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We consider a finite dimensional representation of the dihedral group D2p over a field of characteristic two
where p is an odd integer and study the corresponding Hilbert ideal IH . We show that IH has a universal
Gröbner basis consisting of invariants and monomials only. We provide sharp bounds for the degree of an
element in this basis and in a minimal generating set for IH . We also compute the top degree of coinvariants
when p is prime.
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1 Introduction

Let V be a finite dimensional representation of a finite group G over a field F . There is an induced action of G on
the symmetric algebra F [V ] of V ∗ that is given by g(f) = f ◦ g−1 for g ∈ G and f ∈ F [V ]. Let F [V ]G denote
the ring of invariant polynomials in F [V ]. One of the main goals in invariant theory is to determine F [V ]G by
computing the generators and relations. A closely related object is the Hilbert ideal, denoted IH , which is the ideal
in F [V ] generated by invariants of positive degree. The Hilbert ideal often plays an important role in invariant
theory as it is possible to extract information from it about the invariant ring. There is also substantial evidence that
the Hilbert ideal is better behaved than the full invariant ring in terms of constructive complexity. The invariant
ring is in general not generated by invariants of degree at most the group order when the characteristic of F
divides the group order (this is known as the modular case) but it has been conjectured [2, Conjecture 3.8.6 (b)]
that the Hilbert ideal always is. Apart from the non-modular case this conjecture is known to be true if V is a
trivial source module [3] or if G = Zp and V is an indecomposable module [10]. Furthermore, Gröbner bases
for IH have been determined for some classes of groups. The reduced Gröbner bases corresponding to several
representations of Zp have been computed in a study of the module structure of the coinvariant ring F [V ]G
which is defined to be F [V ]/IH , see [11]. The reduced Gröbner bases for the natural action of the symmetric and
the alternating group can be found in [1] and [14], respectively. These bases have applications in coding theory,
see [7].

In this paper we consider a representation of the dihedral group D2p over a field of characteristic two where
p is an odd integer. Invariants of D2p in characteristic zero have been studied by Schmid [9] where she shows
beyond other things that C[V ]D2 p is generated by invariants of degree at most p+1. More recently, bounds for the
degrees of elements in both generating and separating sets over an algebraically closed field of characteristic two
have been computed, see [6]. We continue further in this direction and show that the Hilbert ideal IH is generated
by invariants up to degree p and not less. We also construct a universal Gröbner basis for IH , i.e., a set G which
forms a Gröbner basis of IH for any monomial order. Somewhat unexpectedly, the only polynomials that are not
invariant in this set are monomials. Moreover, the maximal degree of a polynomial in this basis is p + 1. This is
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also atypical for Gröbner basis calculations because passing from a generating set to a Gröbner basis increases
the degrees rapidly in general. Then we turn our attention to the coinvariants. Of particular interest are the top
degree and the dimension of F [V ]G , because a vector space basis for F [V ]G yields a basis for the invariants that
can be obtained by averaging over the group and these invariants may be crucial in efficient generation of the
whole invariant ring, see for example [4]. Perhaps among the most celebrated results on coinvariants is one due to
Steinberg [13] which says that the group order |G| is a lower bound for the dimension of F [V ]G as a vector space,
which is sharp if and only if the invariant ring F [V ]G is polynomial, see also [12]. Using the Gröbner basis for IH

we compute the top degree of the coinvariants of D2p when p is prime. It turns out that for faithful representations,
the top degree equals the upper bound for the maximum degree of a polynomial in a minimal generating set that
was given in [6]. Also we present upper bounds for the top degree and the dimension of coinvariants of arbitrary
finite groups, which might be part of the folklore, but do not seem to have appeared explicitly yet.

