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CRITICAL CONES OF CHARACTERISTIC VARIETIES

ROBERTO BOLDINI

Abstract. Let M be a left module over a Weyl algebra in characteristic zero.
Given natural weight vectors ν and ω, we show that the characteristic varieties
arising from filtrations with weight vector ν + sω stabilize to a certain variety
determined by M , ν, ω as soon as the natural number s grows beyond a bound
which depends only on M and ν but not on ω.

As a consequence, in the notable case when ν is the standard weight vector,
these characteristic varieties deform to the critical cone of the ω-characteristic
variety of M as soon as s grows beyond an invariant of M .

As an application, we give a new, easy, non-homological proof of a classical
result, namely, that the ω-characteristic varieties of M all have the same Krull
dimension.

The set of all ω-characteristic varieties of M is finite. We provide an upper
bound for its cardinality in terms of supports of universal Gröbner bases in
the case when M is cyclic. By the above stability result, we conjecture a
second upper bound in terms of total degrees of universal Gröbner bases and
of Fibonacci numbers in the case when M is cyclic over the first Weyl algebra.

Introduction

Let n ∈ N, letW be the nth Weyl algebra over a fieldK of characteristic 0, and let
Ω = {ω ∈ N2n

0 | ωi+ωi+n > 0 for 1 ≤ i ≤ n}. For each ω ∈ Ω consider the ω-degree
filtration FωW = (Fω

i W )i∈Z of W and any good FωW -filtration FωM = (Fω
i M)i∈Z

of a left W -module M . We construct GωW =
⊕

i∈Z
Fω
i W/Fω

i−1W and GωM =⊕
i∈Z

Fω
i M/Fω

i−1M . Then GωW is a ring canonically isomorphic to the commu-
tative polynomial ring K[X,Y ] in the indeterminates X1, . . . , Xn and Y1, . . . , Yn,
and GωM is a finitely generated K[X,Y ]-module. For a fixed ω ∈ Ω, the radical
ideal

√
(0 : GωM) of K[X,Y ] is independent of the choice of a good FωW -filtration

FωM of M . So we may define the ω-characteristic variety of M as the closed subset
Vω(M) = Var(0 : GωM) of Spec(K[X,Y ]).

Similarly, we consider the ν-degree filtrations FνK[X,Y ] of K[X,Y ], ν ∈ N2n
0 ,

and good FνK[X,Y ]-filtrations FνN of K[X,Y ]-modules N and construct the rings
GνK[X,Y ], canonically isomorphic to K[X,Y ], and the finitely generated K[X,Y ]-
modules GνN . Again, for a fixed ν ∈ N2n

0 , the radical ideal
√
(0 : GνN) of K[X,Y ]

does not depend on the choice of a good FνK[X,Y ]-filtration FνN of N .
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144 ROBERTO BOLDINI

The main result of this paper is that for each ν ∈ N2n
0 there exists s0 ∈ N0 such

that for all s ∈ N with s > s0 and all ω ∈ Ω in K[X,Y ] it holds

(A)
√
(0 : GνGωM) =

√
(0 : Gν+sωM).

Observe that s0 does not depend on ω. We can choose the lowest such s0 in N0,
denoted κν(M). If L is a left ideal of W , we give an upper bound for κν(W/L) in
terms of total degrees of elements of universal Gröbner bases of L, more precisely,

(B) κν(W/L) ≤ γν(L),

where

γν(L) = infU supu∈U degν(u),

the infimum being taken over all universal Gröbner bases U of L.
A case with evident geometrical meaning is when ν = (1) = (1, . . . , 1) ∈ N2n

0 .
Equality (A) says that the “affine deformations” V(1)+sω(M) of Vω(M) stabilize for
large s to the critical cone Cω(M) = Var(0 : G(1)GωM) of Vω(M). Thus the min-
imal limit beyond which this occurs, namely, κ(M) = κ(1)(M), is —surprisingly—
an invariant of M . Upper bounds for the greatest total degree of Gröbner bases and
of reduced Gröbner bases of a left ideal L of W are given in [1] in terms of greatest
total degrees of systems of generators of L, and hence, combining both results, we
obtain an upper bound for κ(W/L) also in such terms.

The critical cone C of an affine variety V ⊆ Ar over an algebraically closed field
F is the cone with vertex at the origin O ∈ Ar tangent to V at infinity. In other
words, C consists of all lines through O along whose directions V goes to infinity.
To construct C, we choose an injection ι : Ar � Pr of the affine space Ar into the
projective space Pr over F and put

C = ι−1(
⋃

P∈ι(V )�ι(V ) �P ),

where ι(V ) is the projective closure of ι(V ) in Pr and �P is the projective line
through the points ι(O) and P . One has that C does not depend on the choice of ι.
Algebraically, if I is any ideal of F [Z1, . . . , Zr] that defines V , then C is defined
by the ideal J generated by the homogeneous components of greatest total degree
of the polynomials in I, that is, J is the leading form ideal of I by total degree.
Again, C does not depend on the choice of I.

As a further consequence of equality (A), we are able to give an easy proof that
KdimK[X,Y ] G

ωM = GKdimW M for all ω ∈ Ω. Thus, without having to appeal
to sophisticated homological methods as in classical proofs, we have shown in par-
ticular that the characteristic varieties Vω(M), ω ∈ Ω, all have the same Krull
dimension. The key point is that (A) allows us to pass from non-finite to finite
filtrations, and the Gelfand–Kirillov dimension behaves well with finite discrete fil-
trations: GKdimGωW GωM = GKdimW M whenever FωM is finite and discrete.
The second point is that the Gelfand–Kirillov dimension and Krull dimension agree
in the category of finitely generated modules over any fixed finitely generated alge-
bra over a field.

Fixing a left ideal L of W , we give an upper bound for the number χ(L) of
distinct ideals GωL, ω ∈ Ω, and hence of distinct ω-characteristic varieties of W/L,
namely,

(C) χ(L) ≤ infU
∏

u∈U

∑
0≤k≤#supp(u)

(
#supp(u)

k

)
,
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CRITICAL CONES OF CHARACTERISTIC VARIETIES 145

the infimum being taken over all universal Gröbner bases of L. Equality (A) lets
us conjecture a second upper bound in the case when W is the first Weyl algebra,
namely,

(D) χ(L) ≤ 21+γ(L) + 1,

where γ(L) = γ(1)(L). As mentioned before, in [1] one has an upper bound for γ(L)
in terms of total degrees of generators of L.

In Section 1 we recall some known facts about filtered rings and modules as well
as their associated graded rings and modules.

In Section 2 we introduce Weyl algebras and state some of their basic properties,
which are a generalization of results that can be found, for instance, in [8]. The
proofs remain very similar, and we omit them here.

Section 3 is about Gröbner bases in Weyl algebras. Here, too, we recall known
facts, important in the next section, in particular the existence of universal Gröbner
bases for left ideals, and a very tight relation between the Gröbner bases of ω-filtered
left ideals and the Gröbner bases of their associated graded ideals.

In Section 4 we define ω-characteristic varieties of a left W -module M as some
particular affine spectra, and not as algebraic zero sets, as is usual, for there is no
reason here to work only over algebraically closed fields. Then we prove our main
result (A) about the defining annihilators of such varieties.

In Section 5 we apply (A) to give an easy proof of the known result that the ω-
characteristic varieties ofM all have the same Gelfand–Kirillov and Krull dimension
as ω varies in Ω, namely, equal to the Gelfand–Kirillov dimension of M .

Finally in Section 6 we perform a computer experiment in order to try to classify
the ω-characteristic varieties ofM in the case whenM = W/L for a left ideal L ofW .
This experiment lets us conjecture an upper bound for their number, namely (D).

