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CONSTRAINTS ON COUNTEREXAMPLES

TO THE CASAS-ALVERO CONJECTURE

AND A VERIFICATION IN DEGREE 12

WOUTER CASTRYCK, ROBERT LATERVEER, AND MYRIAM OUNAÏES

Abstract. In the first (theoretical) part of this paper, we prove a number of
constraints on hypothetical counterexamples to the Casas-Alvero conjecture,
building on ideas of Graf von Bothmer, Labs, Schicho and van de Woestijne

that were recently reinterpreted by Draisma and de Jong in terms of p-adic
valuations. In the second (computational) part, we present ideas improving
upon Diaz-Toca and Gonzalez-Vega’s Gröbner basis approach to the Casas-
Alvero conjecture. One application is an extension of the proof of Graf von
Bothmer et al. to the cases 5pk, 6pk and 7pk (that is, for each of these cases,
we determine the finite list of primes p to which their proof is not applicable).
Finally, by combining both parts, we settle the Casas-Alvero conjecture in
degree 12 (the smallest open case).

1. Introduction and overview

1.1. The subject of this article is the following intriguing conjecture [3]:

Conjecture 1 (The Casas-Alvero conjecture, 2001). Let f(x) ∈ C[x] be of degree
d > 0 and suppose that for each j = 1, . . . , d − 1 there exists an a ∈ C such that
f(a) = f (j)(a) = 0, where f (j)(x) denotes the jth derivative. Then f(x) is the dth
power of a linear polynomial.

For each given degree d, proving Conjecture 1 (if true) boils down to a finite
Gröbner basis computation. In 2006, this was used by Diaz-Toca and Gonzalez-
Vega to verify the conjecture for d ≤ 7 [6]. Shortly afterwards, Graf von Bothmer,
Labs, Schicho and van de Woestijne [8] proved a theoretical result settling the cases
d = pk and d = 2pk (where p is prime and k ≥ 0 is an integer). The proof uses
reduction-mod-p arguments in algebraic geometry. It was recently rewritten in the
more elementary (and slightly more powerful) language of p-adic valuations, in a
nice overview due to Draisma and de Jong [7].

1.2. Because of a lack of a general strategy, beyond the degree, we subdivide the
set of hypothetical counterexamples f(x) to the Casas-Alvero conjecture by

• their number of distinct roots #roots(f),
• their type type(f), which is the minimal number of “recycled” roots minus
one; that is,

min
{
#S

∣∣∣S ⊂ C and ∀j : ∃ a ∈ S : f(a) = f (j)(a) = 0
}

− 1,
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where j ranges over {1, . . . , d− 1};
• their scenario scen(f), which is

(1) min
{
(s1, . . . , sd−1) ∈ Zd−1

≥0

∣∣∣ ∃ ai’s ∈ C : ∀j : f(asj ) = f (j)(asj ) = 0
}
,

where the minimum is taken lexicographically and j ranges over {1, . . . ,
d− 1}. Note that type(f) is the maximal entry of scen(f).

Example. Since it is conjecturally impossible to give examples over C, consider
f(x) = x(x− 1)4(x− 8)(x− 18) ∈ F23[x]. One checks that the common roots of f
with f (1), . . . , f (6) are

{1}, {1, 18}, {1}, {0}, {18}, {1},

respectively. So type(f) = 2 and scen(f) = (0, 0, 0, 1, 2, 0) (take a0 = 1, a1 =
0, a2 = 18).

1.3. The scenario (s1, . . . , sd−1) ∈ Zd−1
≥0 of a degree d counterexample f ∈ C[x] to

the Casas-Alvero conjecture always satisfies s1 = 0 and sj ≤ max{ si | i < j }+1 for
all j = 2, . . . , d− 1. A sequence of this form will therefore be called a scenario for
degree d. In view of the above, the type of a scenario is defined to be its maximal
entry—we denote it by type(s). The number of scenarios for a given degree d grows
quickly with d. For example, in our main case of interest d = 12, we have

1, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55, 1

scenarios of type 0, . . . , 10, respectively, amounting to a total of 678570.

1.4. Let s = (s1, . . . , sd−1) be a scenario for degree d, and let t = type(s). Let
f(x) ∈ C[x] be a degree d counterexample to the Casas-Alvero conjecture. Then
we say that f(x) matches with s if there exist a0, . . . , at ∈ C such that

• f(x) = g(x) · (x− a0)(x− a1) · · · (x− at) for a degree d− 1− t polynomial
g(x) ∈ C[x],

• f(asj ) = f (j)(asj ) = 0 for all j = 1, . . . , d− 1.

Clearly f(x) matches with its own scenario scen(f), but it may also match with
various other scenarios.

Example (continued). The polynomial f(x) = x(x− 1)4(x− 8)(x− 18) ∈ F23[x]
also matches with (0, 1, 0, 2, 1, 0) (and many more).

1.5. In Section 2, we prove a number of general constraints on these attributes. For
instance, we find that

• #roots(f) ≥ 5,
• 2 ≤ type(f) ≤ d−3 (the first inequality being due to Draisma and Knopper
[7, Proposition 6]),

• if type(f) = d− 3, then no consecutive entries of scen(f) are equal.

The methods used here are classically flavoured (Gauss–Lucas, Newton, Rolle).
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1.6. In Section 3, using the p-adic valuation approach, we prove additional con-
straints for certain special degrees. Our main results are on degrees of the form
p+ 1:

Theorem 2. Let p be prime and let f(x) be a degree d = p+ 1 counterexample to
the Casas-Alvero conjecture. Let c be the root of f (d−1)(x). Then f (1)(c) �= 0, and
there exist at least two indices 2 ≤ j1 < j2 ≤ d−2 such that f (j1)(c) = f (j2)(c) = 0.
In particular, type(f) ≤ d− 4. Moreover, if j1 < · · · < jm are the indices between
2 and d− 2 for which f (d−j1)(c) = · · · = f (d−jm)(c) = 0, then the determinant of

(2) Δf =

⎡
⎢⎢⎢⎢⎢⎣

−1 j1 0 0 · · · 0

−1
(
j2−2
j1−2

)
j2 j2 0 · · · 0

...
...

...
...

. . .
...

−1
(
jm−2
j1−2

)
jm

(
jm−2
j2−2

)
jm

(
jm−2
j3−2

)
jm · · · jm

−1 (−1)j1 (−1)j2 (−1)j3 · · · (−1)jm

⎤
⎥⎥⎥⎥⎥⎦

is a multiple of p.

Theorem 2 implies that every degree d = p + 1 counterexample to the Casas-
Alvero conjecture matches with an element of the strongly reduced list of scenarios
s = (s1, . . . , sd−1) for which

• sd−1 �= 0,
• the set of indices 2 ≤ j ≤ d − 2 for which sd−j = sd−1 satisfies the above
determinant condition.

For d = 12 (p = 11), the list contains

(3) 0, 48, 1668, 8172, 11586, 6298, 1469, 146, 5, 0, 0

scenarios of type 0, . . . , 10, respectively, amounting to a total of 29392. In type 8,
the five scenarios read

(4)

(0, 1, 2, 3, 4, 5, 6, 7, 3, 8, 3),
(0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 5),
(0, 1, 2, 3, 4, 3, 5, 6, 7, 8, 3),
(0, 1, 2, 3, 4, 2, 5, 6, 7, 8, 2),
(0, 1, 2, 3, 2, 4, 5, 6, 7, 8, 2);

indeed, the only pairs (j1, j2) for which detΔf ≡ 0 mod 11 are (3, 8), (5, 6), (6, 8),
(6, 9), (7, 9).