2 The Hilbert ideal

We start by fixing our notation. Let p ≥ 3 be an odd integer and let G denote the dihedral group of order 2p,
generated by an element σ of order 2 and an element ρ of order p. We also let F denote a field of characteristic
two which contains a primitive pth root of unity. Let r and s be non-negative integers. We assume that G acts on
the polynomial ring

F [V ] = F [x1 , . . . , xr , y1 , . . . , yr , z1 , . . . , zs , w1 , . . . , ws ]

as follows: The element σ permutes xi and yi for i = 1, . . . , r and zi and wi for i = 1, . . . , s respectively.
Furthermore, ρ acts trivially on zi and wi for i = 1, . . . , s, while ρ(xi) = λixi and ρ(yi) = λ−1

i yi for λi a non
trivial p-th root of unity for i = 1, . . . , r. Up to choice of a basis, this is the form of an arbitrary reduced G-action,
see [6]. We will write u to denote any of the variables of F [V ], and then v for σ(u). Let further M denote the set
of monomials of F [V ]. For m ∈ Mρ , we write o(m) for the orbit sum of m, i.e., o(m) = m if m ∈ MG and
o(m) = m + σ(m) if m ∈ Mρ \MG . Recall that F [V ]G is generated by orbit sums of ρ-invariant monomials,
see [6, Lemma 2].

Lemma 2.1

(a) Every monomial m can be written as a product m1 · · ·mk ·m′ of ρ-invariant monomials m1 , . . . ,mk and
a monomial m′ such that the degrees of all these monomials are at most p. Moreover, if m ∈ Mρ , then we
may take m′ = 1.

(b) The ideals

I = 〈{um |m ∈ Mρ and u a variable dividing m}〉
and I ′ = 〈{um |m ∈ Mρ of degree at most p and u a variable dividing m}〉

of F [V ] are equal.

P r o o f. (a) Let a1 , . . . , ap be a sequence of p non-zero elements in Z/pZ. For 1 ≤ k ≤ p, consider the
partial sums Sk := a1 + · · · + ak . If Si = Sj for some 1 ≤ i < j ≤ p, then ai+1 + · · · + aj = 0. On the
other hand, if all Sk are different, then Si = 0 for some 1 ≤ i ≤ p. This shows that the sequence a1 , . . . , ap has
a non-empty subsequence whose sum is zero. Equivalently, every monomial of degree p has a nontrivial divisor
that is in Mρ . Now let m be a monomial of degree at least p + 1. We just saw that m has a nontrivial subfactor of
degree at most p that is ρ-invariant. Removing this factor from m and repeating this process, one ends up with a
remainder of degree at most p. Moreover, if m ∈ Mρ , this remainder is also in Mρ .

(b) We have to show I ⊆ I ′, so take um ∈ I with u a variable dividing m, where m is a ρ-invariant monomial
of degree at least p+1. By the first part of the lemma we can write m = m1 · · ·mk , where each mi is a ρ-invariant
monomial of degree at most p for 1 ≤ i ≤ k. We may assume u divides m1 . Then um1 ∈ I ′ and so um ∈ I ′ as
desired.

Note that a result of Fleischmann [3, Theorem 4.1] implies that the Hilbert ideal is generated by invariants
up to degree 2p. In the following proposition, among other things, we sharpen this bound to p. We mention that
part (c) is not used later and just stated for its own interest.
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Proposition 2.2

(a) The Hilbert ideal IH is generated by invariants of positive degree at most p.

(b) If m ∈ Mρ and u|m, then um ∈ IH .

(c) If m ∈ Mρ and u1 and u2 are variables such that u2
1 |m and ρ acts on u1 and u2 by multiplication with

the same root of unity, then mu2 ∈ IH .

P r o o f. (a) Let I denote the ideal of F [V ] generated by invariants of positive degree at most p. We have to
show that the Hilbert ideal, which is generated by orbit sums of ρ-invariant monomials of positive degree, equals
I . For the sake of a proof by contradiction, take a ρ-invariant monomial m of minimal degree d such that o(m)
is not in I . First assume m ∈ MG , and take a variable u appearing in m. Then also v = σ(u) appears in m,
so uv|m, and as uv is an invariant of degree 2, this shows that m ∈ I . Secondly, assume m ∈ Mρ\MG . Since
d > p, by Lemma 2.1(a) we have a factorization m = m1m2 of m into two ρ-invariant monomials m1 ,m2 of
degree strictly smaller than d. We consider

o(m) = m1m2 + σ(m1m2) = m1(m2 + σ(m2)) + σ(m2)(m1 + σ(m1)),

where mi + σ(mi) for i = 1, 2 respectively are either zero or orbit sums of ρ-invariant monomials of degree
strictly smaller than d, hence they are in I by induction.