1. Filtrations and gradings

In this section we give a small review on filtered rings and modules and their
associated graded objects. Most of this material can be found in or inferred from
the books of Constantin Năstăsescu, Freddy van Oystaeyen, and Huishi Li, among
which we particularly appreciate [13]. Besides giving a very short proof of Proposi-
tion 1.26, we provide a proof of Proposition 1.28 and Remark 1.29, too, which we
did not find in the literature.

Definition 1.1. A filtration R of a ring R is a family (FiR)i∈Z of additive sub-
groups FiR of R enjoying the following properties:

(a) R =
⋃

i∈Z
FiR,

(b) Fi−1R ⊆ FiR,
(c) r ∈ FiR ∧ s ∈ FjR ⇒ rs ∈ Fi+jR,
(d) i < 0 ⇒ FiR = 0,
(e) 1 ∈ F0R,

so that F0R is a subring of R and each FiR is a left F0R-submodule of R.
If the ring R is provided with a filtration R, we say that the ordered pair (R,R)

is a filtered ring.
Let (R,R) and (S,S) be filtered rings. A homomorphism of (R,R) in (S,S) is

a ring homomorphism φ of R in S such that φ(FiR) ⊆ FiS.
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146 ROBERTO BOLDINI

Definition 1.2. Let (R,R) be a filtered ring. An R-filtration M of a left R-
module M is a family (FiM)i∈Z of additive subgroups FiM of M with the following
properties:

(a) M =
⋃

i∈Z
FiM,

(b) Fi−1M ⊆ FiM,
(c) r ∈ FiR ∧ m ∈ FjM ⇒ rm ∈ Fi+jM,

so that each FiM is a left F0R-submodule of M .
If the left R-module M is provided with an R-filtration M, we say that the

ordered pair (M,M) is an R-filtered left R-module or simply a left (R,R)-module.
Observe that a filtered ring is also a filtered left module over itself.

Let (M,M) and (N,N ) be left (R,R)-modules. An (R,R)-homomorphism of
(M,M) in (N,N ) is a left R-module homomorphism φ of M in N such that
φ(FiM) ⊆ FiN .

Definition 1.3. Let (R,R) be a filtered ring and (M,M) be a left (R,R)-module.
Let N be a left R-submodule of M . There exist canonically induced R-filtrations
N = (FiM∩N)i∈Z of N and M/N = (FiM+N/N)i∈Z of M/N . In this situation
we call (N,N ) a submodule of (M,M) and (M/N,M/N ) a quotient module of
(M,M). Similarly, if I is a left ideal of R and I is the induced R-filtration of I, we
say that (I, I) is a left ideal of (R,R).

Definition 1.4. Let (R,R) be a filtered ring. The associated graded ring GR of R
with respect to R is the commutative group

⊕
i∈Z

FiR/Fi−1R provided with a mul-
tiplication given by (ri+Fi−1R)i∈Z (sj +Fj−1R)j∈Z = (

∑
i+j=k risj +Fk−1R)k∈Z,

which indeed turns GR into a ring.
Let (M,M) be a left (R,R)-module. The associated graded left GR-module GM

of M with respect to M is the commutative group
⊕

i∈Z
FiM/Fi−1M with a GR-

action defined by (ri+Fi−1R)i∈Z (mj+Fj−1M)j∈Z = (
∑

i+j=k rimj+Fk−1M)k∈Z,
which indeed turns GM into a left GR-module.

GR is precisely the associated graded left GR-module of R with respect to R.
We denote the ith homogeneous component FiM/Fi−1M of GM by GiM. Then
G0R is a subring of GR and each GiM is a left G0R-submodule of GM.

Remark 1.5. Let (R,R) be a filtered ring, (X,X ) and (Y,Y) be left (R,R)-modules,
and φ be a homomorphism of (X,X ) in (Y,Y). We have canonical F0R-module
homomorphisms FiX/Fi−1X → FiY/Fi−1Y whose direct sum is a graded left GR-
module homomorphism GX → GY .

If (N,N ) � (M,M) � (P,P) is a strict exact sequence of (R,R)-modules, that
is, N

ν� M
π� P is an exact sequence of R-modules with ν(FiN ) = FiM∩ Im(ν)

and π(FiM) = FiP ∩ Im(π), then there is an exact sequence GN � GM � GP
of graded left GR-modules.

In particular, if (N,N ) is a submodule of (M,M) and (M/N,M/N ) is a quotient
module of (M,M), then we obtain an exact sequence GN � GM � GM/N , so
that GM/N ∼= GM/GN as graded left GR-modules.

Remark 1.6. Let (R,R) be a filtered ring, (M,M) be a left (R,R)-module, and
(N,N ) be a submodule of (M,M). By Remark 1.5 we may write GN ⊆ GM.

Assume that N � M . Then the set I = {i ∈ Z | FiM � N} is non-empty.
Assume further that the R-filtration M is discrete, that is, FiM = 0 for i � 0.
Then I admits a unique least element i0. Suppose that GN = GM. Then
GM/N ∼= GM/GN = 0, so (FiM + N)/(Fi−1M + N) ∼= GiM/N = 0 for all
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CRITICAL CONES OF CHARACTERISTIC VARIETIES 147

i ∈ Z, hence FiM ⊆ FiM + N = Fi−1M + N for all i ∈ Z. In particular
Fi0M ⊆ Fi0−1M+N ⊆ N +N = N , thus i0 /∈ I, a contradiction.

Therefore, under the assumption that M is discrete, we have the implication
N � M ⇒ GN � GM, the property of strict monotony of G for discrete filtrations.

Remark 1.7. Let (R,R) be a filtered ring. Assume that R is commutative, that is,
r ∈ FiR ∧ s ∈ FjR ⇒ rs− sr ∈ Fi+j−1R. Then the ring GR is commutative. In
this situation let (I, I) be a left ideal of (R,R) and consider the quotient module
(R/I,R/I) of (R,R). Then GI = (0 : GR/I) as ideals of GR by Remark 1.5.

Definition 1.8. Let (R,R) be a filtered ring and let (M,M) be a left (R,R)-

module. We define the M-degree function degM : M → Z ∪ {−∞} by degM(m) =

inf {i ∈ Z | m ∈ FiM} for all m ∈ M . In particular, degM(0) = −∞. If (N,N ) is a

left submodule of (M,M), then degN (n) = degM(n) for all n ∈ N . Further it holds

degM(m+ n) ≤ max {degM(m), degM(n)} and degM(rm) ≤ degR(r) + degM(m)
for all r ∈ R and all m,n ∈ M .

By definiton, we put F−∞M = 0 and G−∞M = 0. For each i ∈ Z ∪ {−∞},
let us consider the left F0R-module epimorphism σM

i : FiM → GiM given by
m �→ m + Fi−1M. Now we define the M-symbol map σM : M → GM of M by

m �→ σM
d (m) where d = degM(m). We call σM(m) the M-symbol of m. If (N,N )

is a left submodule of (M,M), then the image of σN (n) in GM is precisely σM(n).
Moreover, in general, σM is not additive, and σM is multiplicative precisely when
degM(rm) = degR(r) + degM(m) for all r ∈ R and all m ∈ M .

Remark 1.9. Let (R,R) be a filtered ring, (M,M) be a left (R,R)-module, and
(N,N ) be a submodule of (M,M). The image σN (N) consists precisely of all
homogeneous elements of the graded left GR-module GN , whereas σM(N) consists
of the homogeneous elements of the graded left GR-submodule GN of GM.

In particular GN is generated by σN (N) as a left GR-module, and GN is
generated by σM(N) as a left GR-submodule of GM, and for any subset U of
N we have that σN (U) generates GN as a left GR-module if and only if σM(U)
generates GN as a left GR-submodule of GM.

