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Abstract: This paper presents an algebraic cryptanalysis of nonlinear �lter generator. A
linear shift register of length L �ltered by a non linear boolear function f of degree deg(f)
is equivalently described by a set of algebraic equations. More precisely, if N is the size of
given output bits then we have a system of N algebraic equations of total degree deg(f) in
L variables. By solving this system of equations we can recover all the possible initial state
(the secret key) of the device . Gröbner is precisely an e�cient tool for solving algebraic
systems. Recently, very e�cient algorithms (F5 [12]) have been proposed which are several
order of magnitude faster than the historical Buchberger algorithm. We show that with
only a polynomial number of output bits we can recover in polynomial time the initial state.
More precisely we can show that is enough to have O(Ld) output bits with d � bk+12 c where
k is the number of variables of the �ltering function. Surprisingly, for all the stream ciphers
satisfying Goli�c's design criteria and �ltering functions found in literature we found that d is
much less than the predicted bound: for instance the Lili is of degree 6 but a simple Gröbner
computations shows that it behaves like a degree 4 function. Even more surprisingly, we
show experimentally that for some examples we can recover the initial state in polynomial
time with only L+ � output bits. Di�erent attacks have been implemented, and we give a
list of timing experimented on many real size size (L � 80 bits) stream ciphers
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bases, Algebraic Cryptanalysis, Computer Algebra.
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Cryptanalyse algébrique des registres �ltrés par les bases

de Gröbner

Résumé : Cet article présente une cryptanalyse algébrique des registres �ltrés par une
fonction booléene non linéaire. On peut modéliser un registre linéaire de taille L �ltré
par une fonction booléene f de degré deg(f) par un système d'équations algébriques. Plus
exactement, si N est le nombre de bits de la séquence de sortie on obtient un système de N
équations de degré total deg(f) en L variables. En résolvant ce système on retrouve l'état
initial du registre c'est à dire la clé secrete. Les bases de Gröbner sont un outil très e�cace
pour résoudre les systèmes algébriques. Récemment, un algorithme (F5) de calcul de bases
de Gröbner a été proposé dont l'e�cacité est de plusieurs ordre de grandeur supérieure à celle
de l'algorithme historique de Buchberger. On montre qu'il su�t d'un nombre polynomial de
bits pour retrouver l'état initial en temps polynomial. Plus précisément, on peut montrer
qu'il su�t de O(Ld) bits de sortie avec d � bk+12 c où k est le nombre de variables de la
fonction de �ltrage. De manière surprenante, pour tous les generateurs pseudo aléoires et
satisfaisant les critères de Goli�c que nous avons testés, nous avons trouvé un degré d encore
plus petit que cette borne: par exemple pour Lili-128 on trouve des fonctions de degré 4.
Encore plus surprenant, nous montrons expérimentallement que pour certains exemples nous
pouvons retrouver e�cacement l'état initial avec seulement L+ � bits de sortie. Di�érente
attaques ont été implantées et nous donnons une liste de benchmarks avec des tailles réelles
(L � 80 bits).

Mots-clés : Polynômes multivariés, Bases de Gröbner, Cryptanalyse algébrique, Calcul
Formel.



Algebraic cryptanalysis of LFSR 3

1 Introduction

Stream ciphers are generally faster than block ciphers in hardware, and need a low power
consumption. Furthermore, bu�ering is limited and in situations where transmission errors
can occur the error propagation is limited. Consider a synchronous stream cipher in which
the key-stream, the plain-text, and the cipher-text are sequences of binary digits: the output
sequence of the key-stream generator, (zi)i�0 is added bitwise to the plain-text sequence
(mi)i�0, producing the cipher-text (ci)i�0. The key-stream generator is initialized through
a secret key K, and hence, each key K will correspond to an output sequence. Since the
key is shared between the transmitter and the receiver, the receiver can decrypt by adding
the output of the key-stream generator to the cipher-text, obtaining the message sequence.

