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A VARIANT OF THE GRÖBNER BASIS ALGORITHM

FOR COMPUTING HILBERT BASES

Natalia Dück1 §, Karl-Heinz Zimmermann2

1,2Hamburg University of Technology
Schwarzenbergstr. 95E, Hamburg 21073, GERMANY
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1. Introduction

Gröbner bases provide a uniform approach to tackling a wide range of problems
such as the solvability and solving algebraic systems of equations, ideal and
radial membership decision, and effective computation in residue class rings
modulo polynomial ideals [1, 2, 6, 12].

Furthermore, Gröbner basis techniques are not only a powerful tool for the
algorithmic solution of some fundamental problems in commutative algebra [4],
they also provide means of solving a wide range of problems in integer pro-
gramming and invariant theory once these problems have been expressed in
terms of sets of multivariate polynomials [5, 10, 13]. One such problem is the
computation of the Hilbert basis for a submonoid of the numerical monoid N

n
0 .

This problem can be written in terms of polynomials and then be solved using
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Gröbner basis techniques [10]. Other elaborations of this method can be found
in [7, 13].

In this paper we will establish an algorithm using Gröbner basis techniques
that allows to calculate a basis for a subspace of a finite-dimensional vector
space over a finite prime field given as a matrix kernel. This algorithm is based
on the one for computing Hilbert bases proposed in [13] and is motivated by
the fact that linear codes can be described as such subspaces [9, 14].

This paper is organized as follows. The second section provides an introduc-
tion to Gröbner bases, Hilbert bases and their construction for a submonoid of
the numerical monoid N

n
0 , and linear codes. The third section contains the main

theorem and a variant of the algorithm for computing a basis for a subspace of
F
n
p described as a matrix kernel, where p is a prime. The paper concludes with

an example illustrating the algorithm and its application to linear codes.

2. Preliminaries

Throughout this paper, Z denotes the ring of integers, N0 stands for the set of
non-negative integers, K denotes an arbitrary field, and K[x] = K[x1, . . . , xn] is
the commutative polynomial ring in n indeterminates over K.

2.1. Gröbner Bases

The monomials in K[x] are denoted by xu = xu1

1 x
u2

2 · · · xun
n and are identified

with the lattice points u = (u1, . . . , un) ∈ N
n
0 . The degree of a monomial xu is

the sum |u| = u1 + · · · + un and the degree of a polynomial f is the maximal
degree of all monomials involved in f . A term in K[x] is a scalar times a
monomial.

Denote by K[x±1
1 , . . . , x±1

n ] the set of all polynomials given by monomials
with exponents in Z

n, which is called the ring of Laurent polynomials. Negative
exponents can be overcome by introducing an additional indeterminate t. More
precisely, we have

K[x±1
1 , . . . , x±1

n ] ∼= K[x1, . . . , xn, t]/ 〈x1x2 . . . xnt− 1〉 . (1)

A monomial order on K[x] is a relation ≻ on the set of monomials xu in
K[x] (or equivalently, on the exponent vectors in N

n
0 ) satisfying: (1) ≻ is a total

ordering, (2) the zero vector 0 is the unique minimal element, and (3) u ≻ v

implies u + w ≻ v + w for all u,v,w ∈ N
n
0 . Familiar monomial orders are
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the lexicographic order, the degree lexicographic order, and the degree reverse
lexicographic order.

Given a monomial order ≻, each non-zero polynomial f ∈ K[x] has a unique
leading term, denoted by lt≻(f) or simply lt(f), which is given by the largest
involved term. The coefficient and the monomial of the leading term are called
the leading coefficient and the leading monomial, respectively.

