
AAECC 13, 137–162 (2002)

2002

Groebner Bases and Distance of Cyclic Codes

Massimiliano Sala

Department of Mathematics, University of Pisa, Italy
(e-mail: sala@mail.dm.unipi.it)

Received: April 24, 2001; revised version: February 14, 2002

Abstract. Recently some methods have been proposed to find the distance of
cyclic codes using Gröbner bases. We present a similar method, whose compu-
tational cost is significantly lower.

Keywords: Gröbner bases, Cyclic codes, Distance.

1 Introduction

Extensive work has been done to find (or estimate) the distance of cyclic codes,
particularly in the binary case and for lengths of the kind n = 2m − 1. See for
example [2], [5], [6], [15], [18], [20], [26], [28], [31] and [32]. Furthermore,
the dual distance of BCH codes plays an important role both to estimate their
covering radius (see [19]) and to estimate their weight distribution (see [17]
and [30]).

Recently a method has been proposed by Augot, which uses Gröbner bases
(see [1]). Unfortunately, the polynomials involved have too many indetermi-
nates to obtain interesting results with a reasonable computational cost. That
is, the number of indeterminates is greater than the length of the code.

There are some ways to correct errors using Gröbner bases (see for example
[9],[10] and [13]). Also the decoding procedure proposed by Loustaunau and
York (see [21]) relies on Gröbner bases, but it is remarkable because it uses
polynomials with a few indeterminates (no more than the distance of the code).
Their work is based on an earlier paper by Chen, Reed, Helleseth and Truong
(see [7]) and has been improved by Caboara and Mora in [4].

We follow the approach of [21], adapting it to find the distance of the code.
This way we exhibit an original algorithm to find the distance of cyclic codes
via the computation of some Gröbner bases, starting from polynomials with
less indeterminates. Focusing on primitive narrow-sense BCH codes, we can

138 M. Sala

exploit the particular structure of the polynomials involved, finding the distance
of some of such codes also for large dimensions.

We exhibit also some variations to our method which are faster in some
interesting cases.

2 Preliminaries

Now we fix some notation and recall some known facts.
Let C be an [n, k, d] code on a field �q such that q is prime to n. The words

of C can be represented as �q-polynomials of degree lower than n. If C is cyclic
there exists a generator polynomial g of the code C, that is g is a polynomial
of degree r = n − k such that the words of C are exactly the polynomials
vanishing at the roots of g modulo xn − 1. Let α be a primitive n-root of unity
in the splitting field �Q of xn − 1 over �q , that is

(xn − 1) =
n−1∏
i=0

(x − αi)

(the condition (n, q) = 1 assures that there are n distinct n-th roots of unity,
corresponding to some powers of α).

A defining set SC = {h1, . . . , hv} of C is a set of powers of α such that g is
the minimal degree �q-polynomial vanishing on them. If for C one can choose
SC = {1, 2, . . . , δ−1}, we say that C has designed distance δ and we denote it
by Cyclic(n, δ, �q). If it happens that d = δ, then we say that C has coincident
distances.

If n is of the form n = qm − 1 (so that α is a primitive element of the
splitting field �qm), we say that C is a narrow-sense primitive BCH code and
we denote it by BCH(n, δ, �q).

We are mainly interested in the binary case, i.e. when �q = �2. In this
case, we denote by Cyclic(n, δ) the binary cyclic code Cyclic(n, δ,�2) (with
designed distance δ) and we denote by BCH(n, δ) the binary narrow-sense
primitive BCH code BCH(n, δ, �q) (with designed distance δ and n = 2m−1).
For the latter we use also the standard notation BCH[n, k, d].

Remark 2.1. For any n, the codes {Cyclic(n, δ, �q)} are BCH codes, which are
not primitive if n is not of the kind qm − 1.

We can define the Discrete Fourier Transform (or DFT for short) of a
code word c = (c0, . . . , cn−1) ∈ C as the vector:

φ(c) = DFT(c) = (A0, . . . , An−1), Ai =
n−1∑
j=0

cjα
ij .

Groebner Bases and Distance of Cyclic Codes 139

Obviouslyφ(c) = (A0, . . . , An−1) ∈ (�Q)
n (in the case of aBCH [2m−1, k, d]

code we have �Q = �2m).
The codes with a spectral definition form a large class of codes, which

contains in particular all cyclic codes (see [1]):

Definition 2.1. Let C be a code in (�Q)
n (or (�q)

n). If there exist l multivariate
polynomials P1, . . . , Pl in n variables such that for all c ∈ (�Q)

n (or for all
c ∈ (�q)

n) c belongs to C if and only if

P1(A0, . . . , An−1) = · · · = Pl(A0, . . . , An−1) = 0

where as before φ(c) = (A0, . . . , An−1), then the code C is called a code with
a spectral definition and the polynomials P1, . . . , Pl define the code spectral
equations.

Let c = (c0, . . . , cn−1) ∈ (�Q)
n, w be its weight and i1, . . . , iw be the

positions of its nonzero components. For any h ∈ {1, . . . , w} we define:

• the h-th locators of c as Xh = αih

• the h-th elementary symmetric function of C as

σh = (−1)h
∑

1≤k1≤···≤kh≤w

Xk1 . . . Xkh

The elementary symmetric functions of c and the DFT of c are linearly
related (see [1]).

Augot collected these linear relations in a system Sys(C)(w) together with
the spectral equations defining the code C and stated the main result of his
paper [1]:

Theorem 2.1. Let C be a cyclic �q [n, k, d] code defined by the spectral equa-
tions P1 = · · · = Pl = 0 and such that q is prime to n. For any 1 ≤ w ≤ n− 1
there exists a solution of Sys(C)(w) if and only if there exists a word of C of
weight w.

Corollary 2.1. Let C be a cyclic �q [n, k, d] code (q prime to n) defined by
the spectral equations P1 = · · · = Pl = 0. If Sys(C)(w) has solutions and
Sys(C)(w′) has not for any 1 ≤ w′ ≤ w − 1, then d = w.

Apart from some very simple cases, it is quite difficult to find the solutions of
the systems Sys(C)(w). The most efficient way is often to compute a Gröbner
basis G for Sys(C)(w) with the lexicographic order (see [11] and [12]). From
G it is immediate to see if there are solutions or not, but the computation of
G is quite expensive, as in Sys(C)(w) there are many indeterminates (actually
w + n) and the complexity of the computation is exponential in the number of
indeterminates.

140 M. Sala

3 The Method by Loustaunau and York

Let C be an [n, k, d] cyclic code on a field �q such that q is prime to n. Let g
be its generator polynomial and αi1, . . . , αin−k be its roots. Then a parity check
matrix for C is (see [27], p. 214):

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
. . .

...