The goal is to e�ciently produce random-looking sequences that are as �indistinguish-
able� as possible from truly random sequences. Also, from a cryptanalysis point of view, a
good stream cipher should be resistant against di�erent kind of attacks as a known-plaintext
attack. For a synchronous stream cipher, a known-plain-text attack is equivalent to the
problem of �nding the key K that produce a given output key-stream z0; z1; : : : ; zN�1. A
common methodology for producing random-like sequences is to use linear feedback shift
registers, LFSRs, with length L as building blocks in di�erent ways and a �ltering functions
f to break the linearity of LFSRs. Furthermore, the secret key K is often chosen to be
the initial state of the registers. We can describe of such a cryptosystem when N bits of
the running-key is given by an algebraic system of N equations of degree deg(f). In the
rest of the paper S(f;N) denote this algebraic system. A �rst and obvious result is that if
N � Ldeg(f), then the resolution of the cryptosystem is polynomial in Ldeg(f) (more precisely
O(L!deg(f)) where ! � 3 is the exponent of the complexity of linear algebra).

The main attacks on stream cipher are Correlation and Fast Correlation attacks [6, 16].
The essential principle of the attack by correlation is to assimilate the research of the initial
state of a register to a problem of correction of errors. Hence we imagine that the output of
the nonlinear �lter generator results from the transmission produced by a register through a
noisy channel. The errors which occur during this transmission come in fact from the �lter
function. The probability of error is thus higher if the two sequences, the output one and
the register one, are slightly correlated. As the sequence generated by only one register is
strongly redundant, we can reconstitute it using an algorithm of decoding which corrects
the errors of transmission of a code C.

At this time, to the best of the authors's knoweldge, the only other published and similar
attack was presented by Courtois [8]. The idea is to approximate, with a good probability,
the �ltering function used in Toyocrypt by a low degree poynomial and to apply the XL
algorithm [9] for solving the algebraic system. The method presented in [8] is well adapted
for the Toyocrypt example but does not seem to be a general method.

In this paper we present a general and e�cient method to �nd the initial state of the
register: we simply compute a Gröbner basis of algebraic system S(f;N). The di�culty is
then to evaluate the complexity of this computation.

As many other algorithms, Gröbner bases algorithms behave much better in practice
than in the worst case. Algebraic systems coming from non linear �lter generators are
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4 Faugère & Ars

typical examples: the computation of Gröbner bases over F2 , has an asymptotic worst-
case time bound which is exponential, while its running time is bounded by a low-degree
polynomial in the particular case of stream generator. Hence, even if very e�cient algorithms
for computing Gröbner bases are now available (F5 [12]), the drawback of Gröbner bases
algorithms is that the complexity is di�cult to evaluate theoretically.

We have seen than the previous trivial bound O(L!deg(f)) depends strongly on the degree
of the algebraic normal form of f . But we can also represent the boolean function f by one
or several rational form f =

Nf

Df
where Nf , and Df are polynomials of degree d less than

deg(f). More precisely, we prove that d � bk+12 c where k is the number of variables of
the �ltering function. From this, if we have N � Ld output bits, then the Gröbner basis
computation reduces to simple linear algebra, so we �nd a complexity of O(L!d).

We have to make a careful distinction between the Gröbner computation of S(f;N)

and the computation of the representation f =
Nf

Df
whose primary purpose is to evaluate

precisely d (and thus N) for a particular f . This might be confusing since the computation
of Nf and Df is also the result of another Gröbner basis computation. However this second
Gröbner basis computation (technically a basis of the ideal of relations of f) is very easy
and has to be done only once for a given f . The �rst computation Gröbner is the di�cult
part and must be done for every given sequence of output bits.

Of course we have to make several computer simulations to validate the previous estima-
tion. First we have collected a list of stream ciphers satisfying Goli�c's design criteria and
�ltering functions found in literature [15, 13, 5, 7, 6, 17]. For all the examples we found
that the degree d is much less than the theoretical bound (and always less than 4 for all the
examples). Thus we establish that for a reasonable number of given output bits (say several
kbytes) we can recover e�ciently the secret key for real size stream ciphers (80 bits). Even
more surprisingly, we show experimentally that for some of the examples we can recover the
initial state in polynomial time with only L+ � output bits.