If I is an ideal in K[x] and ≻ is a monomial order on K[x], its leading ideal

is the monomial ideal generated by the leading monomials of its elements,

〈lt(I)〉 = 〈lt(f) | f ∈ I〉. (2)

A finite subset G of an ideal I in K[x] is a Gröbner basis for I with respect to
≻ if the leading ideal of I is generated by the set of leading monomials in G;
that is,

〈lt(I)〉 = 〈lt(g) | g ∈ G〉. (3)

If no monomial in this generating set is redundant, the Gröbner basis will be
called minimal. It is called reduced if for any two distinct elements g, h ∈ G, no
term of h is divisible by lt(g). A reduced Gröbner basis is uniquely determined
provided that the generators are monic.

A Gröbner basis for an ideal I in K[x] with respect to a monomial order ≻
on K[x] can be calculated by Buchberger’s algorithm. It starts with an arbi-
trary generating set for I and provides in each step new elements of I yielding
eventually a Gröbner basis, which can further be transformed into a reduced
one. For more about Gröbner basics the reader may consult [1, 2, 6].

2.2. Monoids, Hilbert Bases and

their Computation using Gröbner Bases

A monoid is a set M together with a binary operation such that the operation
is associative and M possesses an identitiy element. A submonoid of a monoid
M is a subset of M that is closed under the operation and contains the identity
element. For instance, the set N

n
0 together with componentwise addition and

the zero vector forms a commutative monoid and each submonoid of it is called
a numerical monoid.

A Hilbert basis of a submonoid K of N
n
0 is a minimal (with respect to

inclusion) finite subset H of K such that each element k ∈ K can be written
as a sum k =

∑

h∈H chh, where ch ∈ N0. It is known that each numerical
submonoid has a unique Hilbert basis [11].
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Submonoids arise in various fields like integer programming. Such a problem
is usually expressed in standard form:

Minimize cTx such that Ax = b, x ≥ 0, (4)

where b ∈ Z
m, c ∈ Z

n and A ∈ Z
m×n are given and a non-negative integer

vector x is to be found. The set of all integer vectors x ≥ 0 satisfying the
constraint equation Ax = b is called the feasible region. Of interest here is
the case b = 0 because then the feasible region is the kernel of the matrix A,
written ker(A), which is clearly a numerical submonoid. The problem is then
to find a Hilbert basis of the submonoid K = ker(A) in N

n
0 , where A = (aij) is

an m× n integer matrix.
Following [7] we present an algorithm that solves this problem by using

Gröbner bases. This procedure can also be found in [10, 13].
The first step is to translate this problem into the realm of polynomials.

To this end, we associate a variable xi to every row of A, 1 ≤ i ≤ m. Since
entries of A can be negative integers, we have to consider the ring of Laurent
polynomials. Furthermore, define the mapping

ψ : K[v1, . . . , vn, w1, . . . , wn] → K[x±1
1 , . . . , x±1

m ][w1, . . . , wn] (5)

on the variables first

ψ(vj) = wj

m
∏

i=1

x
aij
i and ψ(wj) = wj , 1 ≤ j ≤ n, (6)

and then extend it such that it becomes a ring homomorphism. In view of the
ideal

IA =

〈

wj

m
∏

i=1

x
aij
i − vj | 1 ≤ j ≤ n

〉

(7)

in K[x±1
1 , . . . , x±1

m ][v1, . . . , vn, w1, . . . , wn], we have by [3]

ker(ψ) = IA ∩K[v1, . . . , vn, w1, . . . , wn]. (8)

Using this notation and the polynomial ring in (1) instead of the ring of Laurent
polynomials, we obtain the following assertion due to [13]:

Let G be a Gröbner basis for IA with respect to any monomial
order for which xi ≻ vj, t ≻ vj and vj ≻ wi for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. A Hilbert basis for K = ker(A) is then given by

H = {α ∈ N
n
0 | v

α −wα ∈ G} . (9)
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A proof can be found in [13].
This result facilitates an algorithm for computing the Hilbert basis of a

given submonoid ker(A), which is summarized by Algorithm 1.

Algorithm 1 Gröbner basis algorithm for computing a Hilbert basis.

