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Abstract: Each linear code can be described by a so-called code ideal. In
order to utilize this ideal, Gröbner bases are required. Since many results
depend on the chosen term order, knowledge of the universal Gröbner basis is
advantageous. Singleton codes have the property that the universal Gröbner
basis for their code ideals consists of all binomials associated to a codeword
whose Hamming weight satisfies the Singleton bound. In this paper, properties
of Singleton codes will be established and it will be examined which classical
binary linear codes belong to the class of Singleton codes.
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1. Introduction

Reliable transmission of digital data is an important task in many applica-
tions. But transmission channels often suffer from noise and so errors can occur.
Error-correcting codes are employed to tackle this problem. By adding redun-
dancy such codes allow to detect and correct a certain amount of transmission
errors [8].

Coding theory was founded by Shannon’s seminal paper in 1948 [12] in
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which it was proved that reliable communication is possible at any rate below
the channel capacity. Since then the construction of such codes and the study
of their properties is an ongoing task.

Recently a connection between Gröbner bases and linear codes have been
established [3, 5, 10, 11]. Gröbner bases are a powerful tool in commutative
algebra providing a uniform approach to grasping a wide range of problems
such as solving algebraic systems of equations, ideal membership decision, and
effective computation in residue class rings modulo polynomial ideals [1, 2, 6,
13].

The first connection between linear codes and Gröbner bases was established
in [5] which soon became known as the ”Cooper philosophy“. This link was
based on the description of cyclic codes as ideals in a certain polynomial ring,
where entries of a codeword are viewed as coefficients of a polynomial.

In [3], a different connection between linear codes and ideals in polynomial
rings was presented, which was followed up in [10, 11]. In this approach, linear
codes are described by a binomial ideal in a polynomial ring over an arbitrary
field that can be written as the sum of a toric ideal and a non-prime ideal, the
so-called code ideal.

The code ideal holds useful information about the code. However, the code
ideal can be exploited only if a Gröbner basis is known. Gröbner bases with
respect to any monomial order can be computed by Buchberger’s algorithm
which is implemented in most computer algebra systems. In [10] it has been
shown that the reduced Gröbner basis with respect to the lexicographic order
can be easily constructed from a standard generator matrix. Unfortunately,
it has been proved that many applications require a degree compatible order-
ing [3, 4]. And as Gröbner bases vary with the term order and the computation
of Gröbner bases can be rather costly, it is advantageous to compute the uni-
versal Gröbner basis instead, i.e., the union of all reduced Gröbner bases [14].
Surprisingly, although infinitely many term orders exist, there is only a finite
number of Gröbner bases [9].

For binary linear codes it has been shown that the universal Gröbner basis
equals the set of circuits [11]. Hence the computation of the universal Gröbner
basis for binary codes amounts to the computation of its circuits. Furthermore,
in [7] the universal Gröbner basis for the code ideal of a binary linear code
has been completely described: It consists of all binomials associated with the
codewords whose Hamming weight is less than or equal to the Singleton bound
and which satisfy a certain rank condition. For some codes all codewords of
Hamming weight less than or equal to the Singleton bound satisfy the mentioned
rank condition. Such codes were called Singleton codes in [7].
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In this paper, basic properties of Singleton codes will be established and the
classical binary linear codes (Hamming, simplex, Golay, Reed-Muller, and cyclic
codes) will be examined whether or not they have the Singleton property. For
instance, the binary Golay code and its extension by parity check are Singleton,
while not all Hamming and Reed-Muller codes are Singleton.

This paper is organized as follows. The next section provides the required
background from coding theory and the third section contains the main results.

2. Linear Codes

Let F be a finite field and let n and k be positive integers with n ≥ k. A linear
code C of length n and dimension k over F is the image of a one-to-one linear
mapping φ : Fk → Fn; that is, C = {φ(a) | a ∈ Fk}. Such a code is denoted
as [n, k] code and its elements are called codewords. In algebraic coding, the
codewords are always written as row vectors. Alternatively, a code C can be
described as the row space of a matrix G ∈ Fk×n, whose rows form a basis of
C, and the matrix G is then called a generator matrix for C.

A code C is systematic if it has a generator matrix which is in standard
form, i.e., G = (Ik | M), where Ik is the k × k identity matrix. Note that a
generator matrix for an [n, k] code can contain zero columns. Such a code can
be shortened by deleting those columns giving a code of smaller length and
equal dimension. All subsequently considered codes are assumed to have no
zero columns.