1 αin−k α2in−k . . . α(n−1)in−k

Let c ∈ (�q)
n be a code word and let c̃ be the received message, then c̃ = c+ e,

where e = (e1, . . . , en−k) is the error vector.
The syndrome equations are:

e0 + e1α
ij + · · · + en−1α

(n−1)ij = sj , j = 1, . . . , r = n − k ,(3.1)

where s = (s1, . . . , sr) = Hc = Hc̃ is the syndrome vector.
We recall that, if there are no more than t errors with d = 2t + 1, then we

can correct them just solving the syndrome equations.
Now we present the algorithm proposed by Loustaunau and York to solve

these equations. The idea (see Remark 3.1) is to express the solutions of (1) as
points in an algebraic variety. Consider the variables

{xj , zi, yi | 1 ≤ j ≤ n − k, 1 ≤ i ≤ t}
and the following system:

(I)

y1z

ij
1 + y2z

ij
2 + · · · + ytz

ij
t − xj = 0, j = 1, . . . , r

zn+1
i − zi = 0, i = 1, . . . , t
y
q−1
i − 1 = 0, i = 1, . . . , t

Then it can be shown (see [21]) that the solutions are of the form

(s1, . . . , sn−k, 0, . . . , 0, αl1, . . . , αlτ , ∗, . . . , ∗, β1, . . . , βτ)

where τ is the number of the errors (so τ ≤ t), the first n− k coordinates repre-
sent the xj , the following t coordinates represent the zi and the last t coordinates
represent the yi .

The location of the errors is given by the powers l1, . . . , lτ and their value
is given by β1, . . . , βτ . A ∗ indicates that this coordinate can be any nonzero
element of �q and there are t − τ such y-coordinates corresponding to the t − τ

zero z-coordinates.
So it is possible to recover from errors just solving the system (I) via the

computation of a Gröbner basis with the lexicographic order.

Groebner Bases and Distance of Cyclic Codes 141

Remark 3.1. System (I) first appeared in [8] by X. Chen, I.S. Reed, T. Helleseth
and T.K. Truong, where a similar method was proposed (the variety described
by system (I) is called the syndrome variety or, more exactly, the CRHT va-
riety). A modification of their algorithm has lead to the decoding algorithm by
Caboara and Mora (see [4]), which exploits the structure of the Gröbner basis
of system (I) as it is described by the Gianni-Kalkbrenner Theorem (see [14]
and [16]).

4 Exploiting the CRHT Variety for the Distance

If we write system (I) in the case of a null syndrome s = 0, we obtain a
simplified version:

y1z
i1
1 + y2z

i1
2 + · · · + ytz

i1
t = 0

. . . = 0
y1z

in−k

1 + y2z
in−k

2 + · · · + ytz
in−k

t = 0
zn+1

1 − z1 = 0
. . . = 0
zn+1
t − zt = 0
y
q−1
1 − 1 = 0

. . . = 0
y
q−1
t − 1 = 0

For any cyclic code C we can consider a defining set SC = {h1, . . . , hv}. So
we can denote by JC(t) a reduced version of the previous system:

JC(t)

y1z
h1
1 + y2z

h1
2 + · · · + ytz

h1
t = 0

. . . = 0
y1z

hv
1 + y2z

hv
2 + · · · + ytz

hv
t = 0

zn+1
1 − z1 = 0
. . . = 0
zn+1
t − zt = 0
y
q−1
1 − 1 = 0
. . . = 0
y
q−1
t − 1 = 0

As we supposed a zero syndrome, there are no errors to correct. Anyway
we can suppose to have sent the word 0 and to have received a word of the code
of weight w, so that the syndrome is zero and the system becomes JC(w). We
denote by ns(JC(w)) the number of solutions of JC(w).

Example 4.1. Let D be the �3 primitive BCH code of designed distance 7 and
length n = 3m − 1 (with m ≥ 2), i.e. D = Cyclic(n, 7,�3). Then, as defining
set we can take SD = {1, 2, 4, 5} and its associated system JD(t) is:

142 M. Sala

JD(t)

y1z1 + y2z2 + · · · + ytzt = 0
y1z

2
1 + y2z

2
2 + · · · + ytz

2
t = 0

y1z
4
1 + y2z

4
2 + · · · + ytz

4
t = 0

y1z
5
1 + y2z

5
2 + · · · + ytz

5
t = 0

zn+1
1 − z1 = 0
. . . = 0
zn+1
t − zt = 0
y2

1 − 1 = 0
. . . = 0
y2
t − 1 = 0

There are some solutions of system JC(w)which are important in our frame-
work:

Definition 4.1. A solution of the system JC(w) is called spurious if it does not
correspond to a code word.

From previous definition we immediately get:

Proposition 4.1. Let C be an �q [n, k, d] cyclic code with (n, q) = 1. There
is at least one solution of JC(w) which is not spurious if and only if there is at
least one word of weight w in the code.

Now we present an original method to find the minimal distance of an
arbitrary cyclic code:

Proposition 4.2. Let C be an �q [n, k, d] cyclic code with (n, q) = 1. If we
know that d ≥ δ, we can proceed this way:

• set w = δ and construct JC(w);
• count both the number of the spurious solutions of JC(w) and the number

of all its solutions;
• if all solutions are spurious, then increase w to w+1, construct JC(w) and

come back to previous step;
• if on the contrary there are non-spurious solutions, then return w.

The value returned by this algorithm is the distance d of the code.

Proof. Until only spurious solutions are found, there are no code words of
weight w. As soon as any non-spurious solutions are found, then they corre-
spond to words of minimal weight w. �

So the problem of finding the distance of an arbitrary cyclic code reduces to
the problem of counting the solutions of JC(w), both the spurious ones and the
non-spurious ones:

Groebner Bases and Distance of Cyclic Codes 143

• the number of spurious solution can be found via combinatoric arguments
(and in Section 5 we show how the spurious solutions can be easily calcu-
lated in the binary case);

• the number of all solutions can be obtained starting from a Gröbner basis
of the ideal generated by the polynomials of the system (see [3]).

The disadvantage of our method is that we need a Gröbner basis, whose
computation is expensive. Anyway our system JC(w) has no more than 2d in-
determinates (and only d in the binary case), which are significantly less than
the indeterminates of the system Sys(C)(w) previously proposed in [1], which
has n + d indeterminates.

Remark 4.1. In the binary case the system JC(t) needs the variables {yi} no
more, so it can be written in the simpler form:

JC(t)

z
h1
1 + z

h1
2 + · · · + z

h1
t = 0

. . . = 0
z
hv
1 + z

hv
2 + · · · + z

hv
t = 0

zn+1
1 − z1 = 0
. . . = 0
zn+1
t − zt = 0

In the binary case we can precisely characterize all spurious solutions of
system JC(t):

Lemma 4.1. Let {z1, . . . , zt} be a spurious solution of system JC(t) of Remark
4.1 Then either there are h, l such that zh = zl or there is an h such that zh = 0.

Proof. It is obvious as both the condition zh = 0 and the condition zh = zl are
nonsense for a code word. �

In Section 6 we make an explicit computation for a simple non-binary case.