1. Associate the ideal IA defined in (7) to a given m×n integer matrix A.

2. Compute the reduced Gröbner basis G for IA with respect to a monomial
order with xi ≻ vj , t ≻ vj and vj ≻ wk for all 1 ≤ i ≤ m and 1 ≤ j, k ≤ n.

3. Read off the elements of the shape vα−wα, α ∈ N
n
0 , which form a Hilbert

basis for ker(A).

2.3. Linear Codes

Let F be the finite field. A linear code C of length n and dimension k over F is
the image of a one-to-one linear mapping φ : Fk → F

n, i.e., C = φ(Fk), where
k≤ n. The code C is an [n, k] code and its elements are called codewords. In
algebraic coding, the codewords are always written as row vectors.

A generator matrix for an [n, k] code C is a k×n matrix G whose rows form
a basis of C, i.e., C = {aG | a ∈ F

k}. The code C is in standard form if it has a
generator matrix in reduced echelon form G = (Ik |M), where Ik is the k × k
identity matrix. Each linear code is equivalent (by a monomial transformation)
to a linear code in standard form.

For an [n, k] code C over F, the dual code C⊥ is given by all words u ∈ F
n

such that 〈u, c〉 = 0 for each c ∈ C, where 〈·, ·〉 denotes the ordinary inner
product. The dual code C⊥ is an [n, n− k] code. If G = (Ik |M) is a generator
matrix for C, then H =

(

−MT | In−k

)

is a generator matrix for C⊥. For each
word c ∈ F

n, c ∈ C if and only if cHT = 0. The matrix H is a parity check

matrix for C [9, 14].
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3. A Gröbner Basis algorithm for

Finding a Hilbert Basis of a Matrix kernel

In the following, let Fp denote a finite field with p elements, where p is prime.
We are interested in finding the Hilbert basis of the submonoid

K = ker(Hp) ∩ F
n
p , (10)

where H is an m× n integer matrix and Hp = H ⊗Z Fp.
In other words, we are considering the case in which the numerical monoid

N
n
0 is replaced by the vector space F

n
p over the finite prime field Fp. Then the

submonoid K becomes a subspace and the Hilbert basis equals an ordinary
basis in the sense of linear algebra. Clearly, the uniqueness property does no
longer hold. Nevertheless, the Gröbner basis algorithm for finding a Hilbert
basis as described in the previous section (see Algorithm 1) can be adapted to
this situation in order to find one vector space basis.

Since p is congruent 0 in Fp, the following additional ideal will be used

Ip(x) = 〈xpi − 1 | 1 ≤ i ≤ n〉 .

In this way, the exponents of the monomials can be treated as vectors in F
n
p .

Let H = (hij) be an m× n-matrix with entries in Fp and define the ideals

JH =

〈

vj − wj

m
∏

i=1

x
hij

i | 1 ≤ j ≤ n

〉

(11)

and

IH = JH + Ip(x) + Ip(v) + Ip(w). (12)

The homomorphism ψ defined in (5) and (6) can be used to detect ele-
ments in the kernel of H. However, all entries of H can be written (mod-
ulo p) as integers in {0, 1, . . . , p − 1} and so the Laurent polynomials be-
come ordinary polynomials. Hence, the image of ψ lies in the polynomial ring
K[x1, . . . , xm][w1, . . . , wn]. Note that each non-zero vector α ∈ F

n
p can be writ-

ten as

α = (0, . . . , 0, αi, ᾱ), (13)

where αi ∈ Fp \ {0} and ᾱ ∈ F
n−i
p . Furthermore, put

α′ = αiei − α = (0, . . . , 0, 0,−ᾱ), (14)

where ei is the ith unit vector.
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Lemma 1. LetH be anm×n-matrix with entries in Fp. For each non-zero
element α ∈ F

n
p , we have

α ∈ ker(H) ⇐⇒ ψ(vαi

i −vα′

wα)=0 mod [Ip(x)+Ip(v)+Ip(w)] .