Proposition 1.10. Let (R,R) be a commutatively filtered ring. Let I be a left ideal
of R and I and R/I be the induced R-filtrations of I and R/I, respectively. Then
(0 : GR/I) = GI =

∑
x∈I GR σR(x) as ideals of GR.

Proof. This is clear by Remarks 1.7 and 1.9. �
Remark 1.11. Let (R,R) be a filtered ring and (M,M) be a left (R,R)-module.
If U is a system of generators of M other than M , then GM is not generated by
σM(U), in general.

For instance consider the commutative polynomial ring R = C[X] provided with
the filtration R given by FiR = {r ∈ R | deg(r) ≤ i}. Put (M,M) = (R,R).
Obviously {X,X+1} is a system of generators of M . Further we have GR ∼= C[X]
as rings and GM ∼= C[X] as C[X]-modules. In view of these isomorphisms we can
write σM(X + 1) = X = σM(X). Thus GRσM({X,X + 1}) = C[X]X � C[X].

Remark 1.12. The converse of Remark 1.11 is partially true. If M is discrete and
U ⊆ M is such that σM(U) generates GM over GR, then U generates M over R.

Remark 1.13. Let (R,R) be a filtered ring. We can provide the graded ring GR
with its filtration GR induced by the grading given by FiGR =

⊕
j≤iGjR. Then
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148 ROBERTO BOLDINI

we construct the graded ring GGR associated to the filtered ring (GR,GR). Since
for each i one has a left module isomorphism FiR ∼= FiGR over the isomorphic
rings F0R ∼= F0GR, there exists a graded ring isomorphism GR ∼= GGR.

In a similar manner, if (M,M) is a left (R,R)-module, we find an isomorphism
GM ∼= GGM of graded left modules over the isomorphic graded rings GR ∼= GGR,
where GM is the filtration of GM given by FiGM =

⊕
j≤iGjM.

Definition 1.14. Let (R,R) be a filtered ring and M be a left R-module. An R-
filtration M of M is good if there exist s ∈ N0, m1, . . . ,ms ∈ M , and p1, . . . , ps ∈ Z
such that for all i ∈ Z it holds FiM =

∑s
j=1 Fi−pj

R mj . Since 1 ∈ F0R, we then
have mj ∈ Fpj

M.

Remark 1.15. In the notation of Definition 1.14, any good R-filtration M of M is
discrete as R is discrete by definition.

Example 1.16. Let (R,R) be a filtered ring and M be a finitely generated left R-
module. For each finite system of generatorsm ∈ M⊕s ofM and each p ∈ Z⊕s there
exists a standard good R-filtration M of M given by FiM =

∑s
j=1 Fi−pj

R mj .

Proposition 1.17. Let (R,R) be a filtered ring and (M,M) be a left (R,R)-
module. If the R-filtration M is good, then the left GR-module GM is finitely
generated.

Proof. See [13, Lemma I.5.4(2)]. �
Definition 1.18. Let (R,R) be a filtered ring, (M,M) be a left (R,R)-module,
and (mk)k∈N be a sequence of elements mk of M .

Then (mk)k∈N is said to be an M-Cauchy sequence if for each j ∈ Z there exists
nj ∈ N such that for all k, l ≥ nj it holds mk −ml ∈ FjM.

And (mk)k∈N is said to be M-convergent to m ∈ M if for each j ∈ Z there exists
nj ∈ N such that for all k ≥ nj it holds mk −m ∈ FjM.

If every M-Cauchy sequence of elements of M is M-convergent, then M is said
to be complete.

If
⋂

j∈Z
FjM = {0}, then M is called separated or Hausdorff.

Remark 1.19. Discrete filtrations are complete and, trivially, separated. So are, in
particular, our ring filtrations and any good module filtrations.

Proposition 1.20. Let (R,R) be a filtered ring and (M,M) be a left (R,R)-
module. If the R-filtration M is separated and the left GR-module GM is finitely
generated, then M is good.

Proof. AsR is discrete and thus complete, we can appeal to [13, Theorem I.5.7]. �
Corollary 1.21. Let (R,R) be a filtered ring, (M,M) be a left (R,R)-module, and
(N,N ) be a submodule of (M,M), so that by definition N is the R-filtration of N
induced by M. If the ring GR is left noetherian and the R-filtration M is good,
then N is good, too.

Proof. By Proposition 1.17, GM is left noetherian, and so is GN . By Remark 1.15,
M is discrete, and so is N . We conclude by Remark 1.19 and Proposition 1.20. �
Remark 1.22. Let (R,R) be a filtered ring and (M,M) be a left (R,M)-module.
Let N be a left R-submodule of M . If the R-filtration M is good then the induced
R-filtration M/N of M/N is good. Indeed, in the notation of Definition 1.14, one
immediately sees that FiM/N =

∑s
j=1 Fi−pj

R (mj +N).
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CRITICAL CONES OF CHARACTERISTIC VARIETIES 149

Definition 1.23. Let (R,R) be a filtered ring and M be a left R-module. Two R-
filtrations M′ and M′′ of M are equivalent or of bounded difference if there exists
r ∈ N, or equivalently r ∈ Z, such that Fi−rM′′ ⊆ FiM′ ⊆ Fi+rM′′ for all i ∈ Z.
Indeed, this defines an equivalence relation among the R-filtrations of M .

Proposition 1.24. Let (R,R) be a filtered ring and (M,M′) and (M,M′′) be left
(R,R)-modules. If the R-filtrations M′ and M′′ are good, they are equivalent.

Proof. See [13, Lemma I.5.3]. �

Theorem 1.25. Let (R,R) be a filtered ring such that the ring filtration R is
commutative. Let (M,M′) and (M,M′′) be left (R,R)-modules such that the R-
filtrations M′ and M′′ are equivalent. Then

√
(0 : GM′) =

√
(0 : GM′′).

Proof. In [13, Lemma III.4.1.9] the claim is stated for good filtrations, but the
authors actually prove it for the more general case of equivalent filtrations. �

Proposition 1.26. Let (R,R) be a filtered commutative ring, M be an R-module,
and N be an R-submodule of M . Providing the annihilators (0 : M), (0 : N),
(0 : M/N) in R with the respective induced R-filtrations, denoted (0 : M), (0 : N ),
(0 : M/N ), it holds

√
G(0 : M) =

√
G(0 : N ) ∩√

G(0 : M/N ) in GR.

Proof. Let x ∈ G(0 : N )∩G(0 : M/N ) be a homogeneous element of degree i ∈ Z.
We find u ∈ Fi(0 : N ) = FiR∩ (0 : N) and v ∈ Fi(0 : M/N ) = FiR∩ (0 : M/N)
with u+Fi−1R = x = v+Fi−1R. Because v ∈ (0 : M/N), it holds vM ⊆ N . Since
u ∈ (0 : N), it follows uvM = 0. Hence uv ∈ (0 : M). Since u ∈ FiR and v ∈ FiR,
it follows uv ∈ F2iR ∩ (0 : M) = F2i(0 : M). So x2 = uv + F2i−1R ∈ G(0 : M),
thus x ∈ √

G(0 : M). We have obtained G(0 : N ) ∩G(0 : M/N ) ⊆ √
G(0 : M),

whereas, on the other hand, as (0 : M) ⊆ (0 : N) ∩ (0 : M/N), it follows from 1.6
that G(0 : M) ⊆ G(0 : N ) ∩G(0 : M/N ). Now we pass to the radicals. �

Remark 1.27. Let (R,R) be a filtered ring and φ : M → N be an isomorphism
of left R-modules. If M is an R-filtration of M , then there exists an R-filtration
N of N induced by φ given by FiN = φ(FiM) such that there exists a graded
GR-isomorphism Gφ : GM → GN induced by φ; see Remark 1.5. Moreover, if M
is good, then N is good, as one easily checks.

