A VARIANT OF THE GRÖBNER BASIS ALGORITHM FOR COMPUTING HILBERT BASES

Natalia Dück ${ }^{18}$, Karl-Heinz Zimmermann ${ }^{2}$
${ }^{1,2}$ Hamburg University of Technology
Schwarzenbergstr. 95E, Hamburg 21073, GERMANY

Abstract

Gröbner bases can be used for computing the Hilbert basis of a numerical submonoid. By using these techniques, we provide an algorithm that calculates a basis of a subspace of a finite-dimensional vector space over a finite prime field given as a matrix kernel.

AMS Subject Classification: 13P10, 94B05
Key Words: Gröbner basis, integer programming, monoid, Hilbert basis, linear code

1. Introduction

Gröbner bases provide a uniform approach to tackling a wide range of problems such as the solvability and solving algebraic systems of equations, ideal and radial membership decision, and effective computation in residue class rings modulo polynomial ideals [1, 2, 6, 12].

Furthermore, Gröbner basis techniques are not only a powerful tool for the algorithmic solution of some fundamental problems in commutative algebra [4], they also provide means of solving a wide range of problems in integer programming and invariant theory once these problems have been expressed in terms of sets of multivariate polynomials [5, 10, 13]. One such problem is the computation of the Hilbert basis for a submonoid of the numerical monoid \mathbb{N}_{0}^{n}. This problem can be written in terms of polynomials and then be solved using

Received: July 31, 2012
(C) 2012 Academic Publications, Ltd. url: www.acadpubl.eu
${ }^{\S}$ Correspondence author

Gröbner basis techniques [10]. Other elaborations of this method can be found in $[7,13]$.

In this paper we will establish an algorithm using Gröbner basis techniques that allows to calculate a basis for a subspace of a finite-dimensional vector space over a finite prime field given as a matrix kernel. This algorithm is based on the one for computing Hilbert bases proposed in [13] and is motivated by the fact that linear codes can be described as such subspaces [9, 14].

This paper is organized as follows. The second section provides an introduction to Gröbner bases, Hilbert bases and their construction for a submonoid of the numerical monoid \mathbb{N}_{0}^{n}, and linear codes. The third section contains the main theorem and a variant of the algorithm for computing a basis for a subspace of \mathbb{F}_{p}^{n} described as a matrix kernel, where p is a prime. The paper concludes with an example illustrating the algorithm and its application to linear codes.

2. Preliminaries

Throughout this paper, \mathbb{Z} denotes the ring of integers, \mathbb{N}_{0} stands for the set of non-negative integers, \mathbb{K} denotes an arbitrary field, and $\mathbb{K}[\mathbf{x}]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the commutative polynomial ring in n indeterminates over \mathbb{K}.

2.1. Gröbner Bases

The monomials in $\mathbb{K}[\mathbf{x}]$ are denoted by $\mathbf{x}^{\mathbf{u}}=x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}$ and are identified with the lattice points $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}_{0}^{n}$. The degree of a monomial $\mathbf{x}^{\mathbf{u}}$ is the sum $|\mathbf{u}|=u_{1}+\cdots+u_{n}$ and the degree of a polynomial f is the maximal degree of all monomials involved in f. A term in $\mathbb{K}[\mathbf{x}]$ is a scalar times a monomial.

Denote by $\mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ the set of all polynomials given by monomials with exponents in \mathbb{Z}^{n}, which is called the ring of Laurent polynomials. Negative exponents can be overcome by introducing an additional indeterminate t. More precisely, we have

$$
\begin{equation*}
\mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \cong \mathbb{K}\left[x_{1}, \ldots, x_{n}, t\right] /\left\langle x_{1} x_{2} \ldots x_{n} t-1\right\rangle \tag{1}
\end{equation*}
$$

A monomial order on $\mathbb{K}[\mathbf{x}]$ is a relation \succ on the set of monomials $\mathbf{x}^{\mathbf{u}}$ in $\mathbb{K}[\mathbf{x}]$ (or equivalently, on the exponent vectors in \mathbb{N}_{0}^{n}) satisfying: $(1) \succ$ is a total ordering, (2) the zero vector $\mathbf{0}$ is the unique minimal element, and (3) $\mathbf{u} \succ \mathbf{v}$ implies $\mathbf{u}+\mathbf{w} \succ \mathbf{v}+\mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{N}_{0}^{n}$. Familiar monomial orders are
the lexicographic order, the degree lexicographic order, and the degree reverse lexicographic order.