Proof. All computations are performed modulo Ip(x) + Ip(v) + Ip(w). By
the definition of ψ, we have

ψ(vαi

i − vα′

wα) = wαi

i

m
∏

k=1

xhkiαi

k −wα ·wα′

n
∏

i=1

m
∏

k=1

x
hkiα

′

i

k

= wαi

i

(

m
∏

k=1

xhkiαi

k −
n
∏

i=1

m
∏

k=1

x
hkiα

′

i

k

)

= wαi

i

(

xHeiαi − xHα′

)

.

In the second equation, wα′

wα = wα′+α = weiαi = wαi

i . Thus

ψ(vαi

i −vα′

wα) = 0 ⇐⇒ xHeiαi − xHα′

= 0

⇐⇒ Heiαi −Hα′ = Hα = 0

⇐⇒ α ∈ ker(H).

Note that ker(ψ) is a toric ideal [3], which can be written as

ker(ψ) = JH ∩K[v,w]. (15)

Inspired by the assertion on Hilbert bases for numerical submonoids and
based on the previous lemma, we obtain the following main result.

Theorem 2. Let G be a Gröbner basis for IH defined as in (12) with
respect to the lexicographical order with x1 ≻ . . . ≻ xm ≻ v1 ≻ . . . ≻ vn ≻
w1 ≻ . . . ≻ wn. Then a basis for ker(H) in F

n
p is given by the following set of

cardinality n− rank(H),

H =
{

(0, . . . , 0, αi, ᾱ) ∈ F
n
p | vαi

i − vα′

wα ∈ G, α′ = αiei − α, (16)

αi 6= 0 for some 1 ≤ i ≤ n
}

.

Using this assertion, we can obtain an adapted version of Algorithm 1 for
computing a basis for ker(H) as a subspace of Fn

p (see Algorithm 2). For the
proof of correctness, which comes hand in hand with the proof of Theorem 2,
three facts will be required:
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Algorithm 2 Gröbner basis algorithm for computing a basis for ker(H).

1. Associate the ideal IH defined as in (12) to a given m× n-matrix H over
Fp.

2. Compute the reduced Gröbner basis G for IH with respect to the lexico-
graphical order with x1 ≻ . . .≻xm ≻v1 ≻ . . .≻vn ≻w1 ≻ . . .≻wn.

3. Read off the elements of the form vαi

i − vα′

wα with α′ = αiei − α and
αi 6= 0, which give a basis for ker(H).

1. The reduced Gröbner basis of a binomial ideal consists of binomials [8].

2. The ideal JH contains no monomials.

3. The ideal JH is prime and IH resembles a prime ideal in the following
sense: If f, g ∈ k[x,v,w] are polynomials such that each variable xi
involved in fg has an exponent of at most p − 1, i.e., the exponents of
the monomials are written as elements in F

n
p , then fg ∈ IH implies either

f ∈ IH or g ∈ IH .

The following proof is an adapted version of the one in [13]. Note that all
subsequently performed calculations will be either in Fp or modulo the ideal
Ip(x) + Ip(v) + Ip(w).

Proof. We need to show that the obtained set H is a minimal spanning
set. Assume that this is not the case. Then there must be a non-zero element
β ∈ ker(H) that cannot be written as a linear combination of elements in H.
Choose an element β such that the monomial xβ is minimal with respect to the
chosen monomial order. Write β = (0. . . . , 0, βi, β̄), where βi 6= 0 and β̄ ∈ F

n−i
p .

By Lemma 1, (15), and ker(ψ) ⊂ JH , we obtain

f = vβi

i − vβ′

wβ ∈ JH .