5 Spurious Solutions in the Binary Case

In this section we always suppose that C is a binary cyclic code such that n is
odd and 1 ∈ SC , i.e. among the roots of the generator polynomial of C there is a
primitive n-root of unity α of the splitting field of xn −1 over �2. An important
class of such codes is the class of the binary primitive codes BCH [n, k, d] (see
[22], p. 257–268).

Remark 5.1. Let C be an arbitrary binary [n, k, d] cyclic code such that n is
odd and let g be its generator polynomial. As g divides xn −1, we can consider
the cyclic code generated by h = (xn − 1)/g. It is sometimes called the dual

144 M. Sala

of C (see [27], p. 208) and we denote it by C⊥. Note that C⊥ is not the dual
code of C, which has a different generator, but nonetheless they are equivalent
codes, so their distance is the same.

We state that either C satisfies our hypothesis 1 ∈ SC or C⊥ does. In fact
both h and g divide xn − 1. But (x − α) is an irreducible factor of xn − 1, so
that either (x − α) divides h or (x − α) divides g.

In conclusion, for any odd n one half of the binary cyclic codes (with length
n) satisfies our hypothesis 1 ∈ SC .

Remark 5.2. The hypothesis 1 ∈ SC implies that equation

z1 + z2 + · · · + zw = 0(∗)

is in the system JC(w) for any w.

Definition 5.1. Let C be a binary [n, k, d] cyclic code and let w be an integer
such that 1 ≤ w ≤ n − 1. We denote by

• ns [w, n] the number of all solutions of JC(w);
• spz[w, n] the number of the spurious solutions of JC(w)which have at least

one zero coordinate;
• spd[w, n] the number of the spurious solutions of JC(w) which have no

zero coordinates;
• sp [w, n] the number of all spurious solutions of JC(w).

It is clear that sp[w, n] = spz[w, n] + spd[w, n] for any w and for any n.
For later purposes we set

ns[0, n] = sp[0, n] = spd[0, n] = 1, spz[0, n] = 0

From now on, we implicitly use the characterization of spurious solutions
given by Lemma 4.1.

Lemma 5.1. Let C be a binary [n, k, d] cyclic code such that n is odd and
1 ∈ SC . Then:

spz[1, n] = 1, spd[1, n] = 0, ns[1, n] = sp[1, n] = 1

spz[2, n] = 1, spd[2, n] = n, ns[2, n] = sp[2, n] = n + 1

Groebner Bases and Distance of Cyclic Codes 145

Proof. In the casew = 1 equation (∗) reduces to z1 = 0, which clearly satisfies
also the other equations.

In the case w = 2 equation (∗) reduces to z1 = z2, which has as solutions
the couples {(z, z) | z ∈ �2m}, where �2m is the splitting field of xn − 1. These
couples satisfy the equations of the system zi = zi for any i. The equations
zn+1 = z are satisfied if either z is an n-root of unity or z = 0, so the solutions
are the couples

{(z, z) ∈ �2m × �2m | zn = 1 or z = 0} .
The couple (0, 0)has a zero component and no other couple has, then spz[2, n] =
1 and ns[2, n] = sp[2, n] = n + 1, so that spd[2, n] = n. �

To compute the number of spurious solutions of SC(w), it is easier to compute
separately the two values spz[w, n] and spd[w, n] and then sum them to get
sp[w, n].

We need a recursive definition:

Definition 5.2. Let v = (v0, . . . , vw−1) be a w-vector with w even. We say that
v has double coordinates if :

• each component of v is nonzero;
• there exist i �= j such that vi = vj ;
• the truncated (w − 2)-vector obtained by v truncating the two coordinates

{i, j} has again double coordinates;
• in the case w = 2 there holds v0 = v1.

Example 5.1. Let v = (α2, 1, α, 1), v′ = (α, 1, α, 1) and v′′ = (1, 0, 1, 0) be
three 4-vectors in �2m for some m.

Examining v, we observe that v1 = v3 = 1, so that i = 1 and j = 3 with
the notation of previous definition. Truncating these coordinates we obtain the
2-vector (α2, α), which has not double coordinates. This means by definition
that v itself has not double coordinates.

Examining v′ we observe that v′
1 = v′

3 = 1, so that i = 1 and j = 3.
Truncating these coordinates we obtain the 2-vector (α, α) which has double
coordinates. So by definition v′ has double coordinates.

The vector v′′ has not double coordinates, because it has a zero component.

Lemma 5.2. Let C be a binary [n, k, d] cyclic code such that 1 ∈ SC and n is
odd. Let w ≥ 1 be such that for any w′ ≤ w − 1 the system JC(w

′) has only
spurious solutions. Then

• if w is even, any spurious solution with no zero components has double
coordinates;

• if w is odd,every spurious solution has at least one zero component.

146 M. Sala

Proof. By induction on w starting from 2 for the even case and from 1 for the
odd case.

Let w = 2, then from the proof of Lemma 5.1, the spurious solutions with
no zero components are the couples {(z, z) | z ∈ �2m, z

n = 1}, which have
obviously double coordinates.

Suppose now that w ≥ 4 is even. If Z is a spurious solution of JC(w) which
has no zero components, then (see Lemma 4.1) there are h, l such that Zh = Zl

and l > h. Let Z̃ be the (w−2)-vector obtained byZ truncating the coordinates
h and l. We state that Z̃ is a solution of JC(w− 2). Consider a generic equation
of JC(w − 2), say zi1 + · · · + ziw−2 = 0, then we can take the corresponding
equation of JC(w) zi1 + · · · + ziw = 0, which is satisfied by Z, and use the
fact that Zh = Zl to get

Zi
1 + · · · + Zi

h−1 + Zi
h+1 + · · · + Zi

l−1 + Zi
l+1 + · · · + Zi

w = Zl + Zh = 0

Renaming Z̃s the remaining Zs , we obtain Z̃i
1 + · · · + Z̃i

w−2 = 0, which is the
thesis.

Let w = 1, then there is only one spurious solution z = 0, which has a zero
component (see Lemma 5.1).

We are left with the case w odd and w ≥ 3. Suppose there is a spurious
solution Z of SC(w) with no zero coordinates, then reasoning in a manner sim-
ilar to the even case, we obtain that its truncated (w− 2)-vector Z̃ is a spurious
solution of the system JC(w − 2).

As Z has no zero components, also Z̃ has no zero components. We know
by induction that there are no spurious solutions of JC(w − 2) with no zero
components, leading to a contradiction. So all spurious solutions of SC(w) have
at least one zero component. �

An immediate consequence of the previous lemma is the following corollary:

Corollary 5.1. Let C be a binary [n, k, d] cyclic code such that 1 ∈ SC and n

is odd. Let w ≥ 1 be such that for any w′ ≤ w − 1 the system JC(w
′) has only

spurious solutions. If w is odd then

sp[w, n] = spz[w, n]

There exists an explicit formula for the values spz[w, n]:

Lemma 5.3. Let C be a binary [n, k, d] cyclic code such that 1 ∈ SC and n is
odd. Let w be an integer such that 2 ≤ w ≤ n − 1. Then

spz[w, n] =
w∑
i=1

(−1)i+1
(w
i

)
ns[w − i, n](∗∗)

Groebner Bases and Distance of Cyclic Codes 147

Proof. Let Z be a spurious solution with zero components and {h1, . . . , hs}
be the set of its zero components. We can truncate Z to the (w − s)-vector Z̃,
dropping the zero components. It can be easily shown that Z̃ is a solution of
the system JC(w − s).