Given a monomial order \succ, each non-zero polynomial $f \in \mathbb{K}[\mathbf{x}]$ has a unique leading term, denoted by $\operatorname{lt}_{\succ}(f)$ or simply $\operatorname{lt}(f)$, which is given by the largest involved term. The coefficient and the monomial of the leading term are called the leading coefficient and the leading monomial, respectively.

If I is an ideal in $\mathbb{K}[\mathbf{x}]$ and \succ is a monomial order on $\mathbb{K}[\mathbf{x}]$, its leading ideal is the monomial ideal generated by the leading monomials of its elements,

$$
\begin{equation*}
\langle\operatorname{lt}(I)\rangle=\langle\operatorname{lt}(f) \mid f \in I\rangle . \tag{2}
\end{equation*}
$$

A finite subset \mathcal{G} of an ideal I in $\mathbb{K}[\mathbf{x}]$ is a Gröbner basis for I with respect to \succ if the leading ideal of I is generated by the set of leading monomials in \mathcal{G}; that is,

$$
\begin{equation*}
\langle\operatorname{lt}(I)\rangle=\langle\operatorname{lt}(g) \mid g \in \mathcal{G}\rangle . \tag{3}
\end{equation*}
$$

If no monomial in this generating set is redundant, the Gröbner basis will be called minimal. It is called reduced if for any two distinct elements $g, h \in \mathcal{G}$, no term of h is divisible by $\operatorname{lt}(g)$. A reduced Gröbner basis is uniquely determined provided that the generators are monic.

A Gröbner basis for an ideal I in $\mathbb{K}[\mathbf{x}]$ with respect to a monomial order \succ on $\mathbb{K}[\mathbf{x}]$ can be calculated by Buchberger's algorithm. It starts with an arbitrary generating set for I and provides in each step new elements of I yielding eventually a Gröbner basis, which can further be transformed into a reduced one. For more about Gröbner basics the reader may consult $[1,2,6]$.

2.2. Monoids, Hilbert Bases and their Computation using Gröbner Bases

A monoid is a set M together with a binary operation such that the operation is associative and M possesses an identitiy element. A submonoid of a monoid M is a subset of M that is closed under the operation and contains the identity element. For instance, the set \mathbb{N}_{0}^{n} together with componentwise addition and the zero vector forms a commutative monoid and each submonoid of it is called a numerical monoid.

A Hilbert basis of a submonoid K of \mathbb{N}_{0}^{n} is a minimal (with respect to inclusion) finite subset \mathcal{H} of K such that each element $k \in K$ can be written as a sum $k=\sum_{h \in \mathcal{H}} c_{h} h$, where $c_{h} \in \mathbb{N}_{0}$. It is known that each numerical submonoid has a unique Hilbert basis [11].

Submonoids arise in various fields like integer programming. Such a problem is usually expressed in standard form:

$$
\begin{equation*}
\text { Minimize } \quad \mathbf{c}^{T} \mathbf{x} \quad \text { such that } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0 \tag{4}
\end{equation*}
$$

where $\mathbf{b} \in \mathbb{Z}^{m}, \mathbf{c} \in \mathbb{Z}^{n}$ and $A \in \mathbb{Z}^{m \times n}$ are given and a non-negative integer vector \mathbf{x} is to be found. The set of all integer vectors $\mathbf{x} \geq 0$ satisfying the constraint equation $A \mathbf{x}=\mathbf{b}$ is called the feasible region. Of interest here is the case $\mathbf{b}=\mathbf{0}$ because then the feasible region is the kernel of the matrix A, written $\operatorname{ker}(A)$, which is clearly a numerical submonoid. The problem is then to find a Hilbert basis of the submonoid $K=\operatorname{ker}(A)$ in \mathbb{N}_{0}^{n}, where $A=\left(a_{i j}\right)$ is an $m \times n$ integer matrix.