The support of a vector u ∈ Fn, written supp(u), is the subset of n =
{1, . . . , n} given by all indices i ∈ n with ui 6= 0, and the Hamming weight ,
denoted by wt(u), is the number of non-zero components and so equals the
cardinality of the codeword’s support. Note that for a binary code, each code-
word is completely determined by its support. For binary codes, a circuit is
a codeword whose support is minimal with respect to inclusion. The weight
distribution of an [n, k] code C is a finite sequence of integers A0, A1, . . . , An,
where Ai denotes the number of codewords in C having Hamming weight i,
0 ≤ i ≤ n. The Hamming distance between two vectors u, v ∈ Fn is the num-
ber of positions in which they differ and so is given by the Hamming weight
wt(u − v) of the difference vector. The Hamming distance defines a metric on
Fn. The minimum Hamming distance between any to distinct codewords in C is
the minimum distance of the code C. An [n, k] code having minimum distance
d is denoted as [n, k, d] code. The Singleton bound for linear codes states that
for each [n, k, d] code, d ≤ n− k + 1.
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For any matrix G ∈ Fk×n and any subset J ⊆ n of indices, let GJ denote
the k× |J | submatrix of G consisting of the columns in G with indices from J .
Similarly, let cJ be the vector of length |J | consisting of the coordinates in c
with indices from J . A subset J ⊆ n of cardinality k is called an information
set of an [n, k] code with generator matrix G if the k×k submatrix GJ has rank
k. The following are equivalent: (1) The set of indices J is an information set.
(2) For each m ∈ Fk there is a unique c ∈ C with cJ = m. (3) For any generator
matrix G of C, GJ has rank k. By the second assertion, a code cannot contain
an information set J ⊆ n\ supp(c) at the zero positions of a non-zero codeword
c.

The dual code C⊥ of an [n, k] code C over F is an [n, n− k] code consisting
of all words u ∈ Fn such that u · c = ucT = 0 for each c ∈ C, where cT

denotes the transposed of c. If G = (Ik | M) is a generator matrix for C, then
H =

(

−MT | In−k

)

is a generator matrix for C⊥. For each word c ∈ Fn, we
have c ∈ C if and only if HcT = 0. The matrix H is a parity check matrix for
C.

3. Singleton Codes

This section is devoted to the question which of the classical binary codes are
Singleton. The results require only linear algebra and therefore, basics about
Gröbner bases and code ideals can be omitted.

3.1. General Considerations

A binary linear code is called a Singleton code (or simply Singleton) if every
codeword satisfying the Singleton bound is a circuit [7].

The well-known maximum distance separable (MDS) codes attain the Sin-
gleton bound with equality and so are Singleton codes. In particular, the trivial
codes are MDS and so are Singleton.

Proposition 1 ([7]). A binary [n, k] code C is Singleton if and only if for

every generator matrix G of C each codeword c in C with wt(c) ≤ n − k + 1
satisfies

rk
(

Gn\{supp(c)}

)

= k − 1. (1)

Proof. Let C be a Singleton code and c ∈ C a circuit. Claim that c satis-
fies (1). Indeed, there is a non-zero information word x ∈ Fk

2 with x ·G = c for
any generator matrix G. But x · Gn\supp(c) = 0 and so Gn\supp(c) cannot have
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full row rank k. Suppose Gn\supp(c) has a smaller rank than k− 1. Then by the
dimension formula for linear mappings,

k = dimkerGn\supp(c) + dim imGn\supp(c) < dimkerGn\supp(c) + (k − 1)

and so dimkerGn\supp(c) > 1. Thus there must be another information word

x′ ∈ Fk
2 with x′ ·Gn\supp(c) = 0. Put c′ = x′ ·G. So for each index i in n\supp(c),

c′i = x′ ·G{i} = 0 and thus supp(c′) ⊆ supp(c). But the encoding is one-to-one
and so the codeword c′ is distinct from c. It follows that supp(c′) ( supp(c)
contradicting the hypothesis that c is a circuit. Hence, the rank of Gn\supp(c) is
equal to k − 1.