1.7. For the computational part of our paper, we turn back to the original reduction-
mod-p setting used by Graf von Bothmer et al. Because of the interplay between
characteristic 0 and characteristic p > 0, the following general definition is conve-
nient.

Definition 1. Let k be an algebraically closed field. We say that a degree d
polynomial f ∈k[x] (d>0) is a Casas-Alvero polynomial or CA-polynomial (over k)
if f is not a power of a linear polynomial and if for each j = 1, . . . , d−1 there exists

an a ∈ k such that f(a) = f
(j)
H (a) = 0.

Here, f
(j)
H denotes the jth Hasse derivative (using Hasse derivatives makes the

Casas-Alvero condition somewhat more restrictive; it makes no difference in char-

acteristic 0 or p > d − 1, where f
(j)
H = 1

j!f
(j)). Then the main theorem of [8]

reads:
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Theorem 3 (Graf von Bothmer, Labs, Schicho, van de Woestijne). Let d > 0 be
an integer and let p be a prime number. If no CA-polynomials of degree d exist over
Fp, then the Casas-Alvero conjecture is true in degree dpk for all integers k ≥ 0.

Since it is trivial that no CA-polynomials of degree 1 or 2 can exist (in any
characteristic), the cases pk and 2pk follow. More generally, we call a prime p a
bad prime for degree d if there exist CA-polynomials of degree d in characteristic p.
Then it is easily verified that p = 2 is the sole bad prime for degree d = 3. De Jong
and Draisma [7] proved that the bad primes for degree d = 4 are p = 3, 5, 7.

1.8. In Section 5 we present a Gröbner basis algorithm, the basic version of which
takes as input an integer d > 0 and a prime number p (or p = 0), and outputs
whether or not CA-polynomials of degree d exist in characteristic p. The basic idea
is to classify all CA-polynomials by their scenario (the definitions in 1.2 straight-
forwardly generalize to arbitrary k—this was already used in the example after
1.2). We will see that scenarios of moderately low type t can be ruled out easily
(if the Casas-Alvero conjecture is true). In characteristic 0, the computation seems
feasible up to d · t ≈ 50, say. In small characteristic p, this can be pushed to about
twice that value.

1.9. By running the algorithm in characteristic 0 and analyzing the prime factors
appearing in certain resulting Nullstellensatz expansions, we can find the bad primes
for d up to 7.

Theorem 4. There are

• 9 bad primes for degree d = 5, namely,

p = 2, 3, 7, 11, 131, 193, 599, 3541, and 8009;

• 53 bad primes for degree d = 6, namely, the primes listed in Table 1,
• 366 bad primes for degree d = 7, namely, the primes listed in the file
badprimes7.txt that accompanies this paper—the smallest non-bad prime
(apart from p = 7) is 127—the largest bad prime is

24984712021698392647916525667237483011737174983678606896870094983849

9096141806825287856933123954724798488422551659890912229726792102063

(a 135-digit number).

It should be noted that the possibility of enumerating bad primes using Gröbner
bases is already reported upon by Graf von Bothmer et al. [8], and that the bad
primes for d = 5, resp., d ∈ {5, 6} have been independently computed by Chellali
and Salinier [4] and de Frutos [5], respectively.

1.10. Finally, in Section 6, we combine our theoretical and computational ap-
proaches. A naive run of our algorithm in degree 12 lies completely out of reach.
But in view of Theorem 2 and certain reduction-mod-p considerations, it suffices
to restrict to a limited list of scenarios and to run the algorithm in characteristic
p. In doing so, the computation becomes feasible:

Theorem 5. Conjecture 1 is true for d = 12.

The margin is tight: Each of the five scenarios of (4) took approximately three
weeks of computation and required about 90 GB of RAM. Pushing the analogous
computation to d = 20, the next open case, lies out of reach (see 6.5).
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Table 1. Bad primes for degree 6 (53 primes)

2 5 7 11
13 19 23 29
37 47 61 67
73 97 257 811
983 1069 1087 1187
1487 1499 1901 2287
3209 3877 3881 4019
4943 5471 6983 8699
9337 15131 15823 20771
21379 23993 150203 266587
547061 685177 885061 1030951
7783207 17250187 40362599 9348983563
70016757407 2610767527031 225833117528659 7390044713023799
51313000813080529

1.11. The main computations have been carried out using Magma [2] version 2.18-2
on a computer called matrix, running Ubuntu 11.10 on a 6-core Intel Xeon 2.53
GHz processor with 96 GB RAM. Some additional calculations were executed using
Magma version 2.15-12 on kasparov, running Debian GNU/Linux 6.0.4 on an 8-
core x86-64 2.93 GHz processor with 64 GB RAM.∗

1.12. We would like to thank Filip Cools, Jan Schepers, Fréderik Vercauteren and
an anonymous referee for some helpful discussions and/or comments. We are also
grateful to the Department of Electrical Engineering (KU Leuven), for allowing us
to use kasparov.

2. General constraints on counterexamples

2.1. The following fact is easy to check and will be used throughout:

Lemma 6. Let f be a CA-polynomial over k of degree d > 0, α1, α2 ∈ k∗ and
β ∈ k. Then the polynomial g(x) = α1f(α2x+ β) is also CA.

The polynomials f and g will be called equivalent. Note that the number of
distinct roots, the type, the scenario, the matching or not with a given scenario,
. . . are all preserved by equivalence.

Another frequently used fact is:

Proposition 7. Let f ∈ C[x] be a polynomial of degree d all of whose roots are on
a line (when plotted in the complex plane). Then for all j = 0, . . . , d− 2:

f (j)(c) �= 0, f (j+1)(c) = 0 =⇒ f (j+2)(c) �= 0.

∗Four files accompany this paper: CAbadprimes.m, CAbadprimes7test.m, badprimes7.txt and
CAdeg12.m. These can be downloaded at https://perswww.kuleuven.be/~u0040935.
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Proof. Using a transformation of the above kind we may assume that f and its
derivatives are real polynomials having real roots only. For c ∈ R and j ∈ {0, . . . ,
d−2}, denote by mj(c) the multiplicity of c as a zero of f (j), and by Nj the number

of distinct roots of f (j). We have the relations∑
c:f(j)(c)=0

mj+1(c) =
∑

c:f(j)(c)=0

(mj(c)− 1) = d− j −Nj

(5)
∑

c:f(j)(c) �=0

mj+1(c) = d− j − 1−
∑

c:f(j)(c)=0

mj+1(c) = Nj − 1.

By Rolle’s theorem, there is a zero of f (j+1) strictly between any pair of zeros of
f (j); thus,

#{ c ∈ R | f (j)(c) �= 0, f (j+1)(c) = 0 } ≥ Nj − 1.

From (5) we conclude that mj+1(c) = 1 whenever f (j)(c) �= 0, f (j+1)(c) = 0. �

Finally, thanks to the results of Graf von Bothmer et al. [8], we may assume that
the degree of a counterexample to the Casas-Alvero conjecture is at least 12. This
will also be used in some of the proofs below.