Proposition 1.28. Let R be a commutative ring and R be a filtration of R such
that induced R-filtrations on submodules and quotient modules of R are good. Let
M be a finitely generated R-module and M be an R-filtration such that induced
R-filtrations on submodules and quotient modules of M are good. Consider the
annihilator (0 : M) of M in R provided with its induced R-filtration, which we
denote by (0 : M). Then

√
G(0 : M) =

√
(0 : GM) as ideals of the commutative

ring GR.

Proof. We find t ∈ N such that M is generated by t elements. If t = 1, there exists
an R-module isomorphism φ : M → R/I for some ideal I of R. We furnish the R-
module R/I with the inducedR-filtration R/I, good by hypothesis, and with the φ-
induced R-filtration, denoted φ(M), which is good by Remark 1.27 since M is good
by hypothesis. By Remark 1.27, (0 : GM) = (0 : Gφ(M)). By Proposition 1.24
and Theorem 1.25,

√
(0 : Gφ(M)) =

√
(0 : GR/I). As (0 : M) = (0 : R/I) = I,

(0 : M) is precisely the induced R-filtration of I, hence by Remark 1.7 we have
(0 : GR/I) = G(0 : M). Thus

√
(0 : GM) =

√
G(0 : M).
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Now let t > 1. Assume inductively that the statement holds for all R-modules
generated by less than t elements. We find a cyclic submodule N of M such that
M/N is generated over R by t−1 elements. We provide N and M/N by the respec-
tive induced filtrations N and M/N , which are good, and we provide the ideals
(0 : N) and (0 : M/N) of R by the respective induced filtrations, denoted (0 : N )
and (0 : M/N ), which are good by hypothesis. By the case with t = 1, we have√
G(0 : N ) =

√
(0 : GN ). By the induction hypothesis, we have

√
G(0 : M/N ) =√

(0 : GM/N ). The short exact sequence N � M � M/N of filtered R-modules
induces the short exact sequence GN � GM � GM/N of graded GR-modules;
see Remark 1.5. Therefore

√
(0 : GM) =

√
(0 : GN ) ∩ √

(0 : GM/N ), and hence√
(0 : GM) =

√
G(0 : N ) ∩ √

G(0 : M/N ). By Proposition 1.26 we finally get√
(0 : GM) =

√
G(0 : M). �

Remark 1.29. We finish this section with a remark that will be useful later on. Let R
be a commutative ring and R be a filtration of R, so that R trivially is commutative.
Let I be an ideal of R and provide I with its induced R-filtration, denoted I, and
provide

√
I with its induced R-filtration, denoted

√I. Then
√
G
√I =

√
GI.

Indeed let x ∈ G
√I be a homogeneous element of degree i ∈ Z. So x = x+Fi−1R

for some x ∈ Fi
√I = FiR ∩ √

I. We find k ∈ N such that xk ∈ I, and so
xk ∈ FkiR ∩ I = FkiI, thus xk = xk + Fki−1R ∈ GI, hence x ∈ √

GI. We have
shown that G

√I ⊆ √
GI. On the other hand, by Remark 1.6, we have GI ⊆ G

√I.
Passing to the radicals, the claim follows.

2. Weyl algebras

In this section let n ∈ N andK be a field of characteristic 0. We writeK[X,Y ] for
the commutative polynomial ring K[X1, . . . , Xn, Y1, . . . , Yn] and denote its subring
K[X1, . . . , Xn] by K[X].

For all (r, s) ∈ N0 × N0, we write (r | s) for the vector ω ∈ N2n
0 with ωi = r and

ωn+i = s for 1 ≤ i ≤ n. For all α, β ∈ Nn
0 , we write (α |β) for the vector ω ∈ N2n

0

with ωi = αi and ωn+i = βi for 1 ≤ i ≤ n. For all t ∈ N and all α, β ∈ Nt
0, we

denote the sum
∑t

i=1 αiβi by α·β. For all i ∈ {1, . . . , n}, we put εi = (δij)
n
j=1 ∈ Nn

0 ,
where δij ∈ N0 is the Kronecker symbol.

We introduce Weyl algebras over K and state some facts about them. In doing
this, we generalize certain well-known results that are proved for instance in [8];
here the missing proofs of Proposition 2.4 and Theorem 2.9 are elementary but
tedious computations and can be mimicked word for word from [8].

Definition 2.1. The nth Weyl algebra W over K is defined as the K-subalgebra
K〈ξ1, . . . , ξn, ∂1, . . . , ∂n〉 of EndK(K[X]) generated by theK-linear endomorphisms
ξ1, . . . , ξn and ∂1, . . . , ∂n of K[X] given by ξi(p) = Xip and ∂i(p) =

∂p
∂Xi

for all
p ∈ K[X]. The generators satisfy the Heisenberg commutation rules :

(a) [ξi, ξj ] = 0,
(b) [∂i, ∂j ] = 0,
(c) [ξi, ∂j ] + δij = 0,

where δij ∈ K is the Kronecker symbol.

Remark 2.2. As a K-module, W has a canonical basis {ξλ∂μ | (λ, μ) ∈ Nn
0 × Nn

0};
see [7, Satz 2.7] or [8, Proposition 1.2.1]. As a consequence, for each w ∈ W
there exists a unique function cw : Nn

0 × Nn
0 → K of finite support supp(w) =

{(λ, μ) ∈ Nn
0 × Nn

0 | cw(λ, μ) �= 0} such that w =
∑

cw(λ, μ)ξ
λ∂μ with the sum
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taken over all (λ, μ) ∈ supp(w). We write cλμ for cw(λ, μ) and say that
∑

cλμξ
λ∂μ

is the canonical form of w.

Definition 2.3. Let degω(w) = sup {ω · (λ |μ) | (λ, μ) ∈ supp(w)} for all ω ∈ N2n
0

and all w ∈ W , the ω-degree of w with values in Z ∪ {−∞}.

Proposition 2.4. Let ω ∈ N2n
0 and let u, v ∈ W . Then one has

(a) degω(u+ v) ≤ max{degω(u), degω(u)},
(b) degω([u, v])≤ degω(u) + degω(v)−min1≤i≤n{ωi + ωn+i},
(c) degω(uv) = degω(u) + degω(v).

Equality holds in (a) if degω(u) �= degω(v). �

Definition 2.5. Let ω ∈ N2n
0 . Consider the family FωW = (Fω

i W )i∈Z defined by
Fω
i W = {w ∈ W | degω(w) ≤ i}. Then FωW is a filtration of W by Proposition 2.4.

We denote by GωW the associated graded ring of W with respect to FωW , and by
Gω

i W the ith homogeneous component of GωW .
Given any FωW -filtration FωM = (Fω

i M)i∈Z of a left W -module M , we denote
by GωM the associated graded left GωW -module associated to M with respect to
FωM , and by Gω

i M the ith homogeneous component of GωM .
We write σω for the symbol map W → GωW , and σω

i for the ith symbol map
Fω
i W → Gω

i W . Thus σω(w) = σω
degω(w)(w) for all w ∈ W .

Definition 2.6. We define Ω = {ω ∈ N2n
0 | ωi + ωn+i > 0 whenever 1 ≤ i ≤ n},

the natural polynomial region of W .

Remark 2.7. Let ω ∈ Ω and v, w ∈ W . As degω(uv) = degω(u) + degω(v) by
Proposition 2.4, it holds σω(uv) = σω(u)σω(v).

Remark 2.8. For all ω ∈ Ω, the filtration FωW of W is commutative by Proposi-
tion 2.4, so that the ring GωW is commutative.