Following [7] we present an algorithm that solves this problem by using Gröbner bases. This procedure can also be found in [10, 13].

The first step is to translate this problem into the realm of polynomials. To this end, we associate a variable x_{i} to every row of $A, 1 \leq i \leq m$. Since entries of A can be negative integers, we have to consider the ring of Laurent polynomials. Furthermore, define the mapping

$$
\begin{equation*}
\psi: \mathbb{K}\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right] \rightarrow \mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}\right]\left[w_{1}, \ldots, w_{n}\right] \tag{5}
\end{equation*}
$$

on the variables first

$$
\begin{equation*}
\psi\left(v_{j}\right)=w_{j} \prod_{i=1}^{m} x_{i}^{a_{i j}} \quad \text { and } \quad \psi\left(w_{j}\right)=w_{j}, \quad 1 \leq j \leq n \tag{6}
\end{equation*}
$$

and then extend it such that it becomes a ring homomorphism. In view of the ideal

$$
\begin{equation*}
I_{A}=\left\langle w_{j} \prod_{i=1}^{m} x_{i}^{a_{i j}}-v_{j} \mid 1 \leq j \leq n\right\rangle \tag{7}
\end{equation*}
$$

in $\mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}\right]\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right]$, we have by $[3]$

$$
\begin{equation*}
\operatorname{ker}(\psi)=I_{A} \cap \mathbb{K}\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right] \tag{8}
\end{equation*}
$$

Using this notation and the polynomial ring in (1) instead of the ring of Laurent polynomials, we obtain the following assertion due to [13]:

Let \mathcal{G} be a Gröbner basis for I_{A} with respect to any monomial order for which $x_{i} \succ v_{j}, t \succ v_{j}$ and $v_{j} \succ w_{i}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$. A Hilbert basis for $K=\operatorname{ker}(A)$ is then given by

$$
\begin{equation*}
\mathcal{H}=\left\{\alpha \in \mathbb{N}_{0}^{n} \mid \mathbf{v}^{\alpha}-\mathbf{w}^{\alpha} \in \mathcal{G}\right\} . \tag{9}
\end{equation*}
$$

A proof can be found in [13].
This result facilitates an algorithm for computing the Hilbert basis of a given submonoid $\operatorname{ker}(A)$, which is summarized by Algorithm 1.

```
Algorithm 1 Gröbner basis algorithm for computing a Hilbert basis.
```

1. Associate the ideal I_{A} defined in (7) to a given $m \times n$ integer matrix A.
2. Compute the reduced Gröbner basis \mathcal{G} for I_{A} with respect to a monomial order with $x_{i} \succ v_{j}, t \succ v_{j}$ and $v_{j} \succ w_{k}$ for all $1 \leq i \leq m$ and $1 \leq j, k \leq n$.
3. Read off the elements of the shape $\mathbf{v}^{\alpha}-\mathbf{w}^{\alpha}, \alpha \in \mathbb{N}_{0}^{n}$, which form a Hilbert basis for $\operatorname{ker}(A)$.

2.3. Linear Codes

Let \mathbb{F} be the finite field. A linear code \mathcal{C} of length n and dimension k over \mathbb{F} is the image of a one-to-one linear mapping $\phi: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}$, i.e., $\mathcal{C}=\phi\left(\mathbb{F}^{k}\right)$, where $k \leq n$. The code \mathcal{C} is an $[n, k]$ code and its elements are called codewords. In algebraic coding, the codewords are always written as row vectors.

A generator matrix for an $[n, k]$ code \mathcal{C} is a $k \times n$ matrix G whose rows form a basis of \mathcal{C}, i.e., $\mathcal{C}=\left\{\mathbf{a} G \mid \mathbf{a} \in \mathbb{F}^{k}\right\}$. The code \mathcal{C} is in standard form if it has a generator matrix in reduced echelon form $G=\left(I_{k} \mid M\right)$, where I_{k} is the $k \times k$ identity matrix. Each linear code is equivalent (by a monomial transformation) to a linear code in standard form.