2.2. We begin with some considerations on the type:

Proposition 8. Let f ∈ C[x] be a CA-polynomial of degree d and let Γ be the
convex hull of the roots of f (when plotted in the complex plane). Let m ≥ 2 be
the maximum of the multiplicities of these roots, and let δ = 1 if this maximum is
attained by a non-vertex of Γ (let δ = 0 otherwise). Let γ ≥ 2 be the number of
vertices of Γ. Then 2 ≤ type(f) ≤ d+ 1− γ −m− δ ≤ d− 3.

Proof. For each vertex v of Γ we have:

• f (j)(v) �= 0 for all j = 1, . . . , d− 1, or
• v has multiplicity at least 2

(by the Gauss–Lucas theorem). This means that among the d roots of f , counting
multiplicities, at least γ of them are not needed to find a common root for each
derivative. If δ = 1, some non-vertex has multiplicity m, so m− 1 additional roots
are superfluous. Therefore, at most d − γ − (m − 1) roots are needed. If δ = 0,
then the bound reads d − (γ − 1) − (m − 1). In both cases, the upper bound for
type(f) follows. The lower bound follows from an observation by Draisma and
Knopper [7, Proposition 6]. �

Remark. Proposition 8 remains valid when we replace γ by the number of roots on
the boundary of Γ (given that we adapt δ accordingly).

Refining to the level of scenarios, we find:

Proposition 9. Let d > 2 be an integer and let s = (s1, s2, . . . , sd−1) be a scenario
for degree d. If

(1) type(s) ∈ {0, 1, d− 2}, or
(2) type(s) ≤ d− 3, the first d− 2− type(s) entries of s are zero, and among

sd−1−type(s), . . . , sd−1 there is a zero or two consecutive entries that are
equal,

then there are no CA-polynomials f ∈ C[x] for which scen(f) = s.
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Proof. The first part is an immediate corollary to Proposition 8. As for the second
statement, suppose on the contrary that f is a CA-polynomial for which scen(f) =
s, with t = type(s) ≤ d − 3, and that the first d − 2 − t entries of s are equal
to zero. Let a0, . . . , at ∈ C be as in (1). Then a0 is a root with multiplicity at
least d− 1− t. Let Γ be the convex hull of the roots of f and let γ be its number
of vertices. Using Proposition 8, we conclude that γ = 2 and that a0 is a vertex.
Then if another 0 were to appear in s = scen(f), by Gauss–Lucas we would conclude
that the multiplicity of a0 is strictly bigger than d− 1− t, which would contradict
Proposition 8. On the other hand, if two consecutive entries would be equal, some
high-order derivative of f(x) would have a double root. But since γ = 2, f(x) is
equivalent to a real-root polynomial, so Rolle’s theorem (see Proposition 7) would
imply that this double root is actually a root of f(x) with multiplicity strictly bigger
than d− t, again contradicting Proposition 8. �

Remark. Let s be as in the statement of Proposition 9. Then one cannot merely
conclude (without using new arguments, that is) the stronger statement that there
are no CA-polynomials f ∈ C[x] that match with s.

2.3. As immediate corollaries to the lower bound 2 ≤ type(f), we get the following
three easy facts: if f is a CA-polynomial (over C) of degree d, then

(1) f (2)(x) cannot be the (d− 2)th power of a linear polynomial,
(2) f cannot have a root of multiplicity at least d− 1,
(3) f has at least three distinct roots

(note that these statements can be proved in various other ways, see e.g. [13, Propo-
sition 2.2]). In the next two propositions, we will go a step further in directions (1)
and (2). Later on (Proposition 13 and Theorem 14), we will go two steps further
in direction (3).

Proposition 10. If f ∈ C[x] is a CA-polynomial of degree d, then f (3)(x) cannot
be the (d− 3)th power of a linear polynomial.

Proof. Suppose on the contrary that f (3)(x) is the (d − 3)th power of a linear
polynomial. Thanks to Lemma 6, we may assume f (3)(x) = d!

(d−3)!x
d−3. Assume

that f (1)(0) �= 0, so that f has a root of multiplicity at least 2 which is different
from 0. Then again by Lemma 6, we may assume f(1) = f (1)(1) = 0. Thus

f(x) = xd − (d− 1)x2 + (d− 2)x; f (2)(x) = (d− 1)
(
dxd−2 − 2

)
.

Solving f(x) = f (2)(x) = 0, we get x = d
d+1 : a contradiction because rational roots

of monic integer polynomials are necessarily integral. We conclude that f (1)(0) = 0.
Then, for some constant c, f (2)(x) = d(d−1)xd−2+2c and f(x) = xd+cx2. Solving
f(x) = f (2)(x) = 0, we get that c = 0. �

Proposition 11. Let f ∈ C[x] be a CA-polynomial of degree d, then f cannot have
a root of multiplicity at least d− 2.

Proof. Suppose that 0 is such a root. If f (d−1)(0) �= 0, then we may assume that
f(1) = f (d−1)(1) = 0 and

f(x) = xd−2(x2 − dx+ d− 1), f (d−2)(x) =
(d− 1)!

2
(dx2 − 2dx+ 2).
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Solving f(x) = f (d−2)(x) = 0, we get x = d+1
d ; again a contradiction. We conclude

that we necessarily have f (d−1)(0) = 0. Then, for some constant c, f(x) = xd +
cxd−2 and f (d−2)(x) = d!

2 x
2 + c. Solving f(x) = f (d−2)(x) = 0, we get c = 0. �

We have chosen to present an elementary proof of Proposition 11, though we
also can see it as a direct consequence of the forthcoming Proposition 13.

2.4. Let us recall some basic properties of the elementary symmetric polynomials.
Let a polynomial f and its derivatives be of the form

f (j)(x) =
d!

(d− j)!

(
xd−j +

(
d− j

1

)
a1x

d−j−1 +

(
d− j

2

)
a2x

d−j−2 + · · ·+ ad−j

)

(here by convention f = f (0)). Let σm(j) be the sum of the mth powers of the
roots of f (j), for j = 0, . . . , d−1. Then Newton’s formulas applied to each f (j) give
the following relations (see for example [11] for more details on Newton formulas):

Lemma 12.
r∑

k=1

σk(j)

(
d− j

r − k

)
ar−k = −r

(
d− j

r

)
ar

for 0 ≤ j ≤ d− 1, 1 ≤ r ≤ d− j. (It is understood that a0 = 1.)

In particular, for r = 1, we have that

σ1(j)

d− j
=

σ1(0)

d

for j = 0, . . . , d − 1, which means that the center of mass of the roots of the
derivatives is fixed. As obviously

σ1(d− 1) =
σ1(0)

d
= −a1

is the only root of f (d−1), we see that whenever f is a CA-polynomial over C, the

center of mass of its roots σ1(0)
d is itself a root of f . As a direct consequence, the

number of distinct roots of a CA-polynomial cannot be two. Actually, we can say
more: If f has more than two distinct roots, then at least one of them (the center
of mass) has to be in the interior of the convex hull of the roots. This fact also
follows immediately from the Gauss–Lucas theorem, and can be pushed further:

Proposition 13. Let f ∈ C[x] be a CA-polynomial. Then f has at least two
distinct roots in the interior of the convex hull of the roots, when plotted in the
complex plane. In particular, f has at least four distinct roots.