On the converse, if Z̃ is a solution of JC(w − s) (spurious or not) and
{h1, . . . , hs} is a subset of {0, . . . , w − 1}, then we can build the w-vector Z
filling with 0 its components in {h1, . . . , hs} and filling the other components
of Z with the components of Z̃. Obviously Z is a spurious solution with zero
components of JC(w) and hence any such solution can be built in this way
starting from a generic solution of JC(w − s).

We are now ready to prove (∗∗). We can consider the solutions with a fixed
zero component and the remaining w − 1 components such that they form a
solution of JC(w − 1). Varying through the components we collect apparently
w∗ns[w−1, n] solutions, but there are somew-tuples counted more than once.
So we have to subtract the solutions with two zeros fixed and the remaining
w − 2 components such that they form a solution of JC(w − 2). Fixing two
zeros is equivalent to choose a couple in a set of n numbers, which are

(
n

2

)
.

Our partial result is then(n
1

)
ns[w − 1, n] −

(n
2

)
ns[w − 2, n]

This time we have subtracted too many solutions, in fact we are losing the so-
lutions with three zeros and the remaining w − 3 components such that they
form a solution of JC(w − 3). The new partial result is(n

1

)
ns[w − 1, n] −

(n
2

)
ns[w − 2, n] +

(n
3

)
ns[w − 3, n]

It is clear that continuing this way we get the desired result. �

In next lemma we show an iterative formula for spd[w, n], whose proof is
reported in the Appendix.

Lemma 5.4. Let C be a binary [n, k, d] cyclic code (with n odd) such that
1 ∈ SC and let w be an even integer such that 2 ≤ w ≤ n − 1. Then

spd[w, n] = n

(
w/2∑
i=1

(
w − 1

2i − 1

)
spd[w − 2i, n − 1]

)

We can collect our previous results in the following theorem:

Theorem 5.1. Let C be a binary [n, k, d] cyclic code (with n odd) such that
1 ∈ SC and let w be an integer such that 2 ≤ w ≤ n − 1. Suppose that for
2 ≤ w′ < w the system JC(w

′) has only spurious solutions. Then

sp[w, n] = spd[w, n] + spz[w, n] ,

148 M. Sala

with

spd[w, n] =

n

(
w/2∑
i=1

(
w − 1

2i − 1

)
spd[w − 2i, n − 1]

)
, for w even

0, for w odd

spz[w, n] =
w∑
i=1

(−1)i+1
(w
i

)
sp[w − i, n]

Next corollary is a direct consequence of previous theorem:

Corollary 5.2. LetC be a binary [n, k, d] cyclic code such that 1 ∈ SC and n is
odd. If w is such that also JC(w

′) has only spurious solutions for 1 ≤ w′ < w,
then the number of the spurious solutions of JC(w) does not depend on the
other equations of the system,

Remark 5.3. Previous corollary can be applied to all binary narrow-sense prim-
itive BCH [n, k, d] codes, with w ≤ δ.

In the hypothesis of Theorem 5.1 we can compute for some small w the
values of sp[w, n], spz[w, n] and spd[w, n]. They are just some simple univar-
iate polynomials with variable n. Previous corollary is quite important because
it shows that the first step of our method is trivial: it is enough to evaluate
these polynomials in the desired n in order to obtain the number of spurious
solutions, in a manner completely independent from the designed distance of
the code. So the only non-trivial part is the computation of the Gröbner basis
of the ideal generated by the polynomials of the system JC(w). Clearly this
basis does depend on the designed distance: as large the designed distance is,
as many polynomials of the form zi1 + · · · + ziw are in the system.

In the list below there are some values of sp[w, n], spz[w, n] and spd[w, n]
for small w:

spz[3, n] = 3n + 1
spd[3, n] = 0

sp[3, n] = 3n + 1

spz[4, n] = 6n + 1
spd[4, n] = 3n2 − 2n

sp[4, n] = 3n2 + 4n + 1

spz[5, n] = 15n2 + 1
spd[5, n] = 0

sp[5, n] = 15n2 + 1

Groebner Bases and Distance of Cyclic Codes 149

spz[6, n] = 45n2 − 15n + 1
spd[6, n] = 15n3 − 30n2 + 16n

sp[6, n] = 15n3 + 15n2 + n + 1

spz[7, n] = 105n3 − 105n2 + 63n + 1
spd[7, n] = 0

sp[7, n] = 105n3 − 105n2 + 63n + 1

6 Some Applications and Alternative Strategies

Now we present two direct applications of our method to binary narrow-sense
primitive BCH codes, presenting a simple example and proving a classical
general result.

Example 6.1. Let C = BCH(15, 5). The system associated to C is:

JC(5)

x + y + z + t + u = 0
x3 + y3 + z3 + t3 + u3 = 0
x16 + x = 0
y16 + y = 0
z16 + z = 0
t16 + t = 0
u16 + u = 0

As the designed distance is 5, we know that for lower values of w the sys-
tem JC(w) has only spurious solutions (see Remark 5.3). Then the number of
spurious solutions is easily computed:

sp[5, 15] = 15 ∗ 152 + 1 = 3376

The leading terms of the Gröbner basis (with lexicographic order) of JC(5) are:

{u16, t16, z3t14u, z9t2u, z16, y2t2u, y2z, y16, x}
To compute ns(JC(5)) we can do standard operations ([3]) and obtain:

ns(JC(5)) = 5536 > 3376 = sp[5, 15]

So BCH(15, 5) has coincident distances.

The simplest case of a narrow-sense BCH [n, k, d] code, whose distance is
still unknown, has length n = 511 and designed distance 59 (see [5]). Unfor-
tunately, the computation of a Gröbner basis associated to the corresponding
system JBCH(511,59)(59) is impossible with nowadays computers using known
algorithms (see Remark 6.2).

150 M. Sala

To apply these methods to unsolved problems, one needs either new quick-
er algorithms for the computation of Gröbner bases or general results on the
Gröbner bases of the ideals associated to the systems JC(w). The following fact
is well-known (see for example [22], p. 260), but we think that the proof here
proposed is interesting due to the method employed.

Fact 6.1. For any n ≥ 7, BCH(n, 3) has coincident distances.