Conversely, let c be a codeword with wt(c) ≤ n − k + 1 satisfying (1).
Then c has at least k − 1 entries that are 0 and so by hypothesis, among
those one can find exactly k − 1 coordinates J ⊆ n \ supp(c) such that GJ has
rank k − 1. But as the generator matrix G has rank k there must be another
column in G, say indexed by i, with ci = 1, such that GJ∪{i} is a k × k matrix
of rank k; that is, J ∪ {i} is an information set. Let c′ ∈ C be a non-zero
codeword such that supp(c′) ⊆ supp(c). Clearly, cℓ = 0 implies c′ℓ = 0 and thus
c′J = 0 = cJ . Moreover, c′i = 1 = ci and so c′

J ∪ {i} = cJ ∪ {i} because J ∪ {i}
is an information set and c′ is not the zero codeword. This implies that c = c′.
Hence, c is a circuit.

Proposition 2. A binary [n, k] code C is a Singleton code if and only if

there are no non-zero codewords c1, c2 in C such that supp(c1) ∩ supp(c2) = ∅
and wt(c1) + wt(c2) ≤ n− k + 1.

Proof. Suppose there are non-zero words c1, c2 ∈ C such that supp(c1) ∩
supp(c2) = ∅ and wt(c1)+wt(c2) ≤ n−k+1. Then c = c1+c2 ∈ C is a codeword
with Hamming weight wt(c) = wt(c1) + wt(c2) satisfying the Singleton bound.
But the codeword c is not a circuit since supp(ci) ( supp(c) for i = 1, 2 and so
C is not a Singleton code.

Conversely, suppose C is not a Singleton code. Then there exists a codeword
c in C of Hamming weight wt(c) ≤ n−k+1 which is not a circuit. This implies
that there is another codeword c1 with the property that supp(c1) ( supp(c).
Put c2 = c+c1. Then supp(c2) = supp(c)\supp(c1) and so supp(c1)∩supp(c2) =
∅. Moreover, n− k + 1 ≥ wt(c) = wt(c1) + wt(c2).

Proposition 3. Let C be a binary [n, k, d] code. If the minimum distance

of C satisfies d > 1
2(n− k + 1), then C is a Singleton code.
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Proof. Suppose C is not a Singleton code. Then by Prop. 2, there are non-
zero codewords c1, c2 ∈ C such that supp(c1) ∩ supp(c2) = ∅ and wt(c1) +
wt(c2) ≤ n − k + 1. But if wt(c2) >

1
2(n − k + 1), then wt(c1) ≤ 1

2 (n − k + 1)
because the codewords have disjoint support. This contradicts the hypothesis.

3.2. Code Modifications and Constructions

The closure properties of the class of Singleton codes under prominent code
modifications and constructions are studied. First, three basic code modifica-
tions are considered. For this, let C be a binary [n, k] code.

• Puncturing: The code punctured at a parity-check position i ∈ n is an
[n− 1, k] code given as

Ċi ={(c1, . . . , ci−1, ci+1, . . . , cn) ∈ Fn−1
2 |

(c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ C for some ci ∈ F2}.

• Shortening: The code shortened at an information position i ∈ n is an
[n− 1, k − 1] code defined as

C̆i ={(c1, . . . , ci−1, ci+1, . . . , cn) ∈ Fn−1
2 |

(c1, . . . , ci−1, 0, ci+1, . . . , cn) ∈ C}.

• Extension: The code extended by an overall parity check is an [n + 1, k]
code represented as

Ĉ = {(c1, . . . , cn, cn+1) ∈ Fn+1
2 | (c1, . . . , cn) ∈ C, cn+1 =

n
∑

i=1

ci}.

Punturing a Singleton code may not result in another Singleton code as the
following example will show.

Example 1. Consider the binary [8, 4] code C with generator matrix

G = (I4 | M) , M =









1 1 1 1
0 1 1 1
1 1 1 0
0 1 1 0









.
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Puncturing at the last coordinate gives a [7, 4] code Ċ with generator matrix
Ġ = G{1, . . . , 7}. The codeword c = (1, 1, 1, 1, 0, 0, 0) ∈ Ċ attains the Singleton

bound but the rank condition in Eq. (1) is not fulfilled:

rk
(

Ġ7\supp(c)

)

= rk









1 1 1
0 1 1
1 1 1
0 1 1









= 2 < 3 = 4− 1.

Hence, the punctured code Ċ is not Singleton although the code C is.

On the other hand, the class of Singleton codes is closed under shortening.

Proposition 4. The shortening of a binary Singleton code gives another

binary Singleton code.