(b) Write m = um′, where m′ is a monomial. Then um = u2m′ = u(m + σ(m)) + uvσ(m′) is in IH ,
because (m + σ(m)) and uv are.

(c) Write m = u2
1m

′, where m′ is a monomial. Then

u2m = u2u
2
1m

′ = u1(u2u1m
′ + σ(u2u1m

′)) + u1(σ(u2u1m
′))

is in IH : The first summand is a multiple of the orbit sum of the ρ-invariant monomial u2u1m
′, and the second

one is a multiple of the invariant u1v1 .

We recall the following notation: For a given monomial order < on M and a polynomial f we write LM(f)
for the leading monomial of f . Also, for a subset G ⊆ F [V ] and f ∈ F [V ] we write f →G 0 if there exist
elements a1 , . . . , an ∈ F [V ] and g1 , . . . , gn ∈ G such that f = a1g1 + · · · + angn and LM(f) ≥ LM(aigi) for
i = 1, . . . , n. In this case we say f reduces to zero modulo G. Notice that f →G 0 implies af →G 0 for any
a ∈ F [V ].

Lemma 2.3 Let f, g ∈ F [V ] with LM(f) > LM(g). Then f →G 0 and g →G 0 for a set G ⊆ F [V ] imply
(f + g) →G 0.

P r o o f. We have f =
∑

aigi and g =
∑

bigi for some ai, bi ∈ F [V ] and gi ∈ G with LM(aigi) ≤ LM(f)
and LM(bigi) ≤ LM(g) < LM(f). Then (f +g) =

∑
(ai +bi)gi gives (f +g) →G 0 because LM((ai +bi)gi) ≤

max{LM(aigi),LM(bigi)} ≤ LM(f) = LM(f + g).

Let G denote the following set of polynomials:

m + σ(m) for m ∈ Mρ \MG of degree at most p,
um for m ∈ Mρ of degree at most p and u a variable dividing m,

xiyi, zjwj for i = 1, . . . , r and j = 1, . . . , s.

We show that G is a universal Gröbner basis of IH . We need the following lemma.

Lemma 2.4 Let m ∈ Mρ . Then (m + σ(m)) →G 0.

P r o o f. We assume m ∈ Mρ \MG since m + σ(m) = 0 if m ∈ MG . We also take deg(m) > p because
otherwise m + σ(m) ∈ G. Then by Lemma 2.1(a) there exist ρ-invariant monomials m1 ,m2 of degree strictly
smaller than the degree of m such that m = m1m2 . Without loss of generality, we assume m > σ(m). So we
have either m1 > σ(m1) or m2 > σ(m2). We harmlessly assume m1 > σ(m1). Consider the equation

m + σ(m) = m1m2 + σ(m1m2) = m2(m1 + σ(m1)) + σ(m1)(m2 + σ(m2)).
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By induction on the degree both m1 + σ(m1) and m2 + σ(m2) reduce to zero modulo G and hence, so do their
respective monomial multiples m2(m1 + σ(m1)) and σ(m1)(m2 + σ(m2)). Hence the result follows from the
previous lemma because we have LM(m2(m1 + σ(m1))) = m1m2 and m1m2 > σ(m1)m2 and m1m2 >
σ(m1)σ(m2).

Theorem 2.5 G forms a universal Gröbner basis of IH .

P r o o f. First note that by Proposition 2.2(b) all elements of G lie in IH . Conversely, by Proposition 2.2(a),
IH is generated by orbit sums o(m) of monomials m ∈ Mρ of degree at most p. If m 
∈ MG , then o(m) =
m + σ(m) ∈ G, by construction. Otherwise, if u|m, we have uv|m, so again o(m) = m ∈ 〈G〉. This establishes
that the ideal generated by G is exactly IH .

Next we show that the polynomials in G satisfy Buchberger’s criterion. Recall that for f1 , f2 ∈ F [V ], the
s-polynomial s(f1 , f2) is defined to be T

LT(f1 ) f1 − T
LT(f2 ) f2 , where T is the least common multiple of the leading

monomials of f1 and f2 and LT(f) denotes the lead term of the polynomial f . Buchberger’s criterion says that
G is a Gröbner Basis of IH if and only if s(f1 , f2) →G 0 for all f1 , f2 ∈ G. Since the s-polynomial of two
monomials is zero, we just check the s-polynomials of m + σ(m) for m ∈ Mρ \MG with each of the four
families of polynomials in G. We will also use the well-known fact that s(f1 , f2) reduces to zero modulo {f1 , f2}
if the leading monomials of f1 and f2 are relatively prime, see [5, Exercise 9.3].