For an $[n, k]$ code \mathcal{C} over \mathbb{F}, the dual code \mathcal{C}^{\perp} is given by all words $\mathbf{u} \in \mathbb{F}^{n}$ such that $\langle\mathbf{u}, \mathbf{c}\rangle=0$ for each $\mathbf{c} \in \mathcal{C}$, where $\langle\cdot, \cdot\rangle$ denotes the ordinary inner product. The dual code \mathcal{C}^{\perp} is an $[n, n-k]$ code. If $G=\left(I_{k} \mid M\right)$ is a generator matrix for \mathcal{C}, then $H=\left(-M^{T} \mid I_{n-k}\right)$ is a generator matrix for \mathcal{C}^{\perp}. For each word $\mathbf{c} \in \mathbb{F}^{n}, \mathbf{c} \in \mathcal{C}$ if and only if $\mathbf{c} H^{T}=\mathbf{0}$. The matrix H is a parity check matrix for $\mathcal{C}[9,14]$.

3. A Gröbner Basis algorithm for Finding a Hilbert Basis of a Matrix kernel

In the following, let \mathbb{F}_{p} denote a finite field with p elements, where p is prime. We are interested in finding the Hilbert basis of the submonoid

$$
\begin{equation*}
K=\operatorname{ker}\left(H_{p}\right) \cap \mathbb{F}_{p}^{n} \tag{10}
\end{equation*}
$$

where H is an $m \times n$ integer matrix and $H_{p}=H \otimes_{\mathbb{Z}} \mathbb{F}_{p}$.
In other words, we are considering the case in which the numerical monoid \mathbb{N}_{0}^{n} is replaced by the vector space \mathbb{F}_{p}^{n} over the finite prime field \mathbb{F}_{p}. Then the submonoid K becomes a subspace and the Hilbert basis equals an ordinary basis in the sense of linear algebra. Clearly, the uniqueness property does no longer hold. Nevertheless, the Gröbner basis algorithm for finding a Hilbert basis as described in the previous section (see Algorithm 1) can be adapted to this situation in order to find one vector space basis.

Since p is congruent 0 in \mathbb{F}_{p}, the following additional ideal will be used

$$
I_{p}(\mathbf{x})=\left\langle x_{i}^{p}-1 \mid 1 \leq i \leq n\right\rangle
$$

In this way, the exponents of the monomials can be treated as vectors in \mathbb{F}_{p}^{n}.
Let $H=\left(h_{i j}\right)$ be an $m \times n$-matrix with entries in \mathbb{F}_{p} and define the ideals

$$
\begin{equation*}
J_{H}=\left\langle v_{j}-w_{j} \prod_{i=1}^{m} x_{i}^{h_{i j}} \mid 1 \leq j \leq n\right\rangle \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{H}=J_{H}+I_{p}(\mathbf{x})+I_{p}(\mathbf{v})+I_{p}(\mathbf{w}) \tag{12}
\end{equation*}
$$

The homomorphism ψ defined in (5) and (6) can be used to detect elements in the kernel of H. However, all entries of H can be written (modulo p) as integers in $\{0,1, \ldots, p-1\}$ and so the Laurent polynomials become ordinary polynomials. Hence, the image of ψ lies in the polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]\left[w_{1}, \ldots, w_{n}\right]$. Note that each non-zero vector $\alpha \in \mathbb{F}_{p}^{n}$ can be written as

$$
\begin{equation*}
\alpha=\left(0, \ldots, 0, \alpha_{i}, \bar{\alpha}\right) \tag{13}
\end{equation*}
$$

where $\alpha_{i} \in \mathbb{F}_{p} \backslash\{0\}$ and $\bar{\alpha} \in \mathbb{F}_{p}^{n-i}$. Furthermore, put

$$
\begin{equation*}
\alpha^{\prime}=\alpha_{i} \mathbf{e}_{i}-\alpha=(0, \ldots, 0,0,-\bar{\alpha}) \tag{14}
\end{equation*}
$$

where \mathbf{e}_{i} is the i th unit vector.