Proof. Assume that f has exactly one root, say 0, in the interior. Let ζ be among
the roots of f located on the boundary with maximal multiplicity m. Then by
Gauss–Lucas, f (m)(0) = f (m+1)(0) = · · · = f (d−1)(0) = 0 which means that for
j = m, . . . , d− 1:

f (j)(x) =
d!

(d− j)!
xd−j .

Taylor expansion at x = ζ gives

f(0) =
d∑

j=m

f (j)(ζ)

j!
(−ζ)j = ζd

d∑
j=m

(−1)j
(
d

j

)
= ζd(−1)m

(
d− 1

m− 1

)
.

As f(0) = 0, we get ζ = 0, which is a contradiction. �
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Note that Proposition 13 can also be deduced directly from 2 ≤ type(f).

2.5. We now prove the main result of this section:

Theorem 14. Let f be a CA-polynomial over C, then f has at least five distinct
roots.

Proof. Assume that f has four distinct roots. Then by the previous proposition, it
has at least two distinct roots in the interior of its Gauss–Lucas hull. This implies
that the four roots are on a line. By Lemma 6, we may assume that this is the real
line. We denote by m the maximal multiplicity of the roots of f . By Proposition 11,
we know that 2 ≤ m ≤ d− 3.

• First case: m ≤ d − 5. Again, using Lemma 6, we may assume without
loss of generality that the roots of f are as follows: a < 0 < 1 < b and
f (d−1)(0) = 0. Then a and b cannot be zeros of f (j) for d − 5 ≤ j ≤
d−1. Moreover, by Rolle’s theorem (see Proposition 7), each zero of f (j) is
simple. Then we necessarily have f (d−2)(1) = 0, f (d−3)(0) = 0, f (d−4)(1) =
0, f (d−5)(0) = 0. Integrating five times the expression f (d−1)(x) = d!x and
taking into account these constraints, we get f (d−5)(x) = d!

5!x(x
2−5)2. But

this contradicts the fact that the roots are simple.
• Second case: m = d− 4. In view of Lemma 6, we arrange the roots as a <
0 < b < 1 and we assume that f (d−1)(0) = 0. Denote by ma, m0, mb, m1

their respective multiplicities. Then again we must have f (d−2)(b) = 0,
f (d−3)(0) = 0, f (d−4)(b) = 0. As in the first case, computing the last
derivatives, we get

f (d−1)(x) = d!x, 2!f (d−2)(x) = d!(x2 − b2),

3!f (d−3)(x) = d!x(x2 − 3b2), 4!f (d−4)(x) = d!(x2 − 5b2)(x2 − b2).

Obviously, as f (d−4)(b) = 0, we have mb ≤ d − 5. From the Gauss–Lucas

theorem, we deduce that a < −
√
5b. Now we apply Lemma 12 with j = 0,

r = 1 and with j = 0, r = 3 to obtain

(6) maa+mbb+m1 = maa
3 +mbb

3 +m1 = 0.

We deduce that maa(a
2 − 1) = −mbb(b

2 − 1) and, looking at the sign, we
see that −a < 1. Then ma > −ama = mbb+m1 > m1, which implies that
ma ≥ 2 and m1 ≤ d− 5. In the case where ma = 2,m1 = mb = 1, (6) gives
a(a + 1)2 = 0. Thus this case cannot occur. We can readily deduce that
m0 ≤ d− 5. The only possibility left is ma = m = d− 4.

From the relation −(d − 4)a(1 − a2) = mbb(1 − b2), we deduce that
φ(−a) ≤ φ(b) where we put φ(t) = t(1 − t2). But φ is increasing on

[0, 1/
√
3] and we know that −a > b > 0. Thus we have −a > 1/

√
3. Along

with the linear equation in (6) this implies:

d− 4 = mb
b

−a
+m1

1

−a
<

mb√
5
+m1

√
3 < 4.

Since the Casas-Alvero conjecture is true for d ≤ 7, this is a contradiction.
• Third case: m = d− 3. We proceed as in the previous case. We have

f (d−1)(x) = d!x, 2!f (d−2)(x) = d!(x2 − b2), 3!f (d−3)(x) = d!x(x2 − 3b2).

Licensed to Johannes Kepler University. Prepared on Wed Sep  9 08:34:30 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3026 WOUTER CASTRYCK, ROBERT LATERVEER, AND MYRIAM OUNAÏES

From Gauss–Lucas we deduce that a < −
√
3b. Again, we obtain that

ma ≥ 2. Thus we necessarily have: ma = m, m0 = m1 = mb = 1. The
linear equation in (6) gives

d− 3 =
b

−a
+

1

−a
<

1√
3
+
√
3 < 3,

again a contradiction. �

3. Additional constraints for special degrees

3.1. We now turn our attention to certain special instances of d, in each case in-
volving a prime number p. Inspired by Draisma and de Jong’s approach [7], we
use p-adic valuations. Most of the proofs below have straightforward analogs in the
original reduction-mod-p setting of Graf von Bothmer et al. But at some points,
the valuation language does seem slightly more powerful. Our starting point is the
existence of a map

vp : C → Q ∪ {+∞}
satisfying

• vp(a) = +∞ if and only if a = 0,
• vp(ab) = vp(a) + vp(b) for all a, b ∈ C,
• vp(a+ b) ≥ min{vp(a), vp(b)} for all a, b ∈ C,

and extending the usual p-adic valuation on Z (i.e. if n = pr ·n′ with n′ prime to p,
then vp(n) = r). See e.g. [12, Chapter 4, Theorem 1]. Note that the last property
implies vp(a+ b) = min{vp(a), vp(b)} if vp(a) �= vp(b): we will make a frequent use
of this fact.

3.2. The p-adic valuations of binomial coefficients are well-understood. A formula
due to Legendre [10] states that for any n ∈ Z>0 and any j ∈ {0, . . . , n} one has

vp

(
n

j

)
=

sp(j) + sp(n− j)− sp(n)

p− 1
,

where sp(·) denotes the sum of the p-adic digits. Note that sp(j)+sp(n−j)−sp(n) is
a measure for the number of carries when adding n− j to j in base p. In particular,

vp

(
n

j

)
= 0 iff there are no carries.

It follows that:

Lemma 15. Let n ∈ Z>0 and k ∈ Z≥0. If j ∈ {0, 1, 2, . . . , npk} is not a multiple
of pk, then

vp

(
npk

j

)
> 0.

If n = pr + 1 for some r ∈ Z≥0, then the same conclusion holds under the weaker
assumption that j �∈ {0, pk, (n− 1)pk, npk}.

Proof. According to Legendre’s formula

vp

(
npk

j

)
=

sp(j) + sp(np
k − j)− sp(np

k)

p− 1
.
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Let q and ρ �= 0 be the quotient and remainder of j when divided by pk. Then
sp(np

k) = sp(n), sp(j) = sp(q) + sp(ρ), and

sp(np
k − j) = sp((n− q − 1)pk + (pk − ρ)) ≥ sp(n− q)− 1 + 1,

from which

vp

(
npk

j

)
≥ vp

(
n

q

)
+

sp(ρ)

p− 1
> 0.

