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1. Introduction

Grobner bases provide a uniform approach to tackling a wide range of problems
such as the solvability and solving algebraic systems of equations, ideal and
radial membership decision, and effective computation in residue class rings
modulo polynomial ideals [1, 2, 6, 12].

Furthermore, Grobner basis techniques are not only a powerful tool for the
algorithmic solution of some fundamental problems in commutative algebra [4],
they also provide means of solving a wide range of problems in integer pro-
gramming and invariant theory once these problems have been expressed in
terms of sets of multivariate polynomials [5, 10, 13]. One such problem is the
computation of the Hilbert basis for a submonoid of the numerical monoid Ng.
This problem can be written in terms of polynomials and then be solved using
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Grobner basis techniques [10]. Other elaborations of this method can be found
in [7, 13].

In this paper we will establish an algorithm using Grobner basis techniques
that allows to calculate a basis for a subspace of a finite-dimensional vector
space over a finite prime field given as a matrix kernel. This algorithm is based
on the one for computing Hilbert bases proposed in [13] and is motivated by
the fact that linear codes can be described as such subspaces [9, 14].

This paper is organized as follows. The second section provides an introduc-
tion to Grobner bases, Hilbert bases and their construction for a submonoid of
the numerical monoid N, and linear codes. The third section contains the main
theorem and a variant of the algorithm for computing a basis for a subspace of
[F;; described as a matrix kernel, where p is a prime. The paper concludes with
an example illustrating the algorithm and its application to linear codes.

2. Preliminaries
Throughout this paper, Z denotes the ring of integers, Ny stands for the set of
non-negative integers, K denotes an arbitrary field, and K[x] = K[z1,...,x,] is

the commutative polynomial ring in n indeterminates over K.

2.1. Grobner Bases

The monomials in K[x]| are denoted by x" = z{*z5? - -- 2% and are identified
with the lattice points u = (u,...,uy,) € Njj. The degree of a monomial x" is

the sum |u| = u; + -+ 4+ u, and the degree of a polynomial f is the maximal
degree of all monomials involved in f. A term in K[x]| is a scalar times a
monomial.

Denote by K[:clﬂ, ...,z the set of all polynomials given by monomials
with exponents in Z", which is called the ring of Laurent polynomials. Negative
exponents can be overcome by introducing an additional indeterminate ¢. More
precisely, we have

Kz, .. o) 2 Kz, ..., 20, 1)/ (z129 ... 20t — 1). (1)

A monomial order on K[x] is a relation > on the set of monomials x" in
K[x] (or equivalently, on the exponent vectors in Nj) satisfying: (1) > is a total
ordering, (2) the zero vector 0 is the unique minimal element, and (3) u > v
implies u +w > v + w for all u,v,w € Nj. Familiar monomial orders are



A VARIANT OF THE GROBNER BASIS ALGORITHM... 147

the lexicographic order, the degree lexicographic order, and the degree reverse
lexicographic order.

Given a monomial order >, each non-zero polynomial f € K[x] has a unique
leading term, denoted by lt. (f) or simply lt(f), which is given by the largest
involved term. The coefficient and the monomial of the leading term are called
the leading coefficient and the leading monomial, respectively.

If I is an ideal in K[x] and > is a monomial order on K[x], its leading ideal
is the monomial ideal generated by the leading monomials of its elements,

(6(1)) = (e(f) | f € 1I). (2)

A finite subset G of an ideal I in K[x] is a Grébner basis for I with respect to
> if the leading ideal of I is generated by the set of leading monomials in G;
that is,

(I6(1)) = (It(g) | g € G). (3)

If no monomial in this generating set is redundant, the Grobner basis will be
called minimal. It is called reduced if for any two distinct elements g, h € G, no
term of h is divisible by lt(g). A reduced Grébner basis is uniquely determined
provided that the generators are monic.

A Grébner basis for an ideal I in K[x]| with respect to a monomial order >
on K[x]| can be calculated by Buchberger’s algorithm. It starts with an arbi-
trary generating set for I and provides in each step new elements of I yielding
eventually a Grobner basis, which can further be transformed into a reduced
one. For more about Grobner basics the reader may consult [1, 2, 6].