Proof. We follow the algorithm of Proposition 5.2.
The system associate to the code is:

JBCH(n,3)(3)

x + y + z = 0,
x(n+1) + x = 0,
y(n+1) + y = 0,
z(n+1) + z = 0,

As �q = �2 and n + 1 = 2m for some m, we have

(x + y + z)(n+1) = (x + y + z)(2
m) = x2m + y2m + z2m

so the system can be reduced to

J ′
BCH(n,3)(3)

x + y + z = 0,
y(n+1) + y = 0,
z(n+1) + z = 0,

This system is triangular, so the number of all its solutions is ns[3, n] = (n+1)2.
The number of its spurious solutions is easily found sp[3, n] = 3n + 1. As for
any n ≥ 7

(n + 1)2 = ns[3, n] > sp[3, n] = 3n + 1

we can conclude (see Proposition 5.1) that there are words of weight 3 in
BCH(n, 3), showing that BCH(n, 3) has coincident distances. �

Next example is important because it shows that our method can also be applied
to non-binary codes.

Example 6.2. Let C be the BCH(8, 2,�3) code. The system associated to C

is:

JC(3)

xa + yb + cz = 0
x9 − x = 0
y9 − y = 0
z9 − z = 0
a2 − 1 = 0
b2 − 1 = 0
c2 − 1 = 0

The leading terms of a Gröbner basis are

Groebner Bases and Distance of Cyclic Codes 151

x2y7z8c,xy8z8c,x3yz8c,xy2z8bc,y3z8bc,x2y8zc,x4y5z2c,x3y6z2c,y2z8ac,

yz8a2c, x2z8bc, xyz7b2c, xz8b2c, xy8bc2, xy8zb, xy8b2, y3z6ac, x6y2zc,

x9, y9, z9, y5z2bc, y4z2ac, x4z2bc, z5abc, y2z3ab, yz3abc, y3zb2c, z3abc2,

y2za2c, y2zabc, z2a2bc, x2zb2c, yzab2c, z2ab2c, za2b2c, y2abc2, y3ab,

y2ab2, x2yb, ya2b, a3, b3, c3, xa

Doing standard operations we obtain:

ns(JC(3)) = 648

The computation of the number of spurious solutions is summerized as fol-
lows. We denote by Ix the system obtained by JC(3) putting x = 0 and we
adopt the same notation for Iy and Iz. We denote by Ixy the system obtained
by JC(3) putting x = y = 0 and analogously for Ixz and Iyz. We use also the
notation Ix=y for the system obtained putting both x = y and {x �= 0, z �= 0}
(analogously for Ix=z and Iy=z) and the notation Ix=y=z for the system obtained
with x = y = z and {x �= 0}. We use the short notation LS for the number of
solutions of IS (for example Lx = ns(Ix)).

The spurious solutions of JC(3) can be divided in two parts: spz and spnz,
where spz are the spurious solutions with at least a null variable among the
three variables x, y, z and spnz are the remaining ones. With reasonings similar
to the arguments used in Section 5, one can see that:

spz = Lx + Ly + Lz − (Lxy + Lxz + Lyz) + Lxyz

with Gröbner basis techniques or direct calculations one can get:

spz = 72 + 72 + 72 − (8 + 8 + 8) + 8 = 200

Using again similar arguments one obtains:

spnz = Lx=y + Lx=z + Ly=z − 2Lx=y=z

that is

spnz = 32 + 32 + 32 − 2 ∗ 16 = 64

Finally we obtain:

sp = spz + spnz = 200 + 64, = 264 < 648 = ns(JC(3))

so that we can conclude that C has coincident distances.

Sometimes it is convenient to consider other polynomial systems.

152 M. Sala

Definition 6.1. Let C be a binary [n, k, d] cyclic code such that 1 ∈ SC and n

is odd. Let SC = {h1, . . . , hv} be a defining set of C and let 1 ≤ w ≤ n − 1.
We denote by J̃C(w) the system:

J̃C(w)

z
h1
1 + z

h1
2 + · · · + zh1

w = 0
. . . = 0
z
hv
1 + z

hv
2 + · · · + zhvw = 0

zn1 − 1 = 0
. . . = 0
znw − 1 = 0

The systems JC(w) and J̃C(w) are closely related:

Lemma 6.1. Let C be a binary [n, k, d] cyclic code such that 1 ∈ SC and n is
odd. Let SC = {h1, . . . , hv} be a defining set of C and let 1 ≤ w ≤ n− 1. Then
the solutions of J̃C(w) are exactly the solutions of JC(w) which have no zero
coordinates.

Proof. Let � be the splitting field of xn − 1 over �2. If Z = (Z1, . . . , Zw) is a
solution of J̃C(w), then it satisfies the first v equations of JC(w), as they are the
same first v equations of J̃C(w). Moreover, for any z ∈ � the equation zn = 1
implies the equation zn+1 = z, so also the other equations are satisfied.

If Z = (Z1, . . . , Zw) is a solution of JC(w) which has no zero coordinates,
then for 1 ≤ i ≤ w there holds Zn+1

i = Zi �⇒ Zn
i = 1. �

We denote by ns(J̃C(w)) the number of all solutions of J̃C(w).

Remark 6.1. As all solutions of J̃C(w) are the solutions of JC(w) which have
no zero coordinates, the number of spurious solutions of J̃C(w) is exactly
spd[w, n].

Letw be odd and such that J̃C(w′) has only spurious solutions for 1 ≤ w′ ≤
w. As spd[w, n] = 0, there are no spurious solutions of J̃C(w), leading to the
following alternative:

• either the polynomials of J̃C(w) generate the whole ring �2[z1, . . . , zw]
(and so d > w)

• or the polynomials of J̃C(w) generate a proper ideal of �2[z1, . . . , zw] (and
so d = w)

Previous lemma and previous remark suggest an alternative strategy to find
the distance of cyclic codes:

Proposition 6.1. Let C be a binary [n, k, d] cyclic code (with n odd). If we
know that d ≥ δ, we can proceed this way:

Groebner Bases and Distance of Cyclic Codes 153

• set w = δ and construct J̃C(w);
• count both the number of the spurious solutions of J̃C(w) and the number

of all its solutions;
• if all solutions are spurious, then increase w to w+1, construct J̃C(w) and

come back to previous step
• if on the contrary there are non-spurious solutions, then return w.

The value returned by this algorithm is the distance d of the code.

Proof. The proof is analogous to the proof of Proposition 4.2 �

There is no theoretical differences between the former algorithm and the latter,
but it is important to be able to use both. In particular, the computation of the
Gröbner basis with JC(w) can be quite faster that with J̃C(w) (and vice-versa),
which is the most expensive part of the two algorithms. Below there is a table
where we have collected the computation time needed to derive the Gröbner
bases of the ideals associated to the two polynomial systems for some simple
codes:

Table 1. Comparison between JC and J̃C

n k SC dBCH d J̃C JC

15 7 1,3 5 5 3.37 3.08
15 5 1,3,5 7 7 2336.27 482.15
17 9 1 4 5 5.37 59.68
21 12 1,9 3 3 2.11 1.72
21 10 1,7,9 4 4 1.74 1.58
21 10 1,3,7 5 5 2.38 2.27
21 9 1,5 3 3 1.45 1.61
21 9 1,3,9 5 6 2.03 2.27

The columns of Table 1 contain:

• the length n of the code;
• the dimension k of the code;
• a defining set SC of the code;
• the value of the BCH bound for the code;
• the actual distance d of the code;
• the computation time needed to obtain a Gröbner basis for the ideal of the

system J̃C ;
• the computation time needed to obtain a Gröbner basis for the ideal of the

system JC ;

The correspondence among the first five columns is taken from [27], p. 494.