A similar argument proves the second statement. �

3.3. We use this to prove:

Proposition 16. Let n ∈ Z>0 and k ∈ Z≥0 be integers, and let f ∈ C[x] be a
CA-polynomial of degree d = npk. Then

f, f (pk), f (2pk), . . . , f (d−pk)

do not share a common root. If n = pr + 1 for some integer r ≥ 0, one even has
that

f, f (pk), f (d−pk)

do not share a common root. As a consequence, if s = (s1, . . . , sd−1) is a scenario
for degree d and spk = s2pk = · · · = sd−pk (resp. spk = sd−pk), then there are no
CA-polynomials that match with s.

Proof. We only prove the first statement (the second assertion can be proved in
a similar way). Suppose on the contrary that f is a CA-polynomial such that

f, f (pk), . . . , f (d−pk) do have a common root. We may assume without loss of gen-
erality, using Lemma 6, that f is of the form

(7) f(x) = xd +

(
d

1

)
a1x

d−1 +

(
d

2

)
a2x

d−2 + · · ·+
(

d

d− 1

)
ad−1x,

that the assumed common root of f, f (pk), . . . , f (d−pk) is 0, and that

min{vp(xi) | i = 1, . . . , d} = 0,

where we have denoted by x1, x2, . . . , xd the zeros of f .
For j = 1, . . . , d− 1, we have:

(8)
j!

d!
f (d−j)(x) = xj +

(
j

1

)
a1x

j−1 +

(
j

2

)
a2x

j−2 + · · ·+
(

j

j − 1

)
aj−1x+ aj .

Using (8) with j = 1, . . . , d− 1, each time plugging in a common root of f (d−j) and
f (taking 0 if j is a multiple of pk), one proves by induction on j that

(9)

{
vp(aj) ≥ 0 for all j = 1, . . . , d− 1,
aj = 0 as soon as pk | j.

Let xj be such that vp(xj) = 0. Then taking valuations of both sides of the equality

xd
j = −

(
d

1

)
a1x

d−1
j −

(
d

2

)
a2x

d−2
j − · · · −

(
d

d− 2

)
ad−2x

2
j −

(
d

d− 1

)
ad−1xj

yields a contradiction with (9) and Lemma 15. �
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Note that if n = 1 or n = 2 the conclusion that f , resp., f and f (pk) do not share
a common root is trivially impossible. Hence the cases pk and 2pk tautologically
follow from Proposition 16. If d = pr + 1, the proposition implies that the root of
f (d−1)(x) must be a simple root of f(x). If p ≥ 3, this in turn can be seen as a
limiting case of the following statement:

Proposition 17. If d = pr + 1, then the root of f (d−1)(x) cannot be the mean of
two distinct roots of f(x).

Proof. Using Lemma 6 we can assume that f(x) is of the form (7) with a1 = 0 (i.e.
the root of f (d−1)(x) is 0), and that again all roots x1, . . . , xd have non-negative
valuation, with minimum 0. Let xj be such that vp(xj) = 0. Then the equality

dad−1xj = −xd
j −

(
d

2

)
a2x

d−2
j − · · · −

(
d

d− 2

)
ad−2x

2
j

implies that vp(ad−1) = 0. Let w ∈ C∗ be such that f(w) = f(−w) = 0. Then
0 = f(w)− f(−w) gives

dad−1w = −
(
d

3

)
a3w

d−3 −
(
d

5

)
a5w

d−5 − · · · −
(

d

d− 3

)
ad−3w

3.

Taking valuations yields a contradiction. �

The same argument can be used to show that the root of f (d−1)(x) cannot be
the mean of two distinct roots of f (1)(x).

3.4. From now on, we focus on the special case d = p+1. Using once again Lemma
6, we may assume that

(10)

⎧⎨
⎩

f(x) = xd + da1x
d−1 +

(
d
2

)
a2x

d−2 + · · ·+
(

d
d−2

)
ad−2x

2,

min{vp(xj) | j = 1, . . . , d} = 0,

where we have denoted by x1, . . . , xd−3, xd−2 = xd−1 = 0, xd = −a1 the roots of f .
For j = 1, . . . , d − 2, we then again have that expression (8) holds. Observe that
vp(a1) ≥ 0 because −a1 is one of the roots of f . As before, using equality (8) with

j = 2, . . . , d − 2, each time plugging in a common root of f (d−j) and f , we prove
by induction on j that

(11) vp(aj) ≥ 0 for all j = 1, . . . , d− 2.

Let xj be such that vp(xj) = 0. The equality

−da1x
d−1
j = xd

j +

(
d

2

)
a2x

d−2
j + · · ·+

(
d

d− 2

)
ad−2x

2
j

shows that vp(a1) = 0. Therefore, we may assume without loss of generality that
a1 = −1. Then we can write f(x) = (x− 1)g(x) where

g(x) = xd−1 − (d− 1)xd−2 +

((
d

2

)
a2 − (d− 1)

)
xd−3

+

((
d

3

)
a3 +

(
d

2

)
a2 − (d− 1)

)
xd−4

+ · · ·+
((

d

d− 3

)
ad−3 + · · ·+

(
d

2

)
a2 − (d− 1)

)
x2.
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In view of (11) and Lemma 15, all roots of g have strictly positive valuations
(actually greater than 1/(d−3)). As a consequence, we see that 1 is a simple root of
f (a fact already implied by Proposition 16) and that vp(xj) > 0 for j = 1, . . . , d−3.

Now whenever f (d−j)(1) �= 0, the Casas-Alvero property implies that f (d−j)(xj) = 0
with vp(xj) > 0 and from equality (8) we get vp(aj) > 0. But as

f(1) = 1− d+

(
d

2

)
a2 + · · ·+

(
d

d− 2

)
ad−2 = 0,

there is at least one index 2 ≤ j ≤ d−2 such that vp(aj) = 0. In other words, at least

one of the derivatives f (d−j)(1) = 0. If we put this together with Proposition 11
and the observations following Lemma 12, we get:

Lemma 18. Let f be a CA-polynomial over C of degree d = p + 1, where p is
prime. Let c be the center of mass of the roots of f . Then the following conditions
are satisfied:

• f (1)(c) �= 0, f (d−1)(c) = 0,
• f (j)(c) �= 0 for at least one j ∈ {2, . . . , d− 2},
• f (j)(c) = 0 for at least one j ∈ {2, . . . , d− 2}.

3.5. Let us now go further into the investigation of the orders of the derivatives
having the center of mass as a root, in order to prove Theorem 2. We may again
assume that f is of the form (10) and that a1 = −1. We will use the notation x ≡ y
if vp(x−y) > 0. In view of Lemma 18, let j1 < j2 < · · · < jm be the indices between

2 and d − 2 such that f (d−ji)(1) = 0 for i = 1, . . . ,m. As observed previously, for
all j ∈ {2, · · · , d − 2}, we have vp(aj) ≥ 0. If, moreover, j /∈ {j1, · · · , jm}, then
aj ≡ 0. From (8) with x = 1 and j = j1, j2, . . . , jm, we get

(12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− j1 + aj1 ≡ 0,

1− j2 +
(
j2
j1

)
aj1 + aj2 ≡ 0,

...