Lemma 1. Let H be an $m \times n$-matrix with entries in \mathbb{F}_{p}. For each non-zero element $\alpha \in \mathbb{F}_{p}^{n}$, we have

$$
\alpha \in \operatorname{ker}(H) \Longleftrightarrow \psi\left(v_{i}^{\alpha_{i}}-\mathbf{v}^{\alpha^{\prime}} \mathbf{w}^{\alpha}\right)=0 \bmod \left[I_{p}(\mathbf{x})+I_{p}(\mathbf{v})+I_{p}(\mathbf{w})\right]
$$

Proof. All computations are performed modulo $I_{p}(\mathbf{x})+I_{p}(\mathbf{v})+I_{p}(\mathbf{w})$. By the definition of ψ, we have

$$
\begin{aligned}
\psi\left(v_{i}^{\alpha_{i}}-\mathbf{v}^{\alpha^{\prime}} \mathbf{w}^{\alpha}\right) & =w_{i}^{\alpha_{i}} \prod_{k=1}^{m} x_{k}^{h_{k i} \alpha_{i}}-\mathbf{w}^{\alpha} \cdot \mathbf{w}^{\alpha^{\prime}} \prod_{i=1}^{n} \prod_{k=1}^{m} x_{k}^{h_{k i} \alpha_{i}^{\prime}} \\
& =w_{i}^{\alpha_{i}}\left(\prod_{k=1}^{m} x_{k}^{h_{k i} \alpha_{i}}-\prod_{i=1}^{n} \prod_{k=1}^{m} x_{k}^{h_{k i} \alpha_{i}^{\prime}}\right) \\
& =w_{i}^{\alpha_{i}}\left(\mathbf{x}^{H \mathbf{e}_{i} \alpha_{i}}-\mathbf{x}^{H \alpha^{\prime}}\right) .
\end{aligned}
$$

In the second equation, $\mathbf{w}^{\alpha^{\prime}} \mathbf{w}^{\alpha}=\mathbf{w}^{\alpha^{\prime}+\alpha}=\mathbf{w}^{\mathbf{e}_{i} \alpha_{i}}=w_{i}^{\alpha_{i}}$. Thus

$$
\begin{aligned}
\psi\left(v_{i}^{\alpha_{i}}-\mathbf{v}^{\alpha^{\prime}} \mathbf{w}^{\alpha}\right)=0 & \Longleftrightarrow \mathbf{x}^{H \mathbf{e}_{i} \alpha_{i}}-\mathbf{x}^{H \alpha^{\prime}}=0 \\
& \Longleftrightarrow H \mathbf{e}_{i} \alpha_{i}-H \alpha^{\prime}=H \alpha=0 \\
& \Longleftrightarrow \alpha \in \operatorname{ker}(H) .
\end{aligned}
$$

Note that $\operatorname{ker}(\psi)$ is a toric ideal [3], which can be written as

$$
\begin{equation*}
\operatorname{ker}(\psi)=J_{H} \cap \mathbb{K}[\mathbf{v}, \mathbf{w}] \tag{15}
\end{equation*}
$$

Inspired by the assertion on Hilbert bases for numerical submonoids and based on the previous lemma, we obtain the following main result.

Theorem 2. Let \mathcal{G} be a Gröbner basis for I_{H} defined as in (12) with respect to the lexicographical order with $x_{1} \succ \ldots \succ x_{m} \succ v_{1} \succ \ldots \succ v_{n} \succ$ $w_{1} \succ \ldots \succ w_{n}$. Then a basis for $\operatorname{ker}(H)$ in \mathbb{F}_{p}^{n} is given by the following set of cardinality $n-\operatorname{rank}(H)$,

$$
\begin{array}{r}
\mathcal{H}=\left\{\left(0, \ldots, 0, \alpha_{i}, \bar{\alpha}\right) \in \mathbb{F}_{p}^{n} \mid v_{i}^{\alpha_{i}}-\mathbf{v}^{\alpha^{\prime}} \mathbf{w}^{\alpha} \in \mathcal{G}, \alpha^{\prime}=\alpha_{i} \mathbf{e}_{i}-\alpha\right. \tag{16}\\
\left.\alpha_{i} \neq 0 \text { for some } 1 \leq i \leq n\right\}
\end{array}
$$