Proof. Let C be an [n, k] Singleton code. Without restriction, the shortened
code C̆n may be taken. Let Ğ ∈ Fk−1×n−1

2 be a generator matrix for C̆ and let c
be a codeword in C with cn = 1. Note that such a codeword must exist because
only codes without zero columns are considered. Then the following matrix
extended by the word c is a generator matrix for the code C,

G =

(

Ğ 0

c

)

=











0

Ğ
...
0

∗ . . . ∗ 1











∈ Fk×n
2 . (2)

Let c̆ ∈ C̆ be a non-zero codeword of Hamming weight wt(c̆) ≤ (n − 1) −
(k− 1) + 1 = n− k+1. Then by definition c′ = (c̆, 0) is a codeword in C of the
same Hamming weight. But C is a Singleton code and so by Prop. 1,

rk
(

Gn\supp(c′)

)

= k − 1, (3)

where the submatrix Gn\supp(c′) is composed of









Ğ

∗ . . . ∗









n−1\supp(c̆)

and











0
...
0
1











.

However, the last row of this submatrix does not belong to the span of the first
k − 1 rows. Thus Eq. (3) yields

rk
(

Ğn−1\supp(c̆)

)

= k − 2.
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It follows that each codeword in C̆ whose Hamming weight satisfies the Singleton
bound also satisfies the rank condition in Eq. (1). Hence, C̆ is a Singleton
code.

The extension of a Singleton code by adding an overall parity check yields
a Singleton code under certain conditions.

Proposition 5. Let C be a binary [n, k] code. If C is a Singleton code

which contains no codeword of Hamming weight n − k + 2, then the extended

code Ĉ obtained by adding an overall parity check is also a Singleton code.

Proof. Let C be a binary [n, k] code and let G be a generator matrix for C.
Then the extended code Ĉ has the generator matrix Ĝ = (G | v), where v ∈ Fk

2

is the sum of all column vectors in G.
Let c be a codeword in Ĉ of Hamming weight wt(c) ≤ n− k+2 and denote

by c′ the codeword obtained from c by deleting the last coordinate. Two cases
can occur.

First, the last coordinate of c is 1. Then the codeword c′ has Hamming
weight wt(c′) = wt(c)−1 ≤ n−k+1 and so is a circuit in C satisfying the rank
condition rk

(

Gn\supp(c′)

)

= k − 1. Moreover,

rk
(

Ĝn+1\supp(c)

)

= rk
(

Gn\supp(c′)

)

= k − 1

shows that c is a circuit in Ĉ (see Prop. 1).

Second, the last coordinate of c is 0. Then the codeword c must be of
Hamming weight wt(c) ≤ n−k+1 because otherwise wt(c′) = n−k+2, which
is excluded by the hypothesis. A similar argument as in the first case then
exhibits that c is a circuit in Ĉ.

Second, two basic code constructions are considered.

• Direct sum: If C1 is a binary [n1, k1] code and C2 is a binary [n2, k2] code,
then the direct sum is a binary [n1 + n2, k1 + k2] code given by

C1 ⊕ C2 =
{

(c1, c2) ∈ Fn1+n2

2 | c1 ∈ C1, c2 ∈ C2
}

.

• (u | u + v) construction: If C1 is a binary [n, k1] code and C2 is a binary
[n, k2] code, then the (u | u+ v) construction yields an [2n, k1 + k2] code
defined by

C =
{

(c1, c1 + c2) ∈ F2n
2 | c1 ∈ C1, c2 ∈ C2

}

.
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The direct sum C1 ⊕ C2 of any two Singleton codes C1 and C2 cannot be
a Singleton code. To see this, let Ci be a binary [ni, ki] Singleton code with
generator matrix Gi, i ∈ {1, 2}. Then the direct sum C = C1 ⊕ C2 has the
generator matrix

G =

(

G1 0

0 G2

)

.

So for any codeword c = (c1, c2) ∈ C, where ci ∈ Ci, i = 1, 2,

rk
(

G2n\supp(c)

)

= rk
(

(G1)n\supp(c1)
)

+ rk
(

(G2)n\supp(c2)
)

≤ (k1 − 1) + (k2 − 1) = k1 + k2 − 2 < k1 + k2 − 1.

Fortunately, the direct sum of two codes is rather uninteresting in applications
because the minimum distance of such composite codes does not exceed the
minimum distance of the component codes.

The (u | u+v)-construction will be later discussed in connection with Reed-
Muller codes.

3.3. Hamming Codes and Simplex Codes

For any number r ≥ 3, the rth binary Hamming code is a linear code of length
n = 2r − 1, dimension k = n− r, and minimum distance d = 3. This code can
be defined as the kernel of a matrix whose columns are exactly the vectors in
Fr
2. Different arrangements of the columns give equivalent codes.