(1) Let m = ua1
1 · · ·uak

k m′ and n = ub1
1 · · ·ubk

k n′ be monomials in Mρ \MG of degree at most p with
aj , bj > 0 for 1 ≤ j ≤ k and m′ and n′ are relatively prime monomials. We further assume that neither m′ nor n′

is divisible by any of uj for 1 ≤ j ≤ k and m > σ(m) and n > σ(n). Let f1 , f2 denote m+σ(m) and n+σ(n),
respectively. Notice that s(f1 , f2) = T

LT(f1 ) (σ(m)) − T
LT(f2 ) (σ(n)). If aj > bj for some 1 ≤ j ≤ k, then T

LT(f2 )

is divisible by uj and so T
LT(f2 ) (σ(n)) is divisible by ujvj because σ(n) is divisible by vj . Similarly, if bj ′ > aj ′

for some 1 ≤ j′ ≤ k, then T
LT(f1 ) (σ(m)) is divisible by uj ′vj ′ . It follows that if there are indices 1 ≤ j, j′ ≤ k

such that aj > bj and bj ′ > aj ′ , then s(f1 , f2) →G 0. So we may assume aj ≥ bj for 1 ≤ j ≤ k. Therefore we
are reduced to two cases.

First assume that aj ≥ bj for 1 ≤ j ≤ k and for one of the indices the inequality is strict, say a1 >

b1 . As in the previous paragraph T
LT(f2 ) (σ(n)) is divisible by u1v1 . Meanwhile, we have T

LT(f1 ) (σ(m)) =
n′va1

1 · · · vak

k σ(m′). But since n is in Mρ , ρ acts on n′ and on vb1
1 · · · vbk

k by multiplication with the same root
of unity. So n′va1 −b1

1 · · · vak −bk

k σ(m′) is in Mρ as well because it is obtained by multiplying the ρ-invariant
monomial va1

1 · · · vak

k σ(m′) with n ′

v
b 1
1 ···v b k

k

. Since a1 > b1 > 0, this shows that T
LT(f1 ) (σ(m)) is divisible by the

product of the ρ-invariant monomial n′va1 −b1
1 · · · vak −bk

k σ(m′) and the variable v1 that divides this monomial.
By Lemma 2.1(b), T

LT(f1 ) (σ(m)) is also divisible by a monomial in G.
Secondly, assume that aj = bj for 1 ≤ j ≤ k. Then we get s(f1 , f2) = va1

1 · · · vak

k (n′σ(m′) + m′σ(n′)). But
ρ multiplies m′ and n′ with the same root of unity and hence it multiplies n′ and σ(m′) with reciprocal roots of
unity. This puts n′σ(m′) (and m′σ(n′)) in Mρ . Hence s(f1 , f2) →G 0, by the previous lemma.

(2) We compute the s-polynomial s(f1 , f2), where f1 = m+σ(m) for a monomial m in Mρ of degree at most
p and f2 is the product of a ρ-invariant monomial of degree at most p with a variable that divides this monomial.
As before, we assume m > σ(m). Write m = ua1

1 · · ·uak

k m′ and f2 = ub1
1 · · ·ubk

k n′ where aj , bj > 0 with
relatively prime monomials m′ and n′. We further assume m′ and n′ are not divisible by any of uj . We have
s(f1 , f2) = T

LT(f1 ) (σ(m)). Notice that if bj > aj for some 1 ≤ j ≤ k, then T
LT(f1 ) is divisible by uj and so

T
LT(f1 ) (σ(m)) is divisible by ujvj . Hence s(f1 , f2) reduces to zero modulo G. Therefore we assume aj ≥ bj for

1 ≤ j ≤ k. So, s(f1 , f2) = n′va1
1 · · · vak

k σ(m′). By construction there is a variable w such that w2 divides f2 and
f2/w is in Mρ . We consider two cases.