This paper is organized as follows. Section 2 describes nonlinear �lter generators and
their properties. Section 3 introduces Gröbner bases and basic properties. Section 4 presents
the rational representation of boolean functions and focuses on computational complexity
bound of the attack. Section 5 gives a detailed list of running-times for many stream ciphers
which con�rm the theoretical approach. Section 7 compares our attack with correlation
attacks. Section 8 proposes another strategy: for a �xed stream cipher compute a symbolic
Gröbner basis in a precomputation phase; then the initial state can be found very e�ciently
by substituting actual values of the running-key in the generic Gröbner basis.

2 Nonlinear Filter Generator Description

We describe brie�y a nonlinear �lter generator. It is composed from a LFSR and a �ltering
function. We refer to [1, 2] for further details.

INRIA



Algebraic cryptanalysis of LFSR 5

2.1 Linear Feedback Shift Registers (LFSR)

Let q be an integer, we de�ne LFSR on the �nite �eld Fq . A linear feedback shift reg-
ister produces a sequence, u = u0; u1; : : : , satisfying the linear recurrence relation, un =PL

j=1 cjun�j ; n � L where L is the length of the LFSR, cj 2 Fq for j = 1; : : : ; L, and
ui 2 Fq ; i � 0.

The L stages, Un = (un; un+1; : : : ; un+L�1), is called a state of the shift register and we
note U = (Un)

1
n=0 the state sequence. We de�ne the feedback polynomial to be PF (X) =

1� c1X � c2X
2�� � �� cL�1x

L�1� cLX
L. The �rst L output symbols, u0; u1; : : : ; uL�1, are

initially loaded into the LFSR, these symbols are called the initial state. This is also the
secret key of the LFSR.

The linear recurrence between the stages implies a relation between consecutive state:
Un+1 = AUn where A is the companion matrix ofPF .

The sequences U = U0; U1; : : : preoduced by linear feedback registers have many inter-
esting properties such as a very long periodicity. If the feedback polynomial Pf is primitive
the period is qL � 1.

The main drawback with LFSR sequences is that if we are given a sequence of L con-
secutive output symbols, then, due to the linearity, we would calculate the output symbol
at an arbitrary time instance. So, one cannot use a maximum-length LFSR directly as a
key-stream generator.

2.2 Non linear boolean function

Non linear boolean functions' purpose in key-stream generators is to hide the linearity in-
troduced by the LFSRs. A boolean function is a function f : Fk2 ! F2 .

From an algebraic point of view, a boolean function f can be described by its algebraic
normal form (ANF). Let a0; a1; : : : ; ak; a1;2; : : : ; a1;2;:::;k be some elements in F2 such that:

f(x1; : : : ; xk) = a0 +

kX
m=1

X
1�i1;��� ;im�k

ai1;��� ;imxi1 : : : xim

where addition and multiplication are in F2 . The degree of the ANF of f is called the degree
of f (and denoted by deg(f)).

As we want, on output, random-looking sequences, we need to restrict the choice of the
boolean function. A k variables boolean function f is balanced if P(f(x) = 0) = P(f(x) =
1) = 1

2 , when x is chosen uniformly in Fk2 .

2.3 The Nonlinear Filter Generators

The nonlinear �lter generator is the combination of the LFSR with a boolean function.
Again, if the boolean function, the feedback polynomial or the connection between the
function and the LFSR are not chosen properly then the whole system may increase the risk
of being attacked.

RR n° 4739



6 Faugère & Ars

As the length L (say L � 128) of the LFSR and the number k (say k � 10) of variables
of the boolean function f are usually di�erent, we need to introduce the connexions between
the two elements.

Let  = (i)
k
i=1 be an increasing sequence of nonnegative integers so that 1 = 0 and

k � L�1. Then the output sequence z = (zn)
1
n=0 of the nonlinear �lter generator is de�ned

by zn = f(un+1 ; : : : ; un+k); n � 0. The sequence  is called the tapping sequence of the
LFSR.

To avoid di�erent attacks, Golic[14] proposes design criteria for nonlinear �lter genera-
tors.