2.2. Monoids, Hilbert Bases and
their Computation using Grobner Bases

A monoid is a set M together with a binary operation such that the operation
is associative and M possesses an identitiy element. A submonoid of a monoid
M is a subset of M that is closed under the operation and contains the identity
element. For instance, the set N{j together with componentwise addition and
the zero vector forms a commutative monoid and each submonoid of it is called
a numerical monotd.

A Hilbert basis of a submonoid K of Njj is a minimal (with respect to
inclusion) finite subset H of K such that each element k € K can be written
as a sum k = ), 4 cph, where ¢, € No. It is known that each numerical
submonoid has a unique Hilbert basis [11].
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Submonoids arise in various fields like integer programming. Such a problem
is usually expressed in standard form:

Minimize c¢’x such that Ax =b, x >0, (4)

where b € Z™,c € Z™ and A € Z™*™ are given and a non-negative integer
vector x is to be found. The set of all integer vectors x > 0 satisfying the
constraint equation Ax = b is called the feasible region. Of interest here is
the case b = 0 because then the feasible region is the kernel of the matrix A,
written ker(A), which is clearly a numerical submonoid. The problem is then
to find a Hilbert basis of the submonoid K = ker(A) in Njj, where A = (a;;) is
an m X n integer matrix.

Following [7] we present an algorithm that solves this problem by using
Grobner bases. This procedure can also be found in [10, 13].

The first step is to translate this problem into the realm of polynomials.
To this end, we associate a variable x; to every row of A, 1 < ¢ < m. Since
entries of A can be negative integers, we have to consider the ring of Laurent
polynomials. Furthermore, define the mapping

YKty Up, w1, we] = Kzt zE [wr, .. wy) (5)
on the variables first
m
() = ij:U?” and ¢Y(wj) =w;, 1<j5<n, (6)
=1

and then extend it such that it becomes a ring homomorphism. In view of the
ideal

IA:<ijx?ij—vj|1§j§n> (7)

i=1
in K[:clﬂ, oz, v, W, wy], We have by [3]
ker(v) = Ia NK[vg, ..., vp, w1, ..., wy). (8)

Using this notation and the polynomial ring in (1) instead of the ring of Laurent
polynomials, we obtain the following assertion due to [13]:

Let G be a Grobner basis for 14 with respect to any monomial
order for which z; > v;, t = v; and v; = w; for all 1 < ¢ < m and
1 < j <n. A Hilbert basis for K = ker(A) is then given by

H={aeNj|v'—w*eG}. 9)
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A proof can be found in [13].
This result facilitates an algorithm for computing the Hilbert basis of a
given submonoid ker(A), which is summarized by Algorithm 1.

Algorithm 1 Grobner basis algorithm for computing a Hilbert basis.

1. Associate the ideal I4 defined in (7) to a given m xn integer matrix A.

2. Compute the reduced Grobner basis G for 14 with respect to a monomial
order with z; = vj, t = vj and vj; = wi forall 1 <i<mand 1 < j, k < n.

3. Read off the elements of the shape v® —w®, a € N, which form a Hilbert
basis for ker(A).

2.3. Linear Codes

Let I be the finite field. A linear code C of length n and dimension k over F is
the image of a one-to-one linear mapping ¢ : F¥ — F”, i.e., C = ¢(FF), where
k <n. The code C is an [n, k| code and its elements are called codewords. In
algebraic coding, the codewords are always written as row vectors.

A generator matriz for an [n, k] code C is a k x n matrix G whose rows form
a basis of C, i.e., C = {aG | a € F¥}. The code C is in standard form if it has a
generator matrix in reduced echelon form G = (I} | M), where I}, is the k x k
identity matrix. Each linear code is equivalent (by a monomial transformation)
to a linear code in standard form.