First assume that w2 divides n′. We have

s(f1 , f2) = n′va1
1 · · · vak

k σ(m′) =

(
n′σ(m′)va1 −b1

1 · · · vak −bk

k

w

)(
wvb1

1 · · · vbk

k

)
.

Since f2/w is in Mρ , ρ multiplies n′/w and vb1
1 · · · vbk

k with the same (non-zero) scalar. Therefore, since

σ(m′)va1
1 · · · vak

k ∈ Mρ , we get n ′σ (m ′)va 1 −b 1
1 ···va k −b k

k

w ∈ Mρ as well. Hence s(f1 , f2) is divisible by the product
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of w with a ρ-invariant monomial that is divisible by w. By Lemma 2.1(b), s(f1 , f2) is divisible by a monomial
in G.

Since n′ and ub1
1 · · ·ubk

k are relatively prime, we can assume as the remaining case that w does not divide n′.
Then w = uj for some 1 ≤ j ≤ k. Say, w = u1 . We also have a1 ≥ b1 ≥ 2. Similar to the first case we have

s(f1 , f2) = n′va1
1 · · · vak

k σ(m′) =
(
n′σ(m′)va1 −b1 +1

1 va2 −b2
2 · · · vak −bk

k

)(
vb1 −1

1 vb2
2 · · · vbk

k

)
.

Notice that since f2/u1 ∈ Mρ , ρ acts on n′ and vb1 −1
1 vb2

2 · · · vbk

k by multiplication with the same scalar. Hence(
n′σ(m′)va1 −b1 +1

1 va2 −b2
2 · · · vak −bk

k

)
lies in Mρ because σ(m′)va1

1 · · · vak

k is already ρ-invariant. It follows that,
since a1 − b1 + 1 ≥ 1 and b1 − 1 ≥ 1, s(f1 , f2) is divisible by the product of v1 with a ρ-invariant monomial that
is divisible by v1 . So we get that s(f1 , f2) is divisible by a monomial in G by Lemma 2.1(b).

(3) We compute the s-polynomial s(f1 , f2) where f1 = m + σ(m) (m > σ(m)) for a monomial m in Mρ of
degree at most p and f2 is a product uv for some variable u. Since we assume m and uv are not relatively prime
we take m = uam′ where u does not divide m′. If v divides m′ then both m and σ(m) are divisible by uv and
so s(f1 , f2) equals σ(m). Hence it is divisible by uv and we are done. Therefore we assume v does not divide m
so we have s(f1 , f2) = vσ(m). But v divides σ(m), and the latter is in Mρ and is of degree at most p. Hence
vσ(m) is an element of G.

3 Bounds for coinvariants

Before we specialize to the dihedral group, we start this section with a general result that is probably part of the
folklore, but it seems it has not been written down explicitly yet. In the following theorem, G is an arbitrary finite
group and F an arbitrary field. If the field is large enough, Dades’ algorithm [2, Proposition 3.3.2] provides a
homogeneous system of parameters with each element of degree |G|. Note that field extensions do not affect the
degree structure of coinvariants, so in particular we can assume di = |G| for all i in the following theorem.

Theorem 3.1 Assume d1 , . . . , dn are the degrees of a homogeneous system of parameters of F [V ]G , where
n = dimV . Then we have

(a) topdeg(F [V ]G ) ≤
n∑

i=1

(di − 1),

(b) dim(F [V ]G ) ≤
n∏

i=1

di.

In particular, we have topdeg(F [V ]G ) ≤ dim(V )(|G|−1) and dim(F [V ]G ) ≤ |G|n . If the system of parameters
generates F [V ]G , we have equalities in (a) and (b).

P r o o f. Let A be the subalgebra of F [V ]G generated by a homogeneous system of parameters with the given
degrees. As the group G is finite and F [V ] is Cohen-Macaulay, we have that F [V ] is a free A-module, say
F [V ] =

⊕r
i=1 Agi with g1 , . . . , gr homogeneous elements of degrees m1 ≤ · · · ≤ mr . Then r equals the

dimension and mr equals the top degree of F [V ]/(A+ · F [V ]), respectively. As A+ ⊆ F [V ]G+ , the numbers r
and mr are bigger than or equal to the dimension and top degree of F [V ]/IH respectively. As the Hilbert series
of F [V ]/(A+ · F [V ]) is given by

H(t) =
∏n

i=1

(
1 − tdi

)
(1 − t)n

=
n∏

i=1

(
1 + t + t2 + · · · + tdi −1),

we get mr = deg H(t) =
∑n

i=1(di − 1) and r = H(1) =
∏n

i=1 di , which proves (a) and (b).