Simplex codes are the duals of the Hamming codes. The rth binary simplex
code is a binary [n = 2r−1, r] code with minimum distance d = 2r−1 and weight
distribution A0 = 1, Ad = 2r − 1, and Ai = 0 for i ∈ n \ {0, d} [8]. Therefore,
all non-zero codewords are circuits and so the following holds.

Proposition 6. Every simplex code is Singleton.

Proposition 7. The third and fourth binary Hamming codes are Single-

ton, and for any integer r ≥ 5 the rth binary Hamming code is not Singleton.

Proof. The Singleton bound for the rth binary Hamming code is S = r+1.

By Prop. 3, the rth binary Hamming code is Singleton if the minimum
distance satisfies 3 = d > 1

2(r + 1) which only holds if r = 3 or r = 4.

Let r ≥ 5 and let C denote the rth binary Hamming code with generator
matrix G = (Ik | M). The k × r matrix M consists of all row vectors in Fr

2
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except for the zero vector and the unit vectors. Thus it can be assumed that
the first two rows are

m1 = (0, 1, . . . , 1, 0, . . . , 0) and m2 = (0, 0, . . . , 0, 1, . . . , 1) ,

where m1 has Hamming weight
⌊

r−1
2

⌋

and m2 has Hamming weight
⌈

r−1
2

⌉

and
their supports are disjoint. Since r ≥ 5, the weights satisfy

⌊

r−1
2

⌋

≥ 2 and
⌈

r−1
2

⌉

≥ 2 and so both m1 and m2 are not unit vectors.
Adding the first two row vectors in G gives a codeword c with support

{1, 2, k + 2, . . . , n} and Hamming weight wt(c) = 2 + r − 1 = r + 1 = S.
However, the first two rows of the submatrix Gn\supp(c) are zero and thus its
rank is ≤ k− 2. In other words, c violates the rank condition in Eq. (1) and so
is not a circuit.

3.4. Binary Golay Code

The binary Golay code is a [23, 12, 7] code with weight distribution [8]

i 0 7 8 11 12 15 16 23

Ai 1 253 506 1288 1288 506 253 1

The minimum distance satisfies 7 = d > 1
2(n − k + 1) = 6 and so by Prop. 3

gives rise to the following result.

Proposition 8. The binary Golay code is Singleton.

The parity check extension of the binary Golay coded is the extended binary
[24, 12, 8] Golay code. Note that this code contains no codeword of Hamming
weight 23− 12 + 2 = 13 and so Prop. 5 yields the following result.

Proposition 9. The extended binary Golay code is Singleton.

3.5. Reed-Muller Codes

Reed-Muller codes can be introduced by using the (u | u+ v)-construction [8].
Let m ≥ 2 and r be integers with 0 ≤ r ≤ m. The rth order Reed-

Muller code of length 2m denoted by R(r,m) is for r = 0 defined as the binary
repetition code, i.e., R(0,m) = {0,1} ⊂ F2m

2 , where 1 is the all-1 word, for
r = m as the ambient space, i.e., R(m,m) = F2m

2 , and for 1 ≤ r < m as

R(r,m) = {(u, u+ v) | u ∈ R(r,m− 1), v ∈ R(r − 1,m− 1)} .

The dimension of the code R(r,m) is k =
∑r

i=0

(

m
i

)

and the minimum distance
is d = 2m−r. Furthermore, the dual of the rth order Reed Muller code is the
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Reed Muller code R⊥(r,m) = R(m− r− 1,m) for 0 ≤ r < m and R⊥(m,m) =
{0}.

Let G(r,m) denote a generator matrix for R(r,m). Clearly, G(0,m) is the
all-1 row vector and G(m,m) is the identity matrix I2m . By the (u | u + v)-
construction, a generator matrix for the other Reed-Muller codes is given as
follows,

G(r,m) =

(

G(r,m − 1) G(r,m − 1)
0 G(r − 1,m− 1)

)

. (4)

As already pointed out, the trivial codes R(0,m) and R(m,m) are Singleton
for all integers m ≥ 2.

Proposition 10. The first order Reed-Muller codes are Singleton.