1− jm +
(
jm
j1

)
aj1 +

(
jm
j2

)
aj2 + · · ·+ ajm ≡ 0.

Using the equation f(1)
p = 0 and the inequalities vp

(
d
j

)
≥ 1 for j = 2, . . . , d− 2, we

obtain

(13) −1 +

(
d
j1

)
p

aj1 + · · ·+
(

d
jm

)
p

ajm ≡ 0.

Observe that for all 2 ≤ j ≤ d− 2 we have:(
d
j

)
p

=
d(d− 2)(d− 3) · · · (d− (j − 1))

j!

=
(p+ 1)(p− 1)(p− 2) · · · (p− (j − 2))

j!

=
1

j!
(pj−1 + αj−2p

j−2 + · · ·+ α1p) +
(−1)j−2(j − 2)!

j!
,

where α1, . . . , αj−2 are integers. Therefore,(
d
j

)
p

≡ (−1)j

j(j − 1)
.
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Putting equations (12) and (13) together and defining ãji =
aji

ji(ji−1) , we obtain:

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1 + j1ãj1 ≡ 0,

−1 +
(
j2−2
j1−2

)
j2ãj1 + j2ãj2 ≡ 0,

...

−1 +
(
jm−2
j1−2

)
jmãj1 +

(
jm−2
j2−2

)
jmãj2 + · · ·+ jmãjm ≡ 0,

−1 + (−1)j1 ãj1 + (−1)j2 ãj2 + · · ·+ (−1)jm ãm ≡ 0.

With Δf as in the statement of Theorem 2, we see that necessarily detΔf ≡
0; otherwise inverting (14) we would get that 1 ≡ 0. To conclude the proof of
Theorem 2 we show:

Lemma 19. Let f ∈ C[x] be a CA-polynomial of degree d = p+ 1 and let c be the
center of mass of its roots. Then there are at least two indices 2 ≤ j1 < j2 ≤ d− 2
such that f (j1)(c) = f (j2)(c) = 0.

Proof. If not, in virtue of Lemma 18 there exists a unique index 2 ≤ j ≤ d− 2 such
that f (d−j)(c) = 0. We can assume without loss of generality that f is of the form
(10) with a1 = −1 and construct Δf as above:

(15) detΔf =

∣∣∣∣ −1 j
−1 (−1)j

∣∣∣∣ = j − (−1)j .

Observe that 1 ≤ j − (−1)j ≤ j + 1 ≤ d − 2 for j ∈ 2, . . . , d− 3. Also, d − 2 −
(−1)d−2 = d− 3 because d is even (indeed, p �= 2 since the Casas-Alvero conjecture
is true for degree 3). Thus there is no way for p to divide detΔf . �
3.6. Theorem 2 implies that every CA-polynomial of degree d = p+1 matches with
a scenario s = (s1, . . . , sd−1) for which sd−1 �= 0 and the index set

ind(s) = { j | 2 ≤ j ≤ d− 2 and sd−j = sd−1 }
satisfies the corresponding determinant condition. We remark, however, that this
does not necessarily imply that the scenario of a CA-polynomial satisfies these
conditions. Indeed, imagine a CA-polynomial f ∈ C[x] of degree 12 for which

scen(f) = s = (0, 1, 2, 3, 4, 2, 5, 6, 4, 7, 4),

i.e., there exist a1, . . . , a7 ∈ C such that f(asj ) = f (j)(asj ) = 0 for j = 1, . . . , d− 1.
Then ind(s) = {3, 7} does not satisfy the determinant condition. However, it might
a priori be that f (6)(x) has both a2 and a4 as a root. Then f(x) also matches
with the scenario (0, 1, 2, 3, 4, 4, 5, 6, 4, 7, 4) �= scen(f). In this example, the index
set {3, 6, 7} satisfies the determinant condition.

3.7. We end our study of the degree p+ 1 case with the following observation.

Proposition 20. Let p be a prime number. Then there is no CA-polynomial of
degree d = p+ 1 all of whose roots are rational.

Proof. Using the notation and the results found in the proof of Lemma 18, we may
assume that f is of the form

f(x) =xd − dxd−1 +

(
d

2

)
xd−2

+ · · ·+ (−1)k−1

(
d

k − 1

)
xd−k+1 +

(
d

k

)
akx

d−k + · · ·+
(

d

d− 2

)
ad−2x

2,
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with vp(xj) ≥ 1 for j = 1, . . . , d−3. Here, we have denoted by k the smallest index

between 2 and d − 2 such that f (d−k)(1) �= 0 (we know from Lemma 18 that such
a k exists). We introduce the notation

Sm =
d−3∑
j=1

xm
j .

Then we have vp(S1) = vp(d − 1) = 1, and vp(Sj) ≥ 2 for j = 2, . . . , d − 2. Using
Newton’s formulas (see Lemma 12 applied to j = 0), we obtain

−k

(
d

k

)
ak =

k−1∑
j=0

(−1)j(1 + Sk−j)

(
d

j

)

=
k−1∑
j=0

(−1)j
(
d

j

)
+

k−1∑
j=0

(−1)jSk−j

(
d

j

)

= (−1)k−1

(
d− 1

k − 1

)
+

k−1∑
j=0

(−1)jSk−j

(
d

j

)
.

Note that vp

((
d
k

)
ak

)
> 1, which will lead to a contradiction:

• If k = 2, then the last equality becomes

−2

(
d

2

)
a2 = −(d− 1)+S2− dS1 = −(d− 1)+S2− d(d− 1) = −(d+1)(d− 1)+S2.

The valuation of the right-hand term is 1.
• If 3 ≤ k ≤ d− 2, then the right-hand term is

(−1)k−1

(
d− 1

k − 1

)
+

k−2∑
j=0

(−1)jSk−j

(
d

j

)
+ (−1)k−1S1

(
d

k − 1

)
.

But vp (Sk−j) ≥ 2 for j = 0, . . . , k−2, and vp(S1

(
d

k−1

)
) = 2, so the valuation

of the right-hand term is vp
(
d−1
k−1

)
= 1. �

We remark that the proof of Proposition 20 in fact implies that there are no
CA-polynomials of degree p+ 1 all of whose roots are contained in a number field
in which p does not ramify. Indeed, this ensures that the valuations of the xj are
integers. Hence we can still conclude that vp(xj) ≥ 1.

4. Algebraic varieties of counterexamples

4.1. Let k be an algebraically closed field and let d > 0 be an integer. The set of
equivalence classes (in the sense of Lemma 6) of CA-polynomials of degree d will
be denoted by CAk(d).

4.2. We have a surjective map

Φk(d, d− 2) : Vk(d, d− 2) → CAk(d) : (p1, . . . , pd−2) �→ x2(x− p1) · · · (x− pd−2),

where Vk(d, d− 2) ⊂ Pd−3
k is the projective variety defined by the ideal

Ik(d, d− 2) =
(
Resx(F, F

(j)
H )

∣∣∣ j = 2, . . . , d− 1
)
,
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with F = x2(x−P1) . . . (x−Pd−2) ∈ k[P1, . . . , Pd−2][x]. Therefore, in order to prove
that no CA-polynomials exist in degree d, it suffices to show that Vk(d, d− 2) = ∅.
Note that Vk(d, d− 2) is invariant under coordinate permutations, so it is sufficient
to show that Vk(d, d− 2) does not contain any points of the form (p1, . . . , pd−3, 1).
Setting Pd−2 = 1 in Ik(d, d− 2), we obtain an ideal of k[P1, . . . , Pd−3] that is equal
to the unit ideal if and only if Vk(d, d− 2) = ∅. This can be checked using a finite
Gröbner basis computation, which is exactly the approach of [6].