Now we restrict ourselves to the coinvariants of the dihedral groups. We need the following for our main result.

Proposition 3.2 (Schmid [9, proof of Proposition 7.7]) Let x1 , . . . , xt ∈ (Z/pZ)\{0} (p ≥ 2 a natural
number) be a sequence of t ≥ p + 1 nonzero elements. Then there exists a pair of indices k1 , k2 ∈ {1, . . . , t},
k1 
= k2 such that xk1 = xk2 with the additional property that there exists a subset of indices {i1 , . . . , ir} ⊆
{1, . . . , t}\{k1 , k2} such that

xk1 + xi1 + · · · + xir
= 0.
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If p is prime, any pair of indices k1 , k2 ∈ {1, . . . , t}, k1 
= k2 such that xk1 = xk2 has this additional property.

Note that when p is not a prime, this additional property is not guaranteed for an arbitrary choice of indices
k1 , k2 with xk1 = xk2 . For example when p = sl with s, l > 1, consider x1 = x2 = 1̄ and xi = s̄ for
i = 3, . . . , p + 1 and take k1 = 1, k2 = 2.

Theorem 3.3 Assume the notation of Section 2. For p an odd prime, the top degree of the coinvariants of the
dihedral group D2p in characteristic two equals s + max(r, p) if r ≥ 1, and equals s if r = 0.

P r o o f. We write d for the top degree of F [V ]G . For a polynomial f ∈ F [V ], let degxy f denote the degree of
f in the variables x1 , . . . , xr , y1 , . . . , yr , and define degzw f similarly. Let m be a monomial. The proof consists
of four observations.

(i) If degzw m > s, then m is divisible either by ziwi or one of z2
i or w2

i for some i = 1, . . . , s, in particular
m ∈ IH . This implies d ≤ s in case r = 0.

(ii) If degxy m > max(r, p) then degxy m > r implies that m is divisible by xiyi or x2
i or y2

i for some
i = 1, . . . , r. In the first case m ∈ IH , so without loss of generality we can assume x2

i |m for some i. By
Proposition 3.2, degxy m > p implies that there exists a factorization m = (xin)xin

′ such that xin is a
ρ-invariant monomial of degree at most p. As x2

i n is an element of G, we have m ∈ IH . Now (i) and (ii)
imply that if deg(m) > s + max(r, p), then m ∈ IH , hence d ≤ s + max(r, p).

(iii) We claim that n := y1 · · · yrw1 · · ·ws is not in IH , hence d ≥ r + s. Otherwise, n would be divisible
by the leading monomial of an element of G. Since no variable in n has multiplicity bigger than one, n is in
fact divisible by LM(m + σ(m)) for some monomial m ∈ Mρ \MG of degree at most p. As G is a universal
Gröbner basis, we can choose a lexicographic order > with xi > yj and zi > wj for all i, j and assume
m > σ(m). We fix this order until the end of the proof. Then m|n implies that m = yi1 · · · yik

wj1 · · ·wjl
, but

then σ(m) = xi1 · · ·xik
zj1 · · · zjl

> m by the choice of our order, a contradiction.
(iv) Finally if r ≥ 1, we claim that n := yp

1 w1 · · ·ws is not in IH , hence d ≥ p + s. As before, n ∈ IH

would imply that n is divisible by the leading monomial of an element of G. Notice that a ρ-invariant monomial
divisor of n either is divisible by yp

1 or is not divisible by y1 at all. It follows that the only leading monomial of a
member of G that divides n is of the form LM(m + σ(m)) for some monomial m ∈ Mρ \MG of degree at most
p. Assuming m > σ(m), we see that m would be of the form wi1 · · ·wik

or yp
1 wi1 · · ·wik

, so σ(m) would be of
the form zi1 · · · zik

or xp
1zi1 · · · zik

respectively. In each case, we have the contradiction σ(m) > m by choice of
our monomial order.