For an [n, k] code C over F, the dual code C* is given by all words u € F"
such that (u,c) = 0 for each ¢ € C, where (-,-) denotes the ordinary inner
product. The dual code C* is an [n,n — k] code. If G = (I} | M) is a generator
matrix for C, then H = (—M | In_k) is a generator matrix for C-. For each
word ¢ € F*, ¢ € C if and only if cHT = 0. The matrix H is a parity check
matriz for C [9, 14].
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3. A Grobner Basis algorithm for
Finding a Hilbert Basis of a Matrix kernel

In the following, let IF,, denote a finite field with p elements, where p is prime.
We are interested in finding the Hilbert basis of the submonoid

K = ker(H,) NF, (10)

where H is an m X n integer matrix and H, = H @z [,
In other words, we are considering the case in which the numerical monoid
0 1s replaced by the vector space ) over the finite prime field Fy. Then the
submonoid K becomes a subspace and the Hilbert basis equals an ordinary
basis in the sense of linear algebra. Clearly, the uniqueness property does no
longer hold. Nevertheless, the Grobner basis algorithm for finding a Hilbert
basis as described in the previous section (see Algorithm 1) can be adapted to
this situation in order to find one vector space basis.

Since p is congruent 0 in IF,, the following additional ideal will be used
L(x)= (2 —1|1<i<n).

In this way, the exponents of the monomials can be treated as vectors in F.
Let H = (hi;) be an m x n-matrix with entries in I, and define the ideals

JH:<vj—ijx?“|1§j§n> (11)
i=1
and
Iy = Jg + I,(x) + I,(v) + Ip(w). (12)
The homomorphism 1 defined in (5) and (6) can be used to detect ele-

ments in the kernel of H. However, all entries of H can be written (mod-
ulo p) as integers in {0,1,...,p — 1} and so the Laurent polynomials be-
come ordinary polynomials. Hence, the image of % lies in the polynomial ring
Klz1,...,zm][w1, ..., wy]. Note that each non-zero vector a € F}; can be writ-
ten as
a=(0,...,0,q;, @), (13)
where a; € F, \ {0} and a € F~*. Furthermore, put
o =ae;—a=(0,...,0,0,—a), (14)

where e; is the ith unit vector.
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Lemma 1. Let H be an m xn-matrix with entries in IF,. For each non-zero

element o € F)), we have

a€ker(H) <= (v —v¥w*)=0 mod [I,(x)+1,(v)+1,(w)].

Proof. All computations are performed modulo I,,(x) + I,(v) + Ip(w). By
the definition of v, we have

m n m o
« o oy« hp;o o o ki O
P(vg* —v w)—wzznxklz w - w HH P
k=1 =1 k=1
m n m ol
_ (677 hkzai _ kiQG
=wi | [T =111 =
k=1 i=1k=1

. ’ ’ . .
In the second equation, w® w® = w& 7% = wei% = %  Thus

/

P —vE W) =0 = xHee _yHal

Note that ker(¢) is a toric ideal [3], which can be written as
ker(y) = Jg NK[v, w]. (15)

Inspired by the assertion on Hilbert bases for numerical submonoids and
based on the previous lemma, we obtain the following main result.

Theorem 2. Let G be a Grobner basis for Iy defined as in (12) with
respect to the lexicographical order with x1 > ... > Xy = V1 = ... > Uy >
wy = ... = wy. Then a basis for ker(H) in ¥} is given by the following set of
cardinality n — rank(H ),

H = {(0,...,0,%,@) S vyt — v¥wo € G, & = e — a, (16)

«; # 0 for some 1 Sign}.
Using this assertion, we can obtain an adapted version of Algorithm 1 for
computing a basis for ker(H) as a subspace of ) (see Algorithm 2). For the

proof of correctness, which comes hand in hand with the proof of Theorem 2,
three facts will be required:
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Algorithm 2 Grobner basis algorithm for computing a basis for ker(H).

1. Associate the ideal Iy defined as in (12) to a given m X n-matrix H over

F,.

2. Compute the reduced Grobner basis G for Iy with respect to the lexico-
graphical order with &1 ... =2, =v1 >=... =V =Wy >=...=Wwy,.

3. Read off the elements of the form v} — v w? with o/ = a;e; — a and
a; # 0, which give a basis for ker(H).

1. The reduced Grébner basis of a binomial ideal consists of binomials [8].
2. The ideal Jg contains no monomials.

3. The ideal Jy is prime and Iy resembles a prime ideal in the following
sense: If f,g € k[x,v,w] are polynomials such that each variable z;
involved in fg has an exponent of at most p — 1, i.e., the exponents of
the monomials are written as elements in [Fy}, then fg € Iy implies either
felgorgely.