Proof. Let m ≥ 2. The code R(1,m) is a [2m,m + 1] code with weight
distribution A0 = 1, Ad = 2m+1 − 2, and An = 1, where d = 2m−1 is the
minimum distance of the code. The minimum-weight codewords satisfy the
Singleton bound 2m−1 = d ≤ n−k+1 = 2m−m and so the code is Singleton.

Proposition 11. For any integer m ≥ 2, the (m−1)th order Reed-Muller

code is Singleton.

Proof. The code R(m−1,m) is an even-weight code consisting of all vectors
in F22m with even Hamming weight. Its Singleton bound is 2 and so it is an
MDS code.

Proposition 12. The second order Reed-Muller codes R(2, 3) and R(2, 4)
are Singleton, and for any integer m ≥ 5 the second-order Muller code R(2,m)
is not Singleton.

Proof. The code R(2,m) is an
[

n = 2m, k = 1 +m+
(

m
2

)]

code with mini-

mum distance dm = 2m−2 and the Singleton bound is Sm = 2m − m(m+1)
2 .

We have S3 = 2 and d3 = 2 as well as S4 = 6 and d4 = 4. In each case,
dm > 1

2 · Sm and thus by Prop. 3, the codes R(2, 3) and R(2, 4) are Singleton.
Claim that for any m ≥ 5, the code R(2,m) is not Singleton. Indeed, let

m ≥ 5. A generator matrix for R(2,m) is

G(2,m) =

(

G(2,m − 1) G(2,m − 1)
0 G(1,m − 1)

)

.

Since G(1,m− 1) is a generator matrix for the first-order Reed-Muller code of
length 2m−1, the vector c = (0, . . . , 0, 1, . . . , 1) of length 2m consisting of 2m−1
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entries 0 and 2m−1 entries 1 belongs to the code R(2,m). The codeword c

satisfies wt(c) = 2m−1 ≤ 2m − m(m+1)
2 = Sm for any m ≥ 5. Moreover, the

submatrix of G(2,m) corresponding to the zero entries of c is

G(2,m)n\supp(c) =

(

G(2,m − 1)
0

)

and has rank

rk (G(2,m − 1)) =
2

∑

i=0

(

m− 1

i

)

= m+

(

m− 1

2

)

.

But k−1 = m+
(

m
2

)

and so rk
(

G(2,m)n\supp(c)
)

< k−1. Thus the codeword c
violates rank condition in Eq. (1) and hence the code R(2,m) is not Singleton.

Lemma 13. For any integers m ≥ 2 and r with 1 ≤ r ≤ m, the code

R(r,m) contains the codeword (0, . . . , 0, 1, . . . , 1) of Hamming weight 2m−r+1.

Proof. Note that the code R(1,m) contains the all-1 word of Hamming
weight 2m.

Let r > 1. By definition, the codewords of R(r,m) are of the form (u, u+v),
where u ∈ R(r,m − 1) and v ∈ R(r − 1,m − 1). By induction, the codeword
c = (0, . . . , 0, 1, . . . , 1) of length 2m−1 and Hamming weight 2(m−1)−(r−1)+1 =
2m−r+1 belongs to R(r−1,m−1). Therefore, the codeword (0 | 0+c) = (0 | c)
has the required property.

Proposition 14. Let m ≥ 2 and r be integers with 1 ≤ r ≤ m. If

2m −
r

∑

i=0

(

m

i

)

+ 1 ≥ 2m−r+1, (5)

then the rth order Reed-Muller code of length 2m is not Singleton.

Proof. The code R(r,m) has length n = 2m, dimension k =
∑r

i=0

(

m
i

)

, and
by Eq. (4), the following generator matrix in upper-triangular block-diagonal
form,

G(r,m)=















G(r,m−1) ∗ ∗ ∗
0 G(r−1,m−2) ∗ ∗
... 0

. . .
...

...
G(2,m−r+1) ∗

0 0 G(1,m−r+1)















.
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By Lemma 13, the vector c = (0, . . . , 0, 1, . . . , 1) with Hamming weight 2m−r+1

lies in R(r,m). Moreover by hypothesis, Eq. (5), the Hammig weight of this
codeword satisfies the Singleton bound. The submatrix of G(r,m) correspond-
ing to the zero entries of c is obtained from G(r,m) by removing the last 2m−r+1

columns, i.e.,

G(r,m)n\supp(c) =















G(r,m − 1) ∗ ∗
0 G(r − 1,m− 2) ∗
... 0

. . .
...

G(2,m− r + 1)
0 0















.

Since the lastm−r+2 rows of this submatrix are zero, its rank is k−(m−r+2) <
k − 1. Hence, the code R(r,m) is not Singleton.