154 M. Sala

Remark 6.2. The computations involving Gröbner bases have been made with
the software package ALPI and using a PIII 500. ALPI (“A Lisp POSSO In-
terface”) has been developed by the group of Computational Algebra at the
University of Pisa (Italy) and exploits the PoSSo C++ Library. This library
provides tools for symbolic solving of polynomial systems and more advanced
features ([29]).

All computations have been checked using the software package MAGMA
([23]) at the MEDICIS computational cluster ([24]). Some of the more time-
consuming jobs have been done also with other software packages, such as
Maple and Macaulay.

The cyclic code C = Cyclic(23, 5) is called the binary Golay code and is
a [23, 12, 7] code (see [22], p. 60–70).

Remark 6.3. The binary Golay code is quite studied, in particular because it is a
non-trivial example of perfect code. We note that its actual distance is different
from its designed distance, proving that the hypothesis n = 2m −1 is necessary
in Fact 6.1

Dealing with binary Golay code, we mix both methods (see Proposition 6.1
and Proposition 4.2) to find the distance of C. The BCH bound assures that
d ≥ dBCH = 5.

First we consider the system J̃C(5):

J̃C(5)

x + y + z + t + u = 0
x3 + y3 + z3 + t3 + u3 = 0
x23 + 1 = 0
y23 + 1 = 0
z23 + 1 = 0
t23 + 1 = 0
u23 + 1 = 0

The Gröbner basis (Reverse Graded Order) turns out to be {1}, so there are no
codewords of weight 5 in C. The execution time is 5 seconds.

Then we study the system JC(6):

JC(6)

x + y + z + t + u + v = 0
x3 + y3 + z3 + t3 + u3 + v3 = 0
x24 + x = 0
y24 + y = 0
z24 + z = 0
t24 + t = 0
u24 + u = 0
v24 + v = 0

Groebner Bases and Distance of Cyclic Codes 155

The leading terms of an associated Gröbner basis are:

{x, y2z, y2t2u, z3t2u, v24, u24, t24, z24, y24}
The execution time is 112 seconds. Counting the solutions one gets the number:
190464. Using our formulas we can easily compute:

spd[6, 23] = 190464

which is the same value. So C has no codewords of weight 6.
Finally, we consider the system J̃C(7):

J̃C(7)

x + y + z + t + u + v + w = 0
x3 + y3 + z3 + t3 + u3 + v3 + w3 = 0
x23 + 1 = 0
y23 + 1 = 0
z23 + 1 = 0
t23 + 1 = 0
u23 + 1 = 0
v23 + 1 = 0
w23 + 1 = 0

The computation lasted more than three days. As the Gröbner basis turns out
to be different from {1}, we have shown that there are codewords of weight 7
in C and hence that the actual distance of C is d = 7.

Remark 6.4. As a minimal defining set of C, one can consider S = {1}. This
means that we can find the distance of C also considering systems of the form:

H(w)

x1 + x2 + · · · + xw = 0
x24

1 + x1 = 0
x24

2 + x2 = 0

v . . .
...
...

x24
w + xw = 0

The Gröbner basis associated to H(w) is the same as the Gröbner basis
associated to J (w), so any of the two computations gives the same result. But
the execution time are quite differents. For example the computation for H(6)
lasted 4848 seconds, while the computation for J (6) lasted only 112 seconds!

Large difference in the computation times can be observed also considering
the same variation H̃ (w) to the J̃ (w) system:

H̃ (w)

x1 + x2 + · · · + xw = 0
x23

1 + 1 = 0
x23

2 + 1 = 0

v . . .
...
...

x23
w + 1 = 0

For example the computation for H̃ (5) lasted 81 seconds, while the compu-
tation for J̃ (5) lasted only 5 seconds!

156 M. Sala

7 Accelerator Polynomials in the Case δ = 5

Now we focus on the case of Cyclic(n, 5) codes, trying to establish when they
have coincident distances. In this section we denote by G a Gröbner bases of
the ideal generated by the polynomials of J̃C(5).

When n = 2m − 1, it is known that Cyclic(n, 5) = BCH [n, k, 5] has
coincident distances (see [22], p. 260). But neither other general statements
are known, nor efficient algorithms are. Generally, the codimension of such
codes is low, even for medium length codes. For example, when n = 1023
we have BCH [1023, 1003, 5], which has codimension 20. In these cases, one
can find the distance with a brute force check. If n grows large, the problem
becomes subtler. Moreover, codes that can correct one or two errors are appro-
priate for transmission with modern telecommunication physical means (this is
the advantage that the telecommunication standard AAL5 has with respect to
AAL3/4, see http://www.atmforum.com).

The system J̃C(5) is in this case:

J̃C(5)

x + y + z + t + u = 0
x3 + y3 + z3 + t3 + u3 = 0
xn + 1 = 0
yn + 1 = 0
zn + 1 = 0
tn + 1 = 0
un + 1 = 0

Due to Remark 6.1, either G = {1} (and so d > 5) or G �= {1} (and so d = 5).
In Table 2 we have collected some data:

• the first three columns contain the dimension, the length and the actual
distance of C = Cyclic(n, 5);

• the fourth column contains the leading term of the lowest degree polynomial
in G (if it is 1, then G = {1});

• the fifth column contains the computation time needed to get G;
• the sixth column contains the computation time necessary to get a Gröbner

basis for JC(5);
• we denote by accelerated time the value of the sixth column and we post-

pone the explanation of this concept.

Examining Table 2, we observe that system JC is almost always faster than
system J̃C , except when G = {1} (this happens when d = 5). In these cases
the difference between the two times is not large and in one case (n = 49)
J̃C performs better than JC . Note that a large difference is found for the case
n = 51.

We could conclude that, if we want to investigate the class of Cyclic(n, 5)
codes with our methods, it is a good idea to try both methods, hoping that
at least one ends in a reasonable time. But even supposing to always choose

Groebner Bases and Distance of Cyclic Codes 157

Table 2. Computation times for Cyclic(n, 5) with n ≤ 57

n k d base time J̃C time JC acc. time

15 7 5 x 3.37 2.69 1.37
21 12 5 x 5.78 3.76 -3.07
27 3 9 1 7.57 7.01
31 21 5 x 40.47 12.26 -5.23
33 13 10 1 44.18 50.39
35 11 5 x 469.63 19.43 10.02
39 15 10 1 45.51 32.37
43 15 13 1 35.82 29.50
45 29 5 x 461.38 249.66 19.23
49 7 7 1 140.00 245.31
51 35 5 x 3799.45 104.11 -26.46
55 15 5 x 305.03 143.32 29.28
57 21 14 1 132.30 106.29 26.41

the faster of the two methods, it is clear that the growth of the dimension n

soon leads to unaffordable computation times (at least with nowadays medium
class computers). We are going to propose an idea which can highly reduce
computation time in some cases.