Using this assertion, we can obtain an adapted version of Algorithm 1 for computing a basis for $\operatorname{ker}(H)$ as a subspace of \mathbb{F}_{p}^{n} (see Algorithm 2). For the proof of correctness, which comes hand in hand with the proof of Theorem 2, three facts will be required:

Algorithm 2 Gröbner basis algorithm for computing a basis for $\operatorname{ker}(H)$.

1. Associate the ideal I_{H} defined as in (12) to a given $m \times n$-matrix H over \mathbb{F}_{p}.
2. Compute the reduced Gröbner basis \mathcal{G} for I_{H} with respect to the lexicographical order with $x_{1} \succ \ldots \succ x_{m} \succ v_{1} \succ \ldots \succ v_{n} \succ w_{1} \succ \ldots \succ w_{n}$.
3. Read off the elements of the form $v_{i}^{\alpha_{i}}-\mathbf{v}^{\alpha^{\prime}} \mathbf{w}^{\alpha}$ with $\alpha^{\prime}=\alpha_{i} \mathbf{e}_{i}-\alpha$ and $\alpha_{i} \neq 0$, which give a basis for $\operatorname{ker}(H)$.
4. The reduced Gröbner basis of a binomial ideal consists of binomials [8].
5. The ideal J_{H} contains no monomials.
6. The ideal J_{H} is prime and I_{H} resembles a prime ideal in the following sense: If $f, g \in k[\mathbf{x}, \mathbf{v}, \mathbf{w}]$ are polynomials such that each variable x_{i} involved in $f g$ has an exponent of at most $p-1$, i.e., the exponents of the monomials are written as elements in \mathbb{F}_{p}^{n}, then $f g \in I_{H}$ implies either $f \in I_{H}$ or $g \in I_{H}$.

The following proof is an adapted version of the one in [13]. Note that all subsequently performed calculations will be either in \mathbb{F}_{p} or modulo the ideal $I_{p}(\mathbf{x})+I_{p}(\mathbf{v})+I_{p}(\mathbf{w})$.

Proof. We need to show that the obtained set \mathcal{H} is a minimal spanning set. Assume that this is not the case. Then there must be a non-zero element $\beta \in \operatorname{ker}(H)$ that cannot be written as a linear combination of elements in \mathcal{H}. Choose an element β such that the monomial \mathbf{x}^{β} is minimal with respect to the chosen monomial order. Write $\beta=\left(0 \ldots, 0, \beta_{i}, \bar{\beta}\right)$, where $\beta_{i} \neq 0$ and $\bar{\beta} \in \mathbb{F}_{p}^{n-i}$. By Lemma 1, (15), and $\operatorname{ker}(\psi) \subset J_{H}$, we obtain

$$
f=v_{i}^{\beta_{i}}-\mathbf{v}^{\beta^{\prime}} \mathbf{w}^{\beta} \in J_{H}
$$

Thus f can be reduced to zero on division by \mathcal{G}, since $J_{H} \subset I_{H}$. Hence by the definition of Gröbner bases, there must be a polynomial $g \in \mathcal{G}$ with $\operatorname{lt}(g)=v_{i}^{\gamma_{i}}$ and $1 \leq \gamma_{i} \leq \beta_{i}$. Put $\delta=\beta_{i}-\gamma_{i}$. In view of the chosen elimination order and the fact that \mathcal{G} consists of binomials, it follows that g is of the form