Remarks 2.7 and 2.8, the canonical injectionK � GωW , and the universal property
of commutative polynomial rings imply the following theorem.

Theorem 2.9. For each ω ∈ Ω, there exists an isomorphism of commutative K-
algebras ψω : K[X,Y ] → GωW given by

∑
(λ,μ)∈Nn

0 ×Nn
0
cλμX

λY μ �→
∑

(λ,μ)∈Nn
0 ×Nn

0
cλμσ

ω(ξλ)σω(∂μ),

which is graded if we put deg(Xi) = ωi and deg(Yi) = ωn+i for all 1 ≤ i ≤ n. �

Remark 2.10. By Theorem 2.9, Remark 1.12, and Proposition 2.4, the Weyl algebras
are left noetherian domains.

Remark 2.11. All of what we have defined and said in this section about Weyl
algebras can be done and proved in the same way for the commutative polynomial
ring K[X,Y ] also. In this situation we may even drop the hypothesis that the field
be of characteristic 0 and may consider whole N2n

0 instead of Ω. We shall use a
similar notation as introduced above for Weyl algebras, with one exception: given
any ν ∈ N2n

0 , we shall write τνi for the ith symbol map Fν
i K[X,Y ] → Gν

i K[X,Y ]
and τν for the symbol map K[X,Y ] → GνK[X,Y ], in order to distinguish them
from the symbol maps of the nth Weyl algebra.
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3. Gröbner bases in Weyl algebras

In this section we recall the notion of universal Gröbner bases in Weyl algebras
and state their existence. The proof of this fact can be found in [5]; see also [17].
In [16] the same statement is proved for commutative polynomial rings; a similar
proof exists for Weyl algebras.

We keep the notation of the previous section, and denote by M the canonical
K-basis {XλY μ | (λ, μ) ∈ Nn

0 ×Nn
0} of K[X,Y ] consisting of the monomials XλY μ,

and by N the canonical K-basis {ξλ∂μ | (λ, μ) ∈ Nn
0 × Nn

0} of W consisting of the
normal monomials ξλ∂μ.

For each ω ∈ Ω we shall tacitly identify the ring GωW with K[X,Y ] by means
of the K-algebra isomorphism ψω of Theorem 2.9 and hence for each left ideal L
consider GωL as an ideal of K[X,Y ]. Similarly for each ν ∈ N2n

0 , we shall identify
GνK[X,Y ] with K[X,Y ] and thus for each ideal I of K[X,Y ] consider GνI as an
ideal of K[X,Y ].

Definition 3.1. A normal ordering, or monomial ordering in [9], or admissible
ordering in [17], or term ordering in [15], is a total ordering � on Nn

0 × Nn
0 such

that it holds:
(a) well-foundedness, (0, 0) � (λ, μ), and
(b) compatibility, (λ, μ) � (ρ, σ) ⇒ (λ+ α, μ+ β) � (ρ+ α, σ + β).

With abuse of notation we write ξλ∂μ � ξρ∂σ and XλY μ � XρY σ whenever
(λ, μ) � (ρ, σ). We denote by O the set of all normal orderings.

Example 3.2. Lexicographic orderings are normal orderings.

Remark 3.3. There exists a K-module isomorphism Φ : W → K[X,Y ] which maps
the canonical basis N of W to the canonical basis M of K[X,Y ] by the assignment
ξλ∂μ �→ XλY μ.

Notation 3.4. Let � ∈ O. For w ∈ W � {0} we write lm�(w) for the great-
est normal monomial in the canonical form of w with respect to �. We denote
Φ(lm�(w)) by LM�(w). Given L ⊆ W , we often denote by LM�(L) the ideal∑

x∈L�{0} K[X,Y ] LM�(x) of K[X,Y ]. For p ∈ K[X,Y ] � {0} and I ⊆ K[X,Y ],

we define LM�(p) and LM�(I) similarly.

Definition 3.5. Let L ⊆ W be a left ideal, and let � ∈ O. According to [15], we say
that a finite subset B of L is a Gröbner basis of L with respect to �, or a �-Gröbner
basis of L, if it holds L =

∑
b∈B Wb and LM�(L) =

∑
b∈B�{0} K[X,Y ] LM�(b).

Similarly we define a �-Gröbner basis of an ideal I ⊆ K[X,Y ]; see [9].

Theorem 3.6. Let L ⊆ W be a left ideal and let � ∈ O. Then L admits a Gröbner
basis with respect to �.

Proof. See [5, Corollary 1.9.7] or [5, Theorem 2.3.2] or [15, Theorem 1.1.10]. �
Definition 3.7. Let L be a left ideal of W . A finite subset U of L is a universal
Gröbner basis of L if U is a �-Gröbner basis of L for each normal ordering �.

Theorem 3.8. Each left ideal L of W admits a universal Gröbner basis.

Proof. See [5, Corollary 1.10.5 and Example 1.8.2] or [5, Theorem A.2.4]. �
Remark 3.9. For each ν ∈ N2n

0 and each � ∈ O, there exists �ν ∈ O defined by
ξλ∂μ �ν ξρ∂σ ⇔ (λ |μ) · ν < (ρ |σ) · ν ∨ ((λ |μ) · ν = (ρ |σ) · ν ∧ (λ, μ) � (ρ, σ)).
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Theorem 3.10. Let ω ∈ Ω, � ∈ O, L ⊆ W be a left ideal, and B be a �ω-Gröbner
basis of L. Then σω(B) is a �-Gröbner basis of GωL, thus GωL = 〈σω(b) | b ∈ B〉
and LM�(G

ωL) = 〈LM�(σ
ω(b)) | b ∈ B〉 as ideals of K[X,Y ].

Proof. See [15, Theorem 1.1.6(1)] or [12, Propositions V.7.2 and II.4.2] or [5, The-
orem 2.3.8]. �

Remark 3.11. Analogously as in Theorem 3.10, if ν ∈ N2n
0 , � ∈ O, I ⊆ K[X,Y ] is

an ideal, B is a �ν-Gröbner basis of I, then τν(B) is a �-Gröbner basis of GνI.

Corollary 3.12. For every left ideal L of W the set {GωL | ω ∈ Ω} is finite.
Similarly, for every ideal I of K[X,Y ] the set {GνI | ν ∈ N2n

0 } is finite.

Proof. By Theorem 3.8, we can find a universal Gröbner basis U ⊇ {0} of L.
By Theorem 3.10, GωL = 〈σω(u) | u ∈ U〉. It follows that #{GωL | ω ∈ Ω} ≤∏

u∈U

∑
0≤k≤#supp(u)

(
#supp(u)

k

)
< ∞. �

Remark 3.13. Another proof of Corollary 3.12 by homogenization can be found in
[2, Theorem 3.6].

4. Characteristic varieties over Weyl algebras

We encounter the notion of characteristic variety and critical cone and prove
our main result, from which a relation between characteristic varieties and critical
cones follows. We keep the notation of the previous section.

Remark 4.1. Fix any ω ∈ Ω. By Theorem 2.9, GωW ∼= K[X,Y ] as K-algebras.
Let M be finitely generated left W -module. By Example 1.16 we can provide M
with a good ω-filtration FωM . By Proposition 1.17 the K[X,Y ]-module GωM is
finitely generated, and by Remark 2.8, Proposition 1.24, and Theorem 1.25 the
ideal

√
(0 :GωM) of K[X,Y ] is independent of the choice of FωM .