The above result is in accordance with Cor. 10 and Prop. 11, 12 showing
that the codes R(r,m) are Singleton for r = 0, 1,m − 1,m.

The next result shows that the number of Reed-Muller codes which are
Singleton is finite.

Proposition 15. For any integer r ≥ 2, there exists a positive number

M0 such that for all integers m ≥ M0 the code R(r,m) is not Singleton.

Proof. Claim that

lim
m→∞

2m −∑r
i=0

(

m
i

)

+ 1

2m−r+1
= 2r−1 > 0. (6)

Indeed,

lim
m→∞

2m −∑r
i=0

(

m
i

)

+ 1

2m−r+1
= 2r−1 −

lim
m→∞

∑r
i=1

(

m
i

)

lim
m→∞

2m−r+1
. (7)

In the quotient on the right-hand side, both denominator and numerator con-
verge to infinity for m → ∞. Thus L’Hpital’s rule can be used to compute the
limit. To this end, note that

∑r
i=0

(

m
i

)

as a polynomial in m is of degree r and
2m−r+1 as a function in m differentiated a few times yields C · 2m−r+1, where
C is a constant. Therefore, if L’Hpital’s rule is applied r times, then

lim
m→∞

∑r
i=1

(

m
i

)

lim
m→∞

2m−r+1
= lim

m→∞

C̃

C · 2m−r+1
= 0,
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where C̃ is a constant. Inserting this into Eq. (7) yields Eq. (6) proving the
claim.

By Eq. (6), for any ǫ > 0 there exists a number M0 such that for all integers
m ≥ M0,

∣

∣

∣

∣

∣

2r−1 − 2m −∑r
i=0

(

m
i

)

+ 1

2m−r+1

∣

∣

∣

∣

∣

< ǫ. (8)

Note that taking the absolute value on the left-hand side of Eq. (8) is not
necessary since the value is already non-negative. Setting ǫ = 2r−1 − 1 gives

2m−r+1 < 2m −
r

∑

i=0

(

m

i

)

+ 1.

Hence by Prop. 14, the result follows.

3.6. Cyclic Codes

Binary cyclic codes form a useful class of codes [8]. They contain the binary
Hamming codes and so by Prop. 7 not all binary cyclic codes can be Singleton.

A binary linear code C of length n is cyclic if the cyclic shift of coordinates
i 7→ i+1 modulo n of any codeword also yields a codeword. Each binary vector
c = (c0, c1, . . . , cn−1) can be associated with a polynomial c(x) = c0+c1x+ · · ·+
cn−1x

n−1 in F2[x]. In this case, the cyclic shift of a codeword c corresponds to
the codeword obtained by multiplying the polynomial c(x) by x modulo xn−1.
It follows that the binary cyclic codes of length n are precisely the ideals in the
quotient ring F2[x]/〈xn−1〉. Furthermore, for each non-zero cyclic code C ⊂ Fn

2

there exists a polynomial g(x) in F2[x] called generator polynomial of C with
the following properties:

• g(x) is the unique monic polynomial in C of minimal degree and g(x)
divides xn − 1,

• g(x) generates C as an ideal in F2[x]/〈xn − 1〉, written C = 〈g(x)〉,

• k = n − deg g(x) is the dimension and {g(x), xg(x), . . . , xk−1g(x)} is a
basis for C.

These properties imply that the binary cyclic codes of length n are in one-to-one
correspondence with the factors of the polynomial xn − 1 in F2[x].

In the following, the length n is assumed to be odd (in this case, the poly-
nomial xn − 1 has no repeated irreducible factors).
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Example 2. Consider the binary cyclic codes of length 7. The factoriza-
tion of x7 − 1 into irreducible components gives

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3).

Thus there are eight binary cyclic codes of length 7. Computing the code
parameters and applying Prop. 3 reveals that all these cyclic codes are Singleton
(Table 1).

k generator polynomial d S Singleton?

1 1 + x+ x2 + x3 + x4 + x5 + x6 7 7
√

3 1 + x2 + x3 + x4 4 5
√

3 1 + x+ x3 + x4 4 5
√

4 1 + x2 + x3 3 4
√

4 1 + x+ x3 3 4
√

6 1 + x 2 2
√

Table 1: Parameters of the binary cyclic codes of length 7.