Thus f can be reduced to zero on division by G, since JH ⊂ IH . Hence by the
definition of Gröbner bases, there must be a polynomial g ∈ G with lt(g) = vγii
and 1 ≤ γi ≤ βi. Put δ = βi − γi. In view of the chosen elimination order and
the fact that G consists of binomials, it follows that g is of the form

g = vγii − vγ′

wη,
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for some γ′ = (0, . . . , 0,−γ̄), where γ̄ ∈ F
n−i
p , and η ∈ F

n
p . But by Lemma 1,

the Gröbner basis element g will vanish under ψ and so

η = γiei + γ′ =: γ.

Then we have

f − vδi · g = vβi

i − vβ′

wβ − vδ+γi
i + vδi v

γ′

wγ

= vδi v
γ′

wγ − vβ′

wβ

= v(0 ... 0 δ −γ̄)w(0 ... 0 γi γ̄) − v(0 ... 0 0−β̄)w(0 ... 0 βi β̄)

= v(0 ... 0 0−γ̄)w(0 ... 0 γi γ̄)
(

vδi − v(0 ... 0 0−β̄+γ̄)w(0 ... 0 δ β̄−γ̄)
)

= vγ′

wγ
(

vδi − v−β′+γ′

wβ′−γ′+δei
)

.

Applying the previous stated facts 2 and 3 yields

vδi − v−β′+γ′

wβ′−γ′+δei ∈ JH .

Thus by Lemma 1, β′ − γ′ + δei ∈ ker(H). But by the choice of g, δ < βi and
so xβ′−γ′+δei ≺ xβ. Hence by the selection of β, β′ − γ′ + δei can be written as
a linear combination of elements in H. The same holds for γ, since it lies in H
due to the choice of the corresponding Gröbner basis element g. But then

β = β′ + βiei = β′ + (δ + γi) ei + γ′ − γ′ =
(

β′ − γ′ + δei
)

+ γ,

and so β can also be written as such a linear combination contradicting the
choice of β and hence proving the assertion.

It remains to show that G contains exactly n − rank(H) elements of the
desired form, or in other words, the set H has cardinality n − rank(H). For
this, let H =

{

α(1), . . . , α(s)
}

and denote by ij the index of the leftmost non-

zero entry in the vector α(j), 1 ≤ j ≤ s. By the definition of H and the
chosen monomial order, for each j, 1 ≤ j ≤ s, there is an element gj ∈ G with

lt(gj) = vβij for some β ∈ N
n
0 . Since G is a minimal Gröbner basis, the indices

can be relabelled such that i1 < i2 < · · · < is. Thus the elements α(1), . . . , α(s)

are linearly independent and so H forms a basis for ker(H), i.e., the set H has
cardinality n− rank(H).

We conclude by giving an example illustrating applications to linear codes.
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Example 3. Consider the [11, 6] ternary Golay code [9, 14] with the
generator matrix G = (I6 |M), where

M =

















1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0

















.

Then a parity check matrix is

H =













2 0 2 1 1 2 1 0 0 0 0
2 2 0 2 1 1 0 1 0 0 0
2 1 2 0 2 1 0 0 1 0 0
2 1 1 2 0 2 0 0 0 1 0
2 2 1 1 2 0 0 0 0 0 1













.

Applying Algorithm 2 for computing a basis of ker(H) yields the following
polynomials belonging to the reduced Gröbner basis

v6 − v27v8v9v
2
10w6w7w

2
8w

2
9w10,

v5 − v7v8v
2
9v

2
11w5w

2
7w

2
8w9w11,

v4 − v7v
2
8v

2
10v11w4w

2
7w8w10w

2
11,

v3 − v27v
2
9v10v11w3w7w9w

2
10w

2
11,

v2 − v28v9v10v
2
11w2w8w

2
9w

2
10w11,

v1 − v27v
2
8v

2
9v

2
10v

2
11w1w7w8w9w10w11.

The Hilbert basis taken from these polynomials corresponds to the row vectors
of the matrix G.
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