Definition 4.2. Let ω ∈ Ω and let M be a finitely generated left W -module. By
Remark 4.1 we may define the ω-characteristic variety Vω(M) of M as the closed
set Var(

√
(0 :GωM)) = Var(0 :GωM) of Spec(K[X,Y ]). In particular we consider

V(1 | 1)(M) and V(0 | 1)(M), the characteristic variety of M by degree and by order.
We define the ω-critical cone Cω(M) of M as Var(G(1 | 1)√(0 : GωM)), which

is equal to Var(G(1 | 1)(0 : GωM)) and Var(0 : G(1 | 1)GωM) by Remark 1.29 and
Proposition 1.28, a closed set of Spec(K[X,Y ]). In particular we consider C(1 | 1)(M)
and C(0 | 1)(M), the critical cone of M by degree and by order.

Remark 4.3. Let M be a finitely generated left W -module and N be a submodule
of M . If M is provided with a good filtration, by Theorem 2.9 and by Corollary
1.21 and Remark 1.22 the induced ω-filtrations of N and M/N are good. Therefore
what is said in Remark 4.1 and Definition 4.2 applies also to N and M/N .

Theorem 4.4. Given any finitely generated left W -module M , there are only
finitely many distinct characteristic varieties Vω(M) for ω varying in Ω.

Proof. If N⊆M is a submodule by Remark 1.5 one has Vω(M)=Vω(N)∪Vω(M/N)
for all ω ∈ Ω. By induction over the number of generators of M , the claim follows
from Corollary 3.12 and Remark 1.7. �
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Lemma 4.5. Let w ∈ W , ν ∈ N2n
0 , ω ∈ Ω. Let l ∈ N0 with l ≥ degν(w) in W , let

m ∈ N0 with m ≥ degω(w) in W , and let p ∈ N0 with p ≥ degν(σω
m(w)) in K[X,Y ].

Then in K[X,Y ] for all s ∈ N such that s > l− p it holds τνp (σ
ω
m(w)) = σν+sω

p+sm(w).

Proof. We write w in canonical form as
∑

(λ,μ)∈S
cλμξ

λ∂μ, where S = supp(w) and

cλμ ∈ K � {0}. By definition, we have ω · (λ |μ) ≤ m for all (λ, μ) ∈ S. Hence
σω
m(w) =

∑
(λ,μ)∈Sm

cλμX
λY μ, where Sm = {(λ, μ) ∈ S | ω · (λ |μ) = m}. Similarly,

ν · (λ |μ) ≤ p for all (λ, μ) ∈ Sm. Hence τνp (σ
ω
m(w)) =

∑
(λ,μ)∈Sm,p

cλμX
λY μ, where

Sm,p = {(λ, μ) ∈ Sm | ν · (λ |μ) = p}.
Let (λ, μ) ∈ S. As just observed, ω · (λ |μ) ≤ m, and moreover if ω · (λ |μ) = m,

then ν · (λ |μ) ≤ p. Thus we have the following three cases.
If ω ·(λ |μ) = m and ν ·(λ |μ) = p, then (ν + sω)·(λ |μ) = ν ·(λ |μ)+sω ·(λ |μ) =

p+ sm, hence ξλ∂μ ∈ Fν+sω
p+smW � Fν+sω

p+sm−1W for all s ∈ N.
If ω ·(λ |μ) = m and ν ·(λ |μ) < p, then (ν + sω)·(λ |μ) = ν ·(λ |μ)+sω ·(λ |μ) <

p+ sm, hence ξλ∂μ ∈ Fν+sω
p+sm−1W for all s ∈ N.

If ω·(λ |μ) < m, then (ν + sω)·(λ |μ) = ν ·(λ |μ)+sω·(λ |μ) ≤ l+sm−s < p+sm
as soon as s > l − p, hence ξλ∂μ ∈ Fν+sω

p+sm−1W for all s ∈ N with s > l − p.

Therefore, putting S′m,p = {(λ, μ) ∈ S | ω · (λ |μ) = m, ν · (λ |μ) = p}, we obtain
σν+sω
p+sm(w) =

∑
(λ,μ)∈S′m,p

cλμX
λY μ for all s ∈ N with s > l − p. Since Sm,p = S′m,p,

we are done. �
Lemma 4.6. Let w ∈ W , and let ν ∈ N2n

0 and ω ∈ Ω. Then for all s ∈ N such
that s > degν(w)− degν(σω(w)) it holds degν(σω(w)) + s degω(w) = degν+sω(w).

Proof. If w = 0, then the statement holds for all s ∈ N. Hence let w �= 0, and put
l = degν(w), m = degω(w), and p = degν(σω

m(w)). Let s ∈ N with s > l−p and put
d = degν+sω(w). As in the proof of Lemma 4.5 we obtain (ν + sω) · (λ |μ) ≤ p+sm
for all (λ, μ) ∈ supp(w), hence d = sup {(ν + sω) · (λ |μ) | (λ, μ) ∈ supp(w)} ≤
p + sm. If it held that d < p + sm, then we would have σν+sω

p+sm(w) = 0, whereas
τνp (σ

ω
m(w)) �= 0, in contradiction to Lemma 4.5. Hence p+ sm = d, our claim. �

Lemma 4.7. Let w ∈ W , and let ν ∈ N2n
0 and ω ∈ Ω. Then for all s ∈ N such

that s > degν(w)− degν(σω(w)), it holds τν(σω(w)) = σν+sω(w).

Proof. This is proven by Lemma 4.5 with l = degν(w), m = degω(w), and p =
degν(σω

m(w)) = degν(σω(w)), and by Lemma 4.6. �
Theorem 4.8 extends a result published in 1971 by Bernstein as a part of the proof
of [4, Theorem 3.1], namely that G(1 | 1)G(0 | 1)L ⊆ G(1 | s)L for s � 0. In greater
generality we prove the converse inclusion also.

Theorem 4.8. Let L be a left ideal of W . For all ν ∈ N2n
0 there exists sν ∈ N0

such that for all ω ∈ Ω and all s ∈ N with s > sν , it holds that GνGωL = Gν+sω

as ideals of K[X,Y ].

Proof. Let ν ∈ N2n
0 . We can choose a universal Gröbner basis U of L by Theo-

rem 3.8, and we can fix a normal ordering � ∈ O by Example 3.2. Thus U is a
(�ν)ω-Gröbner basis of L for all ω ∈ Ω; see Remark 3.9.

By Theorem 3.10, σω(U) is a �ν-Gröbner basis of GωL for all ω ∈ Ω. Therefore,
by Remark 3.11, τν(σω(U)) is a �-Gröbner basis of GνGωL for all ω ∈ Ω. It
follows that GνGωL = 〈τν(σω(u)) | u ∈ U〉 for all ω ∈ Ω. Putting sν =
max {degν(u) | u ∈ U, u �= 0} if U � {0}, and sν = 0 if U ⊆ {0}, by Lemma 4.7 we
get GνGωL = 〈σν+sω(u) | u ∈ U〉 for all ω ∈ Ω and all s ∈ N with s > sν .
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On the other hand, U is a Gröbner basis of L with respect to �ν+sω for all
ω ∈ Ω and all s ∈ N. Therefore, by Theorem 3.10, σν+sω(U) is a Gröbner basis
of Gν+sωL with respect to �, whence 〈σν+sω(u) | u ∈ U〉 = Gν+sωL, for all ω ∈ Ω
and all s ∈ N. �

Main Theorem 4.9. Let M be a finitely generated left W -module. For all ν ∈ N2n
0

there exists sν ∈ N0 with the property that for all ω ∈ Ω and all s ∈ N with
s > sν , it holds

√
(0 : GνGωM) =

√
(0 : GνGν+sωM) =

√
(0 : Gν+sωM) as ideals

of K[X,Y ].

Proof. We fix any ν ∈ N2n
0 . We find r ∈ N such that M is generated over R by r

of its elements.
First, by induction over r, we prove the existence of sν ∈ N0 such that for all

ω ∈ Ω and all s ∈ N with s > sν , it holds
√
(0 : GνGωM) =

√
(0 : Gν+sωM).