Example 3. Consider the binary cyclic codes of length 9. The factoriza-
tion of x9 − 1 into irreducible polynomials yields

x9 − 1 = (1 + x)(1 + x+ x2)(1 + x3 + x6).

It follows that there are eight binary cyclic codes of length 9. By Prop. 3, the
cyclic codes of dimension 2 and 7 are Singleton as are the trivial ones (Table 2).

It remains to inspect the codes C1 = 〈1 + x3〉 and C2 = 〈1 + x3 + x6〉. The
codeword (1, 0, 1, 0, 0, 0, 0, 0, 0) and its cyclic shift (0, 1, 0, 1, 0, 0, 0, 0, 0) belong
to C1. Their supports are disjoint and their Hamming weights sum up to 4
which is the Singleton bound. Thus by Prop. 2, the code C1 is not Singleton.
A similar argument exhibits that the code C2 is not Singleton.

In Prop. 3 it has been shown that d > 1
2(n − k + 1) is a sufficient though

not necessary condition for a code to be Singleton. The next result deals with
the case d ≤ 1

2 (n− k + 1).

Proposition 16. Let C be a binary cyclic [n, k, d] code. If

d ≤ 1

2
(n− k + 1) and d− 1 <

n− d

k − 1
, (9)
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k generator polynomial d S Singleton?

1 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 9 9
√

2 1 + x+ x3 + x4 + x6 + x7 6 8
√

3 1 + x3 + x6 3 7 ×
6 1 + x3 2 4 ×
7 1 + x+ x2 2 3

√

8 1 + x 2 2
√

Table 2: Parameters of the binary cyclic codes of length 9.

then C is not a Singleton code.

Proof. Suppose both inequalities hold.

Let c ∈ C be a codeword of minimal Hamming weight d. Since C is cyclic,
any number of cyclic shifts of c yields another codeword in C. Assume that c
can be shifted by one position such that the resulting codeword c′ has support
disjoint from that of c. Then the codeword c+ c′ would have Hamming weight
2d ≤ n− k+1 and by Prop. 2 it would follow that the code C is not Singleton.

Claim that one cyclic shift of c yields a codeword c′ whose support is disjoint
from supp(c). To this end, denote by s the number of blocks of consecutive 1’s,
which is also the number of blocks of consecutive 0’s, because every block of
consecutive ones is followed by a block of consecutive zeros and vice versa. Here
a number of consecutive ones or zeros at the beginning and at the end counts
as a single block. The number s can be bounded as follows,

n− d

k − 1
≤ s ≤ d. (10)

The upper bound is obvious. In order to obtain the lower bound, note that any
block of consecutive zeros is of length at most k − 1. Because otherwise there
would be a codeword corresponding to a polynomial of degree less than n− k,
which would be smaller than the degree n− k of the generator polynomial. It
follows that s · (k− 1) ≥ n− d, since a codeword of minimum Hamming weight
has n− d zeros.

Combining the inequalities (9) and (10) gives d−1 < s ≤ d and hence s = d.
Thus the codeword c has d blocks of consecutive ones which are all of length 1.
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Since c has Hamming weight d, it follows that each one-entry is followed by at
least one zero-entry. This proves the claim and the result is established.

Example 4. Consider the binary cyclic codes of length 15 generated by
g(x) = 1+ x5 + x10. This is an [15, 5, 3] code and so, n−d

k−1 = 12
4 = 3 > 2 = d− 1

and d = 3 ≤ 1
211 = 1

2(15− 5 + 1). Thus by Prop. 16 this code is not Singleton.

The previous examples and others exhibit that the binary cyclic codes up to
length 19 are Singleton if the condition d > 1

2(n− k + 1) is satisfied. However,
this condition is not necessary as will be shown next.

Example 5. Consider the binary cyclic code of length 21 generated by
the polynomial

g(x) = 1 + x+ x2 + x4 + x5 + x8 + x9.

The dimension of this code is k = 12 and so the Singleton bound is S = 10.
Since the polynomial

c(x) = 1 + x10 + x12 + x17 + x18 = g(x) · (1 + x+ x3 + x5 + x9)

belongs to the code, the minimum distance is d ≤ 5 = 1
2 ·S. In fact, the weight

distribution of the code is

i 0 5 6 7 8 9 10

Ai 1 21 168 360 210 280 1008
.

Note that the 21 cyclic shifts of the polynomial c(x) provide all codewords of
minimal Hamming weight. It follows that there are no codewords as in Prop. 2
and hence this code is Singleton.

References

[1] W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, American
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