The following proof is an adapted version of the one in [13]. Note that all
subsequently performed calculations will be either in F, or modulo the ideal
Ip(x) + Ip(v) + Ip(w).

Proof. We need to show that the obtained set H is a minimal spanning
set. Assume that this is not the case. Then there must be a non-zero element
B € ker(H) that cannot be written as a linear combination of elements in .
Choose an element £ such that the monomial x? is minimal with respect to the
chosen monomial order. Write 3 = (0....,0,;, 3), where 3; # 0 and 3 € Fg_i.
By Lemma 1, (15), and ker(¢) C Jg, we obtain

f= vf" —vwh e Jy.

Thus f can be reduced to zero on division by G, since Jg C Iy. Hence by the
definition of Gribner bases, there must be a polynomial g € G with 1t(g) = v."
and 1 <; < B;. Put 0 = 5; —~;. In view of the chosen elimination order and
the fact that G consists of binomials, it follows that g is of the form

/
— v w,

— i
g=1;
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for some 7' = (0,...,0,—7%), where 5 € IE‘;“", and 7 € Fj. But by Lemma 1,
the Grobner basis element g will vanish under ¢ and so

n="ye+v = 1.
Then we have

. ! . !
f—vdg=0" —vPwl =0T v W

§

i

— (000 -7)(0..0%7) _ (0...00—5),(0...0 3 B)

! !
= v'w — v wP

= y(000-7)5(0...0%7) (v? _ (000 —3+7) (0. oaﬁ—a))

S — (vf _ V*/B/JF’Y/Wﬂ,*’Y/JF(Sei) )

Applying the previous stated facts 2 and 3 yields

v — v B = e o g
Thus by Lemma 1, 5/ — +' + de; € ker(H). But by the choice of g, § < §; and
so x7'=7'*+0ei < xB Hence by the selection of 8, 8/ —+' + de; can be written as
a linear combination of elements in 7. The same holds for v, since it lies in H
due to the choice of the corresponding Grobner basis element g. But then

B=p+pei=0+(0+m)ei+7 = = (8 = +dei) +,

and so [ can also be written as such a linear combination contradicting the
choice of 8 and hence proving the assertion.

It remains to show that G contains exactly n — rank(H) elements of the
desired form, or in other words, the set H has cardinality n — rank(H). For
this, let H = {a(l), . ,a(s)} and denote by i; the index of the leftmost non-
zero entry in the vector a), 1 < j < s. By the definition of H and the
chosen monomial order, for each j, 1 < j < s, there is an element g; € G with
It(g;) = vfj for some 5 € N{j. Since G is a minimal Grébner basis, the indices

can be relabelled such that iy < iy < --- < i5. Thus the elements o, ..., a(®)
are linearly independent and so ‘H forms a basis for ker(H), i.e., the set H has
cardinality n — rank(H). O

We conclude by giving an example illustrating applications to linear codes.
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Example 3. Consider the [11,6] ternary Golay code [9, 14] with the
generator matrix G = (Ig | M), where

11111

01 2 21

101 2 2

M_21012

2 2101

122 10

Then a parity check matrix is

20211210000
22021101000
H=]12 1202100100
21120200010
22112000001

Applying Algorithm 2 for computing a basis of ker(H) yields the following
polynomials belonging to the reduced Grébner basis

2 2 2,2

Vg — V7 U8V9V1WeWTWgWqoW10,

2,2 2,2
U5 — V708Vqg V11 W5 W7 WgW9W1 1,
2,2 2 2

Vg4 — V708V V11 W4 W7 WgW10W1 1,
2,2 2 2

V3 — U7UgV10011 W3WTW9W1oW11,
2 2 2,2

V2 — VgV9V10V11 W2WgWqW1oW11,
2,222 2

U1 — U7UgUg V19U W1 W7 WgW9W10W11-

The Hilbert basis taken from these polynomials corresponds to the row vectors
of the matrix G.
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