$$
g=v_{i}^{\gamma_{i}}-\mathbf{v}^{\gamma^{\prime}} \mathbf{w}^{\eta}
$$

for some $\gamma^{\prime}=(0, \ldots, 0,-\bar{\gamma})$, where $\bar{\gamma} \in \mathbb{F}_{p}^{n-i}$, and $\eta \in \mathbb{F}_{p}^{n}$. But by Lemma 1 , the Gröbner basis element g will vanish under ψ and so

$$
\eta=\gamma_{i} \mathbf{e}_{i}+\gamma^{\prime}=: \gamma
$$

Then we have

$$
\begin{aligned}
f-v_{i}^{\delta} \cdot g & =v_{i}^{\beta_{i}}-\mathbf{v}^{\beta^{\prime}} \mathbf{w}^{\beta}-v_{i}^{\delta+\gamma_{i}}+v_{i}^{\delta} \mathbf{v}^{\gamma^{\prime}} \mathbf{w}^{\gamma} \\
& =v_{i}^{\delta} \mathbf{v}^{\gamma^{\prime}} \mathbf{w}^{\gamma}-\mathbf{v}^{\beta^{\prime}} \mathbf{w}^{\beta} \\
& =\mathbf{v}^{(0 \ldots 0 \delta-\bar{\gamma})} \mathbf{w}^{\left(0 \ldots 0 \gamma_{i} \bar{\gamma}\right)}-\mathbf{v}^{(0 \ldots 00-\bar{\beta})} \mathbf{w}^{\left(0 \ldots 0 \beta_{i} \bar{\beta}\right)} \\
& =\mathbf{v}^{(0 \ldots 00-\bar{\gamma})} \mathbf{w}^{\left(0 \ldots 0 \gamma_{i} \bar{\gamma}\right)}\left(v_{i}^{\delta}-\mathbf{v}^{(0 \ldots 00-\bar{\beta}+\bar{\gamma})} \mathbf{w}^{(0 \ldots 0 \delta \bar{\beta}-\bar{\gamma})}\right) \\
& =\mathbf{v}^{\gamma^{\prime}} \mathbf{w}^{\gamma}\left(v_{i}^{\delta}-\mathbf{v}^{-\beta^{\prime}+\gamma^{\prime}} \mathbf{w}^{\beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i}}\right)
\end{aligned}
$$

Applying the previous stated facts 2 and 3 yields

$$
v_{i}^{\delta}-\mathbf{v}^{-\beta^{\prime}+\gamma^{\prime}} \mathbf{w}^{\beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i}} \in J_{H}
$$

Thus by Lemma 1 , $\beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i} \in \operatorname{ker}(H)$. But by the choice of $g, \delta<\beta_{i}$ and so $\mathbf{x}^{\beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i}} \prec \mathbf{x}^{\beta}$. Hence by the selection of $\beta, \beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i}$ can be written as a linear combination of elements in \mathcal{H}. The same holds for γ, since it lies in \mathcal{H} due to the choice of the corresponding Gröbner basis element g. But then

$$
\beta=\beta^{\prime}+\beta_{i} \mathbf{e}_{i}=\beta^{\prime}+\left(\delta+\gamma_{i}\right) \mathbf{e}_{i}+\gamma^{\prime}-\gamma^{\prime}=\left(\beta^{\prime}-\gamma^{\prime}+\delta \mathbf{e}_{i}\right)+\gamma
$$

and so β can also be written as such a linear combination contradicting the choice of β and hence proving the assertion.

It remains to show that \mathcal{G} contains exactly $n-\operatorname{rank}(H)$ elements of the desired form, or in other words, the set \mathcal{H} has cardinality $n-\operatorname{rank}(H)$. For this, let $\mathcal{H}=\left\{\alpha^{(1)}, \ldots, \alpha^{(s)}\right\}$ and denote by i_{j} the index of the leftmost nonzero entry in the vector $\alpha^{(j)}, 1 \leq j \leq s$. By the definition of \mathcal{H} and the chosen monomial order, for each $j, 1 \leq j \leq s$, there is an element $g_{j} \in \mathcal{G}$ with $\operatorname{lt}\left(g_{j}\right)=v_{i_{j}}^{\beta}$ for some $\beta \in \mathbb{N}_{0}^{n}$. Since \mathcal{G} is a minimal Gröbner basis, the indices can be relabelled such that $i_{1}<i_{2}<\cdots<i_{s}$. Thus the elements $\alpha^{(1)}, \ldots, \alpha^{(s)}$ are linearly independent and so \mathcal{H} forms a basis for $\operatorname{ker}(H)$, i.e., the set \mathcal{H} has cardinality $n-\operatorname{rank}(H)$.