4.3. We also have a surjective map

Φk(d, 0) : Vk(d, 0) → CAk(d) :

(a1, . . . , ad−2) �→ x2(xd−2 + a1x
d−3 + · · ·+ ad−2),

where now Vk(d, 0) ⊂ Pk(d − 2; d − 1; . . . ; 2; 1) is the weighted projective variety
defined by the ideal

Ik(d, 0) =
(
Resx(F, F

(j)
H )

∣∣∣ j = 2, . . . , d− 1
)
,

with F = x2(xd−2 + A1x
d−3 + · · · + Ad−2) ∈ k[A1, . . . , Ad−2][x]. Again, in order

to show that no Casas-Alvero polynomials can exist in degree d, it is sufficient to
prove that Vk(d, 0) = ∅. This was used in the theoretical approach of [8].

4.4. We will make use of a hybrid version of the above maps. Namely, for each
t ∈ {0, . . . , d− 2} we have a surjective map

Φk(d, t) : Vk(d, t) → CAk(d) :

(p1, . . . , pt, a1, . . . , ad−2−t) �→ x2(x−p1) · · · (x−pt)(x
d−2−t+a1x

d−3−t+· · ·+ad−2−t),

where Vk(d, t) ⊂ Pk(1; . . . ; 1; d− 2− t; d− 3− t; . . . ; 2; 1) is the weighted projective
variety defined by the ideal

Ik(d, t) =
(
Resx(F, F

(j)
H )

∣∣∣ j = 2, . . . , d− 1
)

with
F = x2(x− P1) · · · (x− Pt)(x

d−2−t +A1x
d−3−t + · · ·+Ad−2−t)

in k[P1, . . . , Pt, A1, . . . , Ad−2−t][x]. Once more it is sufficient to show that Vk(d, t) =
∅ (for any value of t) in order to prove that no Casas-Alvero polynomials of degree
d exist over k.

4.5. To each scenario s for degree d of type t, we associate the variety

Vk(s) ⊂ Vk(d, t)

defined by the ideal

Ik(s) =
(
F

(j)
H (Psj )

∣∣∣ j = 2, . . . , d− 1
)
⊂ k[P1, . . . , Pt, A1, . . . , Ad−2−t],

where

F = x2(x− P1) · · · (x− Pt)(x
d−2−t +A1x

d−3−t + · · ·+Ad−2−t)

and P0 = 0. Then it is clear that Vk(s) parameterizes the CA-polynomials that
match with s. Recall that every CA-polynomial matches with at least one scenario
(e.g., its own scenario scen(f)). Thus, if one wants to show that no CA-polynomials
of degree d exist over k, it suffices to show that Vk(s) = ∅ for each scenario s for
degree d. This is essentially the “more primary decomposition” that was mentioned
in [8, Section 4], but in Section 5 below we will see that there is a significant amount
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of computational gain to be expected when viewing the set of CA-polynomials that
match with s as a subvariety of Vk(d, t) rather than of Vk(d, d − 2). Moreover, if
k = C, in view of the theoretical results obtained in Sections 2 and 3, it is actually
sufficient to check whether VC(s) = ∅ for a restricted set of scenarios. We will
elaborate the details of this for d = 12 in Section 6.

5. Revisiting the computational approach

5.1. We now describe the basic version of our algorithm, discarding the theoretical
results of Sections 2 and 3. The input is a field characteristic p (either 0 or a prime
number) along with an integer d > 2. The output is yes or no, depending on
whether Casas-Alvero polynomials exist in degree d and characteristic p or not.

Step 1. Create a list L (of length d−1) of lists, such that L[t] contains all scenarios
for type t (for t = 0, . . . , d−2). This can be done easily using d−2 nested for-loops.
Let k be the field of rational numbers if p = 0, and let k be the field with p elements
otherwise. Set answer := no.

Step 2. For t going from 1 to d− 2 do:

- Initiate the following variables/structures:
* R = k[P1, . . . , Pt−1, A1, . . . , Ad−2−t],
* S = R[x],
* P0 = 0 and Pt = 1,
* F (x) = x2(x− P1) · · · (x− Pt)(x

d−2−t +A1x
d−3−t + · · ·+Ad−2−t),

* ≺ = a monomial ordering that first eliminates A1, . . . , Ad−2−t and that
behaves like grevlex on the remaining variables P1, . . . , Pt−1.

- For s in L[t] do:

* Let Iaffk (s) ⊂ R be the ideal generated by F
(j)
H (Psj ) for j = 2, . . . , d−1.

Check whether or not Iaffk (s) = R by checking if the reduced Gröbner
basis (w.r.t. ≺) of Iaffk (s) equals {1}. If it does not, set answer := yes

and quit the loops.

Step 3. Output answer.

5.2. Modulo a base change to the algebraic closure of k, Iaffk (s) is obtained from
Ik(s) (as described in 4.5) by setting Pt = 1, so it only describes an affine part of
Vk(s). However, it suffices to verify that this affine part is empty. Indeed, the type
of a CA-polynomial corresponding to a point (p1, . . . , pt, a1, . . . , ad−2−t) ∈ Vk(s)
with pt = 0 is strictly smaller than t, so we would have encountered it already.

5.3. The variables A1, . . . , Ad−2−t appear linearly in the defining polynomials

F
(j)
H (Psj ). Therefore, they can be eliminated easily. (In fact, the corresponding

linear system is in echelon form, so the Ai’s could also be eliminated bottom-up
by hand.) The lower the type, the more variables can be eliminated and the easier
the Gröbner basis computation becomes (in the extreme case t = 1, one obtains a
linear system in d− 3 variables). This is the main reason for our use of the hybrid
varieties Vk(d, t).

5.4. It is theoretically possible to avoid Gröbner basis computations and use linear
algebra instead. Indeed, Iaffk (s) = R is equivalent to the solvability of

(16) 1 = g1 · F (2)
H (Ps2) + · · · + gd−2 · F (d−1)

H (Psd−1
)
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in terms of polynomials gi ∈ R. If such polynomials exist, by the effective Nullstel-
lensatz they can be chosen such that their degree is bounded by dd (e.g., see [9]).
So in principle, one could use indeterminate coefficients to translate the solvability
of (16) into the solvability of some linear system of equations. But this system
is so huge that no gain is to be expected (although maybe this deserves a deeper
analysis).

5.5. One can speed up the algorithm slightly by noting the following. If s2 = 0,
then the first defining polynomial is

F
(2)
H (0) = (−1)t · P1 · · ·Pt−1 ·Ad−2−t.