The following (counter-)example shows that the condition of p being a prime in Theorem 3.3 cannot be
dropped.

Example 3.4 Let r = p = 9 and s = 0. Fix a primitive 9-th root of unity λ. We assume that ρ(x1) = λx1
and ρ(xi) = λ3xi for 2 ≤ i ≤ 9. Consider the monomial m = x2

1y2 · · · y9 . We verify that m /∈ IH as follows.
Choose a lexicographic order such that xi > yj for 1 ≤ i, j ≤ 9. If m ∈ IH , then it is divisible by the leading
monomial m′ of an element of G, because G is a a universal Gröbner basis of IH . We show that this is not possible
by considering each family of leading monomials in G. Clearly, m′ cannot be xiyi for some 1 ≤ i ≤ 9. Also, m
has no nontrivial ρ-invariant subfactor that is divisible by x1 . Therefore m′ is not equal to a product of a variable
with a ρ-invariant monomial that is divisible by this variable. Finally assume that m′ is the leading monomial of
m′ + σ(m′) and m′ ∈ Mρ . Since m′ ∈ Mρ , m′ is a factor of y2 · · · y9 . But then, we get a contradiction because
σ(m′) > m′ by our choice of order. Hence the top degree of coinvariants is at least 10, which is bigger than
s + max(r, p) = 9. Therefore, we cannot remove the restriction on p being a prime in Theorem 3.3.

Example 3.5 We take r = 1, s = 0 and write x and y for x1 and y1 . Then F [V ]G = F [xy, xp +yp ], see e.g.,
[6, Remark 5]. In particular, all elements in the Hilbert ideal of degree less than p are divisible by xy, so the bound
in Proposition 2.2 (a) is sharp. A universal Gröbner Basis of IH is given by G =

{
xy, xp + yp , xp+1 , yp+1

}
. If

we choose lexicographic order with x > y, we see that the lead term ideal of IH is minimally spanned by{
xy, xp , yp+1

}
. In particular, any Gröbner Basis must contain an element of degree p + 1. The generators of

F [V ]G form a homogeneous system of parameters in degrees d1 = 2 and d2 = p. Thus, Theorem 3.1 yields the
sharp bounds topdeg(F [V ]G ) ≤ (d1 − 1) + (d2 − 1) = p = s + max(r, p) and dim(F [V ]G ) ≤ d1d2 = 2p.

Note that in case r ≥ 1, the top degree of the coinvariants is the same as the upper bound for the degrees of
elements in a minimal generating set for the invariant ring that is given in [6, Theorem 4]. If r = 0, what we really
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consider are the vector invariants of the permutation action of Z2 . In this case, the fact that the top degree of the
coinvariants is s also follows from [11, Theorem 2.1]. The maximal degree of elements in a minimal generating
set in this case is also given by s if s ≥ 2, see [8]. It would hence be tempting to conjecture that the invariant ring
is always generated by invariants of degree at most the top degree of the coinvariants. However, in case r = 0 and
s = 1, we have F [z, w]G = F [zw, z + w], but the top degree of the coinvariants is one.
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[7] T. Mora and M. Sala, On the Gröbner bases of some symmetric systems and their application to coding theory, J. Symb.

Comput. 35(2), 177–194 (2003).
[8] D. R. Richman, On vector invariants over finite fields, Adv. Math. 81(1), 30–65 (1990).
[9] B. J. Schmid, Finite groups and invariant theory, in: Topics in Invariant Theory, Lecture Notes in Mathematics Vol. 1478

(Paris, 1989/1990, Springer, Berlin, 1991), pp. 35–66.
[10] M. Sezer, A note on the Hilbert ideals of a cyclic group of prime order, J. Algebra 318(1), 372–376 (2007).
[11] M. Sezer and R. J. Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl.

Algebra 205(1), 210–225 (2006).
[12] L. Smith, A modular analog of a theorem of R. Steinberg on coinvariants of complex pseudoreflection groups, Glasg.

Math. J. 45(1), 69–71 (2003).
[13] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Am. Math. Soc. 112, 392–400 (1964).
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