Definition 7.1. We denote by p1, p2 and p3 the following polynomials in
�2[x, y, z, t, u]:

p1 = y2 + yt + t2 + yu + tu + u2 + yz + tz + uz + z2

p2 = z3 + z2t + zt2 + t3 + z2u + ztu + t2u + zu2 + tu2 + u3

p3 = t4 + t3u + t2u2 + tu3 + u4

We call these three polynomials the accelerator polynomials.

For any n we can form a new system AC(5) adding the accelerator polyno-
mials to J̃C(5):

AC(5)

x + y + z + t + u = 0
x3 + y3 + z3 + t3 + u3 = 0
xn + 1 = 0
yn + 1 = 0
zn + 1 = 0
tn + 1 = 0
un + 1 = 0
y2 + yt + t2 + yu + tu + u2 + yz + tz + uz + z2 = 0
z3 + z2t + zt2 + t3 + z2u + ztu + t2u + zu2 + tu2 + u3 = 0
t4 + t3u + t2u2 + tu3 + u4 = 0

158 M. Sala

Proposition 7.1. Let C be the [n, k, d] Cyclic(n, 5) code, with n odd. Let Ḡ
be a Gröbner basis for the ideal J̄ associated to AC(5) (with any ordering). If
Ḡ is not {1}, then C has coincident distances:

d = δ = 5

Proof. Denote as usual by G a Gröbner basis for the ideal J̃ associated to
J̃C(5). Due to Remark 6.1, either G = {1} (and so d > 5) or G �= {1} (and so
d = 5).

If Ḡ is not {1}, then J̄ is not Z2[x, y, z, t, u]. As J̃ ⊂ J̄ , also J̃ is not {1},
so that G �= {1} and d = 5. �

This proposition is important, because it allows a different strategy to check
whether C has coincident distances or not:

• compute a Gröbner basis Ḡ for AC(5);
• if Ḡ �= {1}, conclude that d = 5;
• else, proceed as usual.

The last column of Table 2 contains the times needed to compute Ḡ. We
use the convention that it has a negative sign if Ḡ = {1} and G �= {1}. The
computation of Ḡ is notably faster than the other two computation, making this
strategy much effective when C turns out to have coincident distances.

We have tested our strategy with the [75, 61, 5] Cyclic(75, 5) code: the com-
putation of a Gröbner basis forAC takes 143.71 seconds, while the computation
of a Gröbner basis for J̃C took more than 18.000 seconds!

Remark 7.1. The accelerator polynomials used in this section are present in the
Gröbner bases of some symmetric systems, see [25] for more details.

8 Conclusions

The method proposed in Section 4 is the first one able to get the distance of
non-trivial cyclic codes. But more computational arguments are needed to ap-
proach recent results in cyclic code theory. The use of accelerator polynomials
is an interesting possibility and further research should address the study of
accelerator polynomials for other designed distances. A slightly different ap-
proach can be found in [33], where the use of the concentrated solutions has
led to the computation of all binary narrow-sense BCH codes with n = 31 and
coincident distances.

Acknowledgments. The core ideas in this paper are from the Ph.D. thesis of the author (see
[34]), so the author wishes to thank Carlo Traverso, the advisor of the thesis, for many fruitful
suggestions and hints. A special thank to Federico Ponchio and Simona Settepanella, who gave
some contributions to the combinatoric study of the spurious solutions in the binary case. The
author is particularly indebted to Marc Giusti, director of UMS MEDICIS ([24]), who let him
use remotely the computational resources of the MEDICIS cluster.

Groebner Bases and Distance of Cyclic Codes 159

Appendix

In this section we prove the following useful lemma:
Lemma 6.4. Let C be a binary [n, k, d] cyclic code (with n odd) such that
1 ∈ SC and let w be an even integer such that 2 ≤ w ≤ n − 1. Then

spd[w, n] = n

(
w/2∑
i=1

(
w − 1

2i − 1

)
spd[w − 2i, n − 1]

)

We need some definitions:

Definition 8.1. Let C be a binary [n, k, d] cyclic code (with n odd) such that
1 ∈ SC . Let w be an even integer such that 2 ≤ w ≤ n − 1 and let s be an
integer such that 1 ≤ s ≤ w

2 . We adopt the following notation:

• SPD[w, n] is the set of the spurious solutions of JC(w) which have no zero
coordinates;

• SPDs[w, n] is the set of the spurious solutions of JC(w) which satisfy the
following conditions:

– they belong to SPD[w, n],
– there is a (2s−1)-element subsetA of {1, . . . , w−1} such that xj = xw

for any x ∈ SPDs[w, n] and any j ∈ A,
– xj �= xw for any x ∈ SPDs[w, n] and any j �∈ A;

• if x ∈ SPDs[w, n], we say that x has 2s coincident coordinates;
• spds[w, n] is the number of elements of SPDs[w, n].

As each element in SPD[w, n] has double coordinates, the (disjoint) union
of the SPDs[w, n] gives exactly SPD[w, n], so that:

spd[w, n] = #(SPD[w, n]) =
∑

1≤s≤w
2

spds[w, n](a)

Thanks to (a), Lemma 6.4 follows directly from next fact:

Fact 8.1. Let C be a binary [n, k, d] cyclic code with n odd such that 1 ∈ SC
and let w be an even integer such that 2 ≤ w ≤ n − 1. Then

spd[w, n]s = n

(
w − 1

2s − 1

)
spd[w − 2s, n − 1]

Proof. For any x ∈ SPD[w, n]s we denote by

C(x) = {j1 = j1(x), . . . , j2s = j2s(x) = w}
the set of ordered coincident coordinates of x, that is for any 1 ≤ k ≤ 2s − 1
we have

160 M. Sala

jk < jk+1 and xjk = xjk−1 = xw .

Choose a (2s − 1)-element subset of {1, . . . , w − 1} and denote it by A. We
can associate to A a suitable subset of SPD[w, n]s this way:

SPD[w, n]s(A) = {x ∈ SPD[w, n]s |C(x) = A ∪ w}
It is clear that SPD[w, n]s is the union of all SPD[w, n]s(A), where A var-
ies among all (2s − 1)-element subsets of {1, . . . , w − 1}. If A �= B and
x ∈ SPD[w, n]s(A) ∩ SPD[w, n]s(B), then x would have a number of co-
incident coordinates strictly greater than 2s, which is in contradiction with
x ∈ SPD[w, n]s . So SPD[w, n]s is the disjoint union of all SPD[w, n]s(A),
i.e.

