to the interval [e, a] of L. To see why this is true, we observe that if fi = vi − wi is a basic binomial of
IL and if each variable appearing in vi belongs to [e, a], then each variable appearing in wi must belong to [e, a].
Now, since x1v1 = ade and xiwi = xi+1vi+1 for all 1 ≤ i < N , this observation guarantees that each variable
appearing in xifi belongs to the interval [e, a] of L. In particular u = xN wN consists of variables belonging to
[e, a], say u = �mn.

Now, one has f = ade − �mn ∈ I , where �,m and n belong to [e, a]. Let � ≥ m ≥ n. Since we are working
with a rank reverse lexicographic order, it follows that e is the smallest variable among all variables belonging to
[e, a]. Since in< (f) = ade, one has n = e.

On the other hand, since IL is generated by basic binomials of L, it follows easily that if g = p1p2 · · · pr −
q1q2 · · · qr is a binomial belonging to IL, then

r∑

i=1

rank(pi) =
r∑

i=1

rank(qi).
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Thus in particular one has

rank(a) + rank(d) = rank(�) + rank(m).

Since a is a unique maximal element of [a, e], it follows that rank(a) ≥ rank(�)(≥ rank(m)). Hence rank(d) ≤
rank(m). If rank(d) = rank(m), then d < m by the given order of the variables. On the other hand, if rank(d) <
rank(m), then d < m, since we use a rank reverse lexicographic order. Thus in any case d < m, and this implies
that in< (f) = �mn, a contradiction. Consequently, the monomial ade cannot belong to in< (IL ). Hence ad2e
belongs to a unique minimal set of monomial generators of in< (IL ). Thus in< (IL ) cannot be squarefree.

It can be easily checked that for any monomial order, in< (IN5 ) is squarefree where N5 is the pentagon lattice,
while in< (IN3 ) is not squarefree where N3 is the diamond lattice.

Conjecture 2.2 (Squarefree conjecture) Let L be a modular lattice. Then for any monomial order in< (IL ) is
not squarefree, unless L is distributive.

3 Characterization of planar distributive lattices

Let N 2 denote the (infinite) distributive lattice consisting of all pairs (i, j) of nonnegative integers with the partial
order (i, j) ≤ (k, l) if and only if i ≤ k and j ≤ l. A planar distributive lattice is a finite sublattice L of N 2 with
(0, 0) ∈ D.

Theorem 3.1 Let L be a finite modular lattice. Then the following conditions are equivalent:

(i) L is a planar distributive lattice;

(ii) IL has a squarefree initial ideal with respect to the lexicographic order for any order of the variables;

(iii) IL has a squarefree initial ideal with respect to any monomial order.

P r o o f. (i) ⇒ (iii): Let m and n be the smallest integers such that L ⊂ [m]× [n], and consider the polynomial
ring T = K[t1 , . . . , tm , s1 , . . . , sn ]. We define a K-algebra homomorphism ϕ : R(L) → T which assigns to
a = (i, j) the monomial sitj ∈ T . The image A of ϕ is the edge ring of a bipartite graph G. The basic relations
ab = (a ∨ b)(a ∧ b) of R(L) are mapped under ϕ to relations of A corresponding to 4-cycles of the bipartite
graph G. It is shown in [4, Theorem 1.2] that the defining ideal of the edge ring A is generated by the binomials
corresponding to 4-cycles, if each even cycle of length ≥ 6 has a chord. That G satisfies this property is shown by
Querishi [5]. It follows that R(L) ∼= A. Hence we may identify IL with the toric edge ideal J defining A. Next
we use a result of Sturmfels (see [7, Chapter 9]) which says the universal Gröbner basis of the toric edge ideal
of bipartite graph consists of the binomials corresponding to the even cycles with no chords. From this it follows
that in< (J) is squarefree for any monomial order.

(iii) ⇒ (ii) is trivial.
(ii) ⇒ (i): Suppose L is not planar, then L contains a sublattice which is isomorphic to the Boolean lattice B3

of rank 3 as shown in Figure 2.
Let < be the lexicographic order induced by an ordering such that g < f < e < h < a < d < c < b and

b < q for any other q ∈ L. The initial ideal of IB3 contains the monomial ah2 in the minimal set of monomial

Fig. 2 Boolean lattice B3.
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Fig. 3 Planar distributive lattice C2.

generators. Since < is an elimination order (see [2, Exercise 2.9]) it follows that ah2 belongs to the minimal set
of monomial generators of IL.

In contrast to the order given in the proof of the preceding theorem, there exist lexicographic orders such that
IB3 is quadratic, or not quadratic but squarefree. The question arises whether for any finite distributive lattice
there exists a lexicographic monomial order such that in< (IL ) is squarefree.

Recall that the divisor lattice of a positive integer n is the lattice Dn consisting of all divisors of n ordered by
divisibility. Every divisor lattice is a distributive lattice.

Let, in general, L be a finite pure lattice. A cut edge of L is a pair (a, b) of elements of L with rank(b) =
rank(a) + 1 such that

|{c ∈ L : rank(c) = rank(a)}| = |{c ∈ L : rank(c) = rank(b)}| = 1.

Theorem 3.2 Let L be a finite lattice with no cut edges. Then the following conditions are equivalent:

(i) L is the divisor lattice of 2 · 3r for some r ≥ 1;

(ii) IL has a quadratic Gröbner basis with respect to any monomial order.

P r o o f. (i) ⇒ (ii): The ideal IL can be identified with the toric edge ideal of the complete bipartite graph of
type (2, r), since L has no cut edges. Each cycle in a bipartite graph of type (2, r) is of length 4. Hence by using
again [7, Chapter 9], the basic binomials of IL form a universal Gröbner basis. This yields the desired conclusion.

(ii) ⇒ (i): As we have seen in the proofs of Theorem 2.1 and in Theorem 3.1 that the lattice L cannot contain
as a sublattice the diamond lattice and the Boolean lattice B3 . It also cannot contain the pentagon lattice N5 of
Figure 1. Indeed, if we choose the lexicographic order induced by c < e < a < d < b, then bae is a minimal
generator of in< (IN5 ). This implies that L is a planar distributive lattice. Finally, L cannot contain as a sublattice
the planar distributive lattice C2 of Figure 3.

In fact, if we choose the lexicographic order induced by g < f < e < c < b < a < d, then aef is a minimal
generator of in< (IN5 ). Hence L must be the divisor lattice of 2 · 3r for some r ≥ 2.

As a strengthening of Theorem 3.2 we expect

Conjecture 3.3 (Quadratic conjecture) Let I be an ideal generated by binomials such that I has a quadratic
Gröbner basis with respect to any monomial order. Then either the generators of I are binomials in pairwise
different sets of variables or I = IL where L is the divisor lattice of 2 · 3r for some r ≥ 1.
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