But Casas-Alvero polynomials corresponding to P1 · · ·Pt−1 = 0 are of strictly lower
type than t, so they would have been encountered already. Therefore, our defining
polynomial can be replaced by Ad−2−t. If in addition s3 = 0, then similarly the
second defining polynomial can be replaced by Ad−3−t, and so on. Suppose that the
first non-zero entry of s appears at position j. Then after substituting Ad−2−t =
· · · = Ad−j+1−t = 0 (no substitutions if j = 2), one finds that

F
(j)
H (Psj ) = F

(j)
H (P1)

is a multiple of P1. For the same reason, this factor can be removed.

5.6. The above algorithm can be used straightforwardly to find all bad primes for
a given degree d (given that we know that the Casas-Alvero conjecture is true in
degree d):

(1) Initialize a set of candidate bad primes C = { }.
(2) First run the basic algorithm with p = 0, but instead of just checking

whether the reduced Gröbner basis of IaffQ (s) equals {1}, compute polyno-
mials g1, . . . , gd−2 ∈ R for which (16) holds. Then add every prime factor
appearing in the denominators of the gj to C.

(3) If a prime p is not in C, it cannot be a bad prime because each of the
expansions (16) can be reduced mod p. To find which candidate bad primes
are actually bad primes, we run the basic algorithm for each p ∈ C.

An implementation of this method can be found in CAbadprimes.m.

5.7. The hardest part is step 2, because one computes in characteristic 0. Note that
it is possible to give an upper bound for the elements of C purely in terms of d,
so that step 2 could, in principle, be avoided. Indeed, see the discussion following
(16)—the denominators of the solutions of the linear system can be bounded using
Cramer’s rule. But the bound one obtains is too large to be of any practical use.

5.8. We have executed the algorithm for d = 5, d = 6 and d = 7. In case of d = 5,
the total time needed was less than 0.03 seconds. For d = 6, the computer needed
less than 3 seconds. A naive run of the algorithm for d = 7 is not expected to end in
a reasonable amount of time, because the denominators become very hard to factor.
But by using several monomial orders and computing greatest common divisors,
one can make the case d = 7 feasible in Magma (apart from the factorization of one
composite 119-digit number, for which we used the CADO-NFS package [1]). The file
CAbadprimes7test.m contains Magma code proving the correctness of our output.
The case d = 8 lies out of reach. Of course, exhaustive lists of bad primes for
increasing degrees become less and less interesting. But it would be good to have
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Table 2. The smallest non-bad prime p that does not divide d

d 2 3 4 5 6 7 8 9 10
p - - 11 13 17 127 419 941 3803

an idea of the growth rate of the largest bad prime, or on the number of bad primes.
Such lists can also be helpful in detecting patterns (we could not observe any). By
just repeating our basic algorithm for increasing values of p, it is feasible to find
the smallest non-bad prime (that does not divide d), for d up to 10. We have put
the outcomes in Table 2.

6. The Casas-Alvero conjecture in degree 12

6.1. A direct application of the basic algorithm for degree d = 12 and characteristic
p = 0 does not seem to be realistic. Two observations lead to a crucial speed-up:

• as remarked in 4.5, in view of the theoretical results obtained in Sections 2
and 3, it suffices to show that VC(s) = ∅ for a restricted set of scenarios s,

• for each such s, it actually suffices to show that VFp
(s) = ∅ for a single

prime p, because the varieties are projective and take equations over Z.

6.2. As for the first speed-up, by Theorem 2 and Proposition 16 it suffices to prove
that VC(s) = ∅ for all scenarios s = (s1, . . . , s11) for which

• s1 = 0 �= s11,
• s3 �= s9,
• s4 �= s8,
• ind(s) satisfies the determinant condition mentioned in the énoncé of
Theorem 2.

(We omit the contribution of Proposition 9 to this discussion, because the argu-
ments involved are rather subtle, whereas the computational gain is limited.) Let
Lres be obtained from L (as introduced in 5.1) by restricting to these scenarios.
Then Lres contains

0, 6, 718, 5210, 8918, 5404, 1352, 141, 5, 0, 0

scenarios of type 0, . . . , 10, respectively (this is less than was mentioned in (3),
where only the determinant condition was taken into account). However, for the
algorithm to work rigorously, the list Lres should be slightly enlarged again, so that
it becomes closed under taking descendants, in the following sense.

Definition 2. Let d > 0 be an integer and let s = (s1, . . . , sd−1) be a scenario for
degree d. Let t = type(s). Then we say that s′ = (s′1, . . . , s

′
d−1) is a descendant of

s if there exists a 1 ≤ j ≤ t such that for all i = 1, . . . , d− 1:

• s′i = si if si < j,
• s′i = 0 if si = j,
• s′i = si − 1 if si > j.

This ensures that working in the affine subvariety Pt = 1 (see 5.2) and speeding
up the algorithm (as in 5.5) are still justified. Note that if s′ is a descendant of s,
then type(s′) = type(s)− 1. By closing Lres under taking descendants, one obtains
a list Lcl

res containing

1, 279, 3892, 12073, 13661, 6685, 1491, 146, 5, 0, 0
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Table 3. Approximate time and memory requirements for settling
d = 12, as if the algorithm were executed on a single core. In
practice, types 6 and 7 were spread among multiple cores. In case
of type 8, this was not possible due to memory limitations.

type # scenarios time memory
1 279 0.1 secs � 0.1 GB
2 3892 43 secs � 0.1 GB
3 12073 2 mins < 0.1 GB
4 13661 40 mins 0.1 GB
5 6685 20 hours 0.2 GB
6 1491 2 weeks 1.3 GB
7 146 16 weeks 10 GB
8 5 15 weeks 90 GB

scenarios of type 0, . . . , 10, respectively. This might appear as a significant increase
in the number of scenarios. However, recall that scenarios of low type can be
eliminated very easily.

6.3. As for the second speed-up, based on the experimentally observed distribution
of bad primes in degrees d ≤ 7, any prime p which is “not too small” is most likely
to work. If, nevertheless, the computation breaks down and a yes is printed, one
can redo the computation using a different value of p. (In principle, it is possible
to give a lower bound on p so that it is guaranteed to work, but this bound is much
too large to be of any practical use—recall from Theorem 4 that the largest bad
prime for d = 7 has already 135 decimal digits.) Our first try was p = 107+17 and
it immediately worked. It is convenient to use the same p for all scenarios listed in
Lcl
res. At least, if a scenario s is treated modulo some p, then all of its subsequent

descendants should be treated modulo the same p. Indeed, this enables us to
conclude that the projective variety VFp

(s) is empty, and hence that VC(s) = ∅.

6.4. Magma code implementing the above method can be found in the file
CAdeg12.m. We have executed the algorithm and the outcome was affirmative
(i.e., the Casas-Alvero conjecture is true in degree 12, thereby proving Theorem 5).
Approximate time and memory requirements can be found in Table 3.

6.5. The computation fills in the smallest open entry in the list of degrees for which
the Casas-Alvero conjecture is known to hold. To our knowledge, the list of degrees
d ≤ 100 for which the conjecture is still open is

20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 55, 56, 60, 63, 66, 70, 72, 77, 78, 80, 84, 88, 90, 91, 98, 99, 100.

Our algorithm can in principle be generalized to higher degrees (note, in particular,
that the two next open cases d = 20 and d = 24 are also of the form p + 1).
But without new theoretical ingredients, an implementation of this is expected to
demand astronomical amounts of time and memory.
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