SPD[w, n]s = �
(2s−1)−element subsets of {1,...,w−1}SPD[w, n]s(A),

which directly implies

spd[w, n]s =
∑

(2s−1)−element subsets of {1,...,w−1}
#
(
SPD[w, n]s(A)

)
.(b)

We state that the sets of the form SPD[w, n]s(A) have the same number of
elements. As a matter of fact for any two (2s−1)-element subsets of {1, . . . , w−
1}, say A = {j1, . . . , j2s−1} and B = {i1, . . . , i2s−1}, we can consider the per-
mutation φ : {1, . . . , w−1} �→ {1, . . . , w−1} which switches the coordinates
{jh} with the coordinates {ih}, inducing a bijection 4 : SPD[w, n]s(A) �→
SPD[w, n]s(B) such that:

4(x1, x2, . . . , xw−1, xw) = (xφ(1), xφ(2), . . . , xφ(w−1), xw).

We denote by Ls the set SPD[w, n]s({1, 2, . . . , 2s − 1}).
As the (2s−1)-element subsets of {1, . . . , w−1} are

(
w−1
2s−1

)
, one can write

(b) in a more explicit form:

spd[w, n]s =
(
w − 1

2s − 1

)
#(Ls) .(c)

To finish the proof we have only to count the elements in Ls and to show
that they are:

n spd[w − 2s, n − 1] .

For any x element of Ls , we can consider the (w − 2s) vector x̃ obtained by
removing from x the first (2s − 1) coordinates and the last one. With argu-
ments similar to those used in the proof of Lemma 5.2, one can see that x̃
belongs to SPD[w − 2s, n] (but none of its coordinates can have the value
xw) and conversely we can create any element of Ls starting from elements of
SPD[w − 2s, n]. It is easy to show that the “remove operation”

Groebner Bases and Distance of Cyclic Codes 161

˜ : Ls �→ {y ∈ SPD[w − 2s, n] | yh �= xw for any h}, ˜ : x �→ x̃

is surjective and that any fibre has cardinality n. As the cardinality of {y ∈
SPD[w-2s,n] | yh �= xw for any h} is obviously spd[w − 2s, n − 1], we have
finished.

�

References

1. Augot, D.: Newton’s identities for minimum codewords of a family of alternant codes, Short
Abstract in the Proceedings of IEEE ISIT 95

2. Augot, D., Levy-dit-Vehel, F.: Bounds on the Minimum Distance of the Duals of BCH
Codes, IEEE Trans. Inf. Theory, 42(4), 1257–1260 (1996)

3. Bigatti, A. M., Conti, P., Robbiano, L., Traverso, C.: A Divide and Conquer algorithm for
Hilbert-Poincaré Series, Multiplicity and Dimension of Monomial Ideals, Applied algebra,
algebraic algorithms and error-correcting codes (San Juan, PR, 1993), pp. 76–88 Berlin
Heidelberg New York: Springer (1993)

4. Caboara, M., Mora, T.: The Chen-Reed-Helleseth-Truong Decoding Algorithm and the
Gianni-Kalkbrenner Gröbner Shape Theorem, to appear

5. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words in a
Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of
Length 511, IEEE Trans. Inf. Theory, 44(1), 367–378 (1998)

6. Carlitz, L., Uchiyama, S.: Bounds for exponential sums, Duke Math. J. 24, 37–41 (1957)
7. Chen, X., Reed, I. S., Helleseth, T., Truong, K.: Use of Gröbner Bases to Decode Binary

Cyclic Codes up to the True Minimum Distance, IEEE Trans. Inf. Theory, 40, 1654–1661
(1994)

8. Chen, X., Reed, I. S., Helleseth, T., Truong, T. K., Algebraic decoding of cyclic codes: A
polynomial Ideal Point of View, Contemporary Mathematics, 168, 15–22 (1994)

9. III Cooper, A. B.: Direct solution of BCH decoding equations, Comm., Cont. and Sign.
Proc., pp. 281–286 (1990)

10. III Cooper, A. B.: Finding BCH error locator polynomials in one step, Electronic Letters,
27, 2090–2091 (1991)

11. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Berlin Heidelberg New York:
Springer 1998

12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and algorithms, Berlin Heidelberg New
York: Springer 1992

13. Fitzpatrick, J.: On the Key Equation, IEEE Trans. on Inf. Theory, 41, 1290–1302 (1995)
14. Gianni, P.: Properties of Gröbner bases under Specialization, Lect. N. Comp. Sci., Vol. 378,

p. 293–297, Berlin Heidelberg New York: Springer 1989
15. Johnson, S. M.: Improved Asymptotic Bounds for Error-Correcting Codes, IEEE Trans.

on Inf. Theory, 9, 198–205 (1963)
16. Kalkbrenner, M.: Solving Systems of Algebraic Equations Using Gröbner Bases, Lect. N.

Comp. Sci., Vol. 378, pp. 282–292, Berlin Heidelberg New York: Springer 1989
17. Kasami, T., Fujiwara, T., Shu Lin : An Approximation to the Weight Distribution of Binary

Linear Codes, IEEE Trans. on Inf. Theory, 31(6), 769–780 (1985)
18. Krasikov, I., Litsyn, S.: On the Distance Distribution of Duals of BCH Codes, IEEE Trans.

on Inf. Theory, 45(1), 247–250 (1999)
19. Laihonen, T., Litsyn, S.: On upper bounds for minimum distance and covering radius for

non-binary codes, Designs, Codes and Cryptography, 14(1), 71–80 (1998)

162 M. Sala

20. Levy-dit-Vehel, F.: Bounds on the Minimum Distance of the Duals of Extended BCH Codes
over Fp, AAECC, 6(3), 175–190 (1995)

21. Loustaunau, P., York, E. V.: On the decoding of cyclic codes using Gröbner bases, AAECC,
8(6), 469–483 (1997)

22. MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes, Amsterdam:
North Holland 1977

23. MAGMA, http://www.maths.usyd.edu.au:8000/u/magma/
24. MEDICIS, http://www.medicis.polytechnique.fr
25. Mora, T., Sala, M.: On the Gröbner bases of some symmetric systems, to appear
26. Moreno, O., Moreno, C. J.: The MacWilliams-Sloane Conjecture on the Tightness of the

Carlitz-Uchiyama Bound and the Weights of Duals of BCH Codes, IEEE Trans. Inf. Theory,
40(6), 1894–1907 (1994)

27. Peterson, W. W., Weldon, Jr., E. J.: Error Correcting Codes, MIT Press, 1972
28. Plotkin, M.: Binary Codes with Specified Minimum Distance, IEEE Trans. Inf. Theory, 6,

445–450 (1960)
29. POSSO, http://posso.dm.unipi.it
30. Sala, M., Tamponi, A.: A Linear Programming Estimate of the Weight Distribution of

BCH(255, k), IEEE Trans. on Inf. Theory, 46(6), 2235–2237 (2000)
31. Sala, M., Ponchio, F.: A lower bound on the distance of cyclic codes, to appear
32. Sala, M.: Upper bounds on the dual distance of BCH(255, k), to appear
33. Sala, M.: Gröbner bases, accelerator polynomials and binary cyclic codes with coincident

distances, to appear
34. Sala, M.: On Some Algebraic Methods in the Theory of Error Correcting Codes, Ph.D.

Thesis in Mathematics, University of Milan, Italy, accademic year 1999/2000