If r = 1, then M ∼= W/L for a left ideal L of W . By Remarks 1.5 and 1.7 and
Theorem 4.8 we find sν ∈ N0 such that for all ω ∈ Ω and all s ∈ N with s > sν , it
holds

√
(0 : GνGωW/L) =

√
GνGωL =

√
Gν+sωL=

√
(0 : Gν+sωW/L).

If r > 1, we find a cyclic submodule N of M such that P = M/N is generated by
r − 1 elements. As before, by Theorem 4.8 we find s′ν ∈ N0 such that for all ω ∈ Ω
and all s ∈ N with s > s′ν , it holds

√
(0 : GνGωN) =

√
(0 : Gν+sωN). By induction

we find s′′ν ∈ N0 such that
√
(0 : GνGωP ) =

√
(0 : Gν+sωP ) for all ω ∈ Ω and

all s ∈ N with s > s′′ν . By Remark 1.5 we get
√
(0 : GνGωM) =

√
(0 : GνGωN) ∩√

(0 : GνGωP ) =
√
(0 : Gν+sωN)∩√

(0 : Gν+sωP ) =
√
(0 : Gν+sωM) for all ω ∈ Ω

and all s ∈ N with s > sν , where sν = max {s′ν , s′′ν}, so that sν is independent of ω.
This completes the induction step.

By Proposition 1.28 and Remarks 1.29 and 1.13, it follows
√
(0 : GνGν+sωM) =√

Gν√(0 : Gν+sωM)=
√
Gν√(0 : GνGωM)=

√
(0 : GνGνGωM)=

√
(0 : GνGωM)

for all ω ∈ Ω and all s ∈ N with s > sν . �

Corollary 4.10. There exists s(1 | 1) ∈ N0 such that for all ω ∈ Ω and all s ∈ N
with s > s(1 | 1) one has Cω(M) = V(1 | 1)+sω(M) = C(1 | 1)+sω(M).

Proof. This is clear by Theorem 4.9. �

Corollary 4.11. It holds C(0 | 1)(M) = V(1 | s)(M) = C(1 | s)(M) for s � 0, whereas
C(1 | 1)(M) = V(1 | 1)(M).

Proof. The first statement is clear by Corollary 4.10, the second follows from Re-
mark 1.13. �

5. Application 1: Dimension of characteristic varieties

In this section, as an application of Theorem 4.9, we aim to furnish a new proof
of a classical result: fixing a finitely generated left W -module M , the characteristic
varieties Vω(M), ω ∈ Ω, all have the same Krull dimension.

This is usually proved, as exposed by Ehlers in [6, Chapter V], by not trivial
homological methods. Indeed it turns out that KdimK[X,Y ] G

ωM = 2n − jW (M)

for all ω ∈ Ω, where jW (M) = inf {i ∈ N0 | ExtiW (M,W ) �= 0}.
Bernstein provided a proof in 1971 that V(1 | 1)(M) and V(0 | 1)(M) have the same

Krull dimension; see [4, Theorem 3.1].
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Our proof descends from:
(1) the equality of annihilators obtained in Theorem 4.9, which in particular

allows us to pass in a certain sense from non-finite to finite filtrations;
(2) the preservation of the Gelfand–Kirillov dimension when passing from finitely

filtered objects to their associated graded objects; see Lemma 5.5;
(3) the equality of Krull and Gelfand–Kirillov dimension in the category of noe-

therian modules over a noetherian commutative K-algebra; see Reminder 5.2.
We begin with some necessary results about the Gelfand–Kirillov dimension that

can be found in [11] or [14].

Reminder 5.1. Let F be a field and B be a finitely generated F -algebra. We
find a generating space of B, that is, an F -module V of finite length such that
F ⊆ V and B is generated as an F -algebra by V . By V i, i ∈ N0, we denote the F -
module consisting of all polynomials in the (generally not commuting) elements of
V with coefficients in F of total degree less than or equal to i, so that in particular
V 0 = F , V 1 = V , V i ⊆ V i+1, B =

⋃
i∈N0

V i. The Gelfand–Kirillov dimension of B
is defined as GKdimB = limi→∞ logi(lenF V i) ∈ [0,∞], and it is independent of V .
If A is any F -algebra, we define GKdimA = supB GKdimB, where the supremum
is taken over all finitely generated F -subalgebras B of A. For finitely generated
F -algebras, the two definitions are easily shown to be equivalent.

Let N be a finitely generated left B-module. We find a generating space of
N , that is, an F -module W of finite length such that N is generated as a B-
module by W . The Gelfand–Kirillov dimension of N is defined as GKdimB N =
limi→∞ logi(lenF V iW ) ∈ [0,∞], and it is independent of V and of W . If M is any
A-module, we define GKdimAM = supB supN GKdimB N , where the suprema are
taken over all finitely generated F -subalgebras B of A and all finitely generated B-
submodules of M . For finitely generated modules over finitely generated F -algebras
the two definitions are easily shown to be equivalent.

Reminder 5.2. Let F be a field, A be a finitely generated commutative F -algebra,
and M be a finitely generated A-module. Then for the Krull dimension KdimA M
of M , defined as the supremum of the lengths of chains of prime ideals of the
commutative ring A/(0 : M), it holds KdimA M = GKdimA M ∈ N0 ∪ {−∞,∞}.

Indeed, in our hypotheses both dimensions are exact (see [11, Theorem 6.14] for
the Gelfand–Kirillov dimension), and hence we may assume that M = A/I for some
ideal I. As both dimensions are preserved when changing the base ring from A to
A/I (see [11, Proposition 5.1(c)] for the Gelfand–Kirillov dimension), it is sufficient
to compare KdimA/I to GKdimA/I. As both dimensions are preserved when pass-
ing to integral extensions (see [11, Proposition 5.5] for the Gelfand–Kirillov dimen-
sion), by Emmy Noether’s Normalization Lemma we may replace the finitely gen-
erated F -algebra A/I by the polynomial ring F [X1, . . . , Xd], where d = KdimA/I.
By arguments of linear algebra, one shows that GKdimF [X1, . . . , Xd] = d; for more
details see [11, Proposition 7.9] or [3, Corollary 1.1.16].

Alternatively, one easily gets GKdimA = inf {α ∈ R | lenK V i ≤ iα for i � 0};
see [11, Lemma 2.1]. It follows that GKdimA is indeed equal to the degree of the
Hilbert polynomial of A, which in turn is equal to KdimA, and one concludes again
by the exactness of both dimensions and by changing the base ring.
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Definition 5.3. Let F be a field, A be an F -algebra, A be a filtration of A, M
be a left A-module, and M be an A-filtration of M . We say that M is finite if
lenF (FiM) < ∞ for all i ∈ Z.

Remark 5.4. In the notation of Definition 5.3, if A is finite and M is finitely gen-
erated and M is good, then M is finite and discrete. Indeed, M is equivalent to a
standard good filtration S of M ; see Proposition 1.24 and Example 1.16. Now, S
is finite whenever A is finite, and S is always discrete.

Lemma 5.5. Let F be a field, A be a K-algebra, A be a filtration of A, M be a left
A-module, and M be an A-filtration of M . Then GKdimGA GM ≤ GKdimA M .

Furthermore, if the filtration A is finite and is such that the F -algebra GA is
finitely generated, and if the A-filtration M is finite and discrete and is such that
the GA-module GM is finitely generated, then GKdimGA GM = GKdimA M .