We conclude by giving an example illustrating applications to linear codes.

Example 3. Consider the $[11,6]$ ternary Golay code $[9,14]$ with the generator matrix $G=\left(I_{6} \mid M\right)$, where

$$
M=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 1 \\
1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Then a parity check matrix is

$$
H=\left(\begin{array}{lllllllllll}
2 & 0 & 2 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 2 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
2 & 1 & 2 & 0 & 2 & 1 & 0 & 0 & 1 & 0 & 0 \\
2 & 1 & 1 & 2 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\
2 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Applying Algorithm 2 for computing a basis of $\operatorname{ker}(H)$ yields the following polynomials belonging to the reduced Gröbner basis

$$
\begin{aligned}
& v_{6}-v_{7}^{2} v_{8} v_{9} v_{10}^{2} w_{6} w_{7} w_{8}^{2} w_{9}^{2} w_{10}, \\
& v_{5}-v_{7} v_{8} v_{9}^{2} v_{11}^{2} w_{5} w_{7}^{2} w_{8}^{2} w_{9} w_{11} \\
& v_{4}-v_{7} v_{8}^{2} v_{10}^{2} v_{11} w_{4} w_{7}^{2} w_{8} w_{10} w_{11}^{2} \\
& v_{3}-v_{7}^{2} v_{9}^{2} v_{10} v_{11} w_{3} w_{7} w_{9} w_{10}^{2} w_{11}^{2} \\
& v_{2}-v_{8}^{2} v_{9} v_{10} v_{11}^{2} w_{2} w_{8} w_{9}^{2} w_{10}^{2} w_{11}^{2} \\
& v_{1}-v_{7}^{2} v_{8}^{2} v_{9}^{2} v_{10}^{2} v_{11}^{2} w_{1} w_{7} w_{8} w_{9} w_{10} w_{11} .
\end{aligned}
$$

The Hilbert basis taken from these polynomials corresponds to the row vectors of the matrix G.

References

[1] W. Adams, P. Loustaunau, An Introduction to Groebner Bases, American Mathematical Society (1994).
[2] T. Becker, V. Weispfenning, Groebner Bases - A Computational Approach to Commutative Algebra, Springer (1998).
[3] A.M. Bigatti, L. Robbiano, Toric ideals, Mathematica Contemporanea, 21 (2001), 1-25.
[4] B. Buchberger, An Algorithm for Finding the Bases Elements of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, PhD Thesis, University of Innsbruck (1965).
[5] Pasqualina Conti, Carlo Traverso, Buchberger algorithm and integer programming, In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Volume 539 of Lecture Notes in Computer Science, Springer, BerlinHeidelberg (1991), 130-139.
[6] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Springer (1996).
[7] D. Cox, J. Little, D. O'Shea, Using Algebraic Geometry, Springer (1998).
[8] D. Eisenbud, B. Sturmfels, Binomial ideals, Duke Mathematical Journal, 84, No. 1 (1996), 1-45.
[9] F.J. MacWilliams, N.J.A. Sloane, Error Correcting Codes, North Holland, New York (1977).
[10] L. Pottier, Minimal solutions of linear diophantine sytems: Bounds and algorithms, In: RTA (1991), 162-173.
[11] R.P. Stanley, Enumerative Combinatorics, Cambridge University Press (1997).
[12] B. Sturmfels, Groebner Bases and Convex Polytopes, American Mathematical Society (1996).
[13] B. Sturmfels, Algorithms in Invariant Theory, Springer, Wien (2008).
[14] J.H. van Lint, Introduction to Coding Theory, Springer, Berlin (1999).