Proof. By arguments of linear algebra, see [11, Lemma 6.5 and Proposition 6.6]. �
Theorem 5.6. In the notation of the previous section, it holds KdimK[X,Y ] G

ωM =
GKdimK[X,Y ] G

ωM = GKdimW M, and hence KdimVω(M) = GKdimW M, for all
ω ∈ Ω.

Proof. Let ω ∈ Ω. Since the (1 | 1)-filtration of K[X,Y ] is finite, any good (1 | 1)-
filtration of GωM is finite and discrete by Remark 5.4. Thus by Lemma 5.5,
GKdimK[X,Y ] G

ωM=GKdimK[X,Y ] G
(1 | 1)GωM . By Proposition 1.17, G(1 | 1)GωM

is finitely generated over K[X,Y ]. So, by Reminder 5.2, GKdimK[X,Y ] G
(1 | 1)GωM

= GKdimK[X,Y ]/
√
(0 : G(1 | 1)GωM). Hence by Theorem 4.9, GKdimK[X,Y ]/√

(0 : G(1 | 1)GωM) = GKdimK[X,Y ]/
√
(0 : G(1 | 1)+sωM), s � 0. Therefore by

Reminder 5.2, GKdimK[X,Y ]/
√
(0 : G(1 | 1)+sωM) = GKdimK[X,Y ] G

(1 | 1)+sωM ,
s ∈ N. Since the (1 | 1) + sω-filtrations of W are finite, and therefore by Remark 5.4
the good (1 | 1) + sω-filtrations of M are finite and discrete, by Lemma 5.5 and The-
orem 2.9 we obtain GKdimK[X,Y ] G

(1 | 1)+sωM = GKdimW M , s ∈ N. As for the
Krull dimension, we conclude by Reminder 5.2. �

6. Application 2: Classification of characteristic varieties

As before, let K be a field of characteristic 0. For an arbitrary left ideal L of the
first Weyl algebra W over K, we aim to classify the characteristic varieties of W/L.
More precisely, we aim to partition Ω = N2

0 � {(0, 0)} into regions corresponding
to equivalence classes [ω]∼L

of weights ω ∈ Ω such that ω′ ∼L ω′′ if and only if
Gω′

L = Gω′′
L. This would permit us to determine the number χ(L) of distinct

ideals GωL, ω ∈ Ω, which we know to be finite by Corollary 3.12. Hence, because
Gω′

L = Gω′′
L implies Vω′

(W/L) = Vω′′
(W/L) by Remark 1.7, χ(L) would be an

upper bound for the number of distinct ω-characteristic varieties of W/L.
We do not succeed in this but, by a computer experiment, we approximate Ω/∼L,

and this allows us to conjecture an upper bound for χ(L) in terms of total degrees
of universal Gröbner bases of L.

Remark 6.1. Let n ∈ N. For each finitely generated left module M over the
nth Weyl algebra over K and for each ν ∈ N2n

0 there exists a minimal number
κν(M) ∈ N0 such that for all ω ∈ Ω the characteristic varieties Vν+sω(M) stabilize
to Var(0 : GνGωM) as soon as s > κν(M).

In particular, V(1 | 1)+sω(M) becomes precisely the critical cone Cω(M) for all
ω ∈ Ω as soon as s > κ(M) = κ(1 | 1)(M).
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Remark 6.2. Let n ∈ N. For each left ideal L of the nth Weyl algebra over K and
for each ν ∈ N2n

0 , we put γν(L) = infU supu∈U�{0} deg
ν(u), where the infimum is

taken over all universal Gröbner bases U of L. By the proof of Theorem 4.8,
(a) κν(W/L) ≤ γν(L) ∈ N0,
(b) γν′(L) ≤ γν′′(L) whenever |ν′| ≤ |ν′′|,
(c) γkν(L) = kγν(L) for all k ∈ N0.

Experiment 6.3. Let L be any left ideal of the first Weyl algebra W over K. By
Theorem 4.8 we can compute an approximation of Ω/∼L if we know κν(W/L) for
all ν ∈ N2n

0 . By the relations (a), (b), (c) of Remark 6.2 we have that κν(W/L) ≤
γν(L) ≤ γ|ν|(1 | 1)(L) = |ν|γ(L), where we put γ(L) = γ(1 | 1)(L). Therefore, by
Theorem 4.8, knowing the upper bound γ(L) of κ(W/L) is sufficient for computing
a (coarser) approximation of Ω/∼L.

For some numbers s0 ∈ N0 we repeatedly do an experiment parametrized by s0
as follows. A computer calculates for us the intersection points among the half-
lines �ν,ω ⊆ Ω of the form �ν,ω(s) = ν + sω, ν ∈ N2

0, ω ∈ Ω, for s > s0, and it
paints incident half-lines with a common colour. The points of Ω having the same
colour turn out to build cones in Ω. For instance, for s0 = 3 the computer program
painted seventeen differently coloured cones, among which nine are degenerate,
that is, half-lines. For typographical reasons, in Figure 1 we depict the so obtained
cones by connected regions in R2, alternately in black and gray. For s0 = 3 the
nine degenerate cones are filled in black, whereas the eight non-degenerate cones
are filled in gray, and similarly in the other pictures of Figure 1.

By Theorem 4.8, as soon as s0 ≥ γ(L), each of these cones is a subset of precisely
one equivalence class of Ω/∼L

. Thus the results of our experiment allow us to
conjecture an upper bound for χ(L) in terms of γ(L), namely, χ(L) ≤ 21+γ(L) + 1.

Our experiment also indicates that the coordinates (x1, x2) ∈ N2
0 of the vertices

of the cones lying in the lower semiquadrant without the diagonal satisfy precisely
the conditions

(a) F (1) ≤ x1 ≤ F (2 + s0),
(b) F (0) ≤ x2 ≤ F (1 + s0),
(c) gcd(x1, x2) = 1, and
(d) x1 > x2,

where F (s) is the sth Fibonacci number, that is, F (0) = 0, F (1) = 1, and F (s) =
F (s − 1) + F (s − 2) for all s ≥ 2. For instance, if s0 = 3, these coordinates are
(1, 0), (2, 1), (3, 1), (4, 1), (3, 2), (5, 2), (4, 3), (5, 3).

So 2γ(L) is equal to the number of the points (x1, x2) ∈ N2
0 satisfying the

conditions (a)–(d) with s0 = γ(L), and the experiment indicates that χ(L) ≤
#{(xσ(1), xσ(2)) ∈ N2

0 | σ ∈ Σ2 ∧F (1)≤ x1 ≤ F (2+γ(L))∧F (0)≤ x2 ≤ F (1+γ(L))

∧ gcd(x1, x2) = 1∧x1 ≥ x2} = #Σ2 · (2γ(L) + 1)− (#Σ2 − 1) = 21+γ(L) + 1, where
Σ2 is the second symmetric group.

Remark 6.4. Weyl algebras are the prototype of algebras of solvable type ( see [10]),
and as in the polynomial case a universal Gröbner basis of L can be constructed
as a union of reduced Gröbner bases of L. In [1, Corollary 0.2], an upper bound
is given for the total degree of elements of reduced Gröbner bases of a left ideal of
an algebra of solvable type in terms of the total degree of generators of the ideal,
thus in particular an upper bound for γ(L). Therefore if our conjecture is true, one
obtains an upper bound for the cardinality of Ω/∼L in terms of the total degree of
generators of L.
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(a) s0 = 0 (b) s0 = 1

(c) s0 = 2 (d) s0 = 3

Figure 1. Equality regions of characteristic varieties

Question 6.5. We may ask whether similar upper bounds for χ(L) as in Exper-
iment 6.3 exist when considering a left ideal L of the nth Weyl algebra for n > 1,
namely, (1) a bound in terms of n and γ(L), and (2) a bound in terms of Fibonacci
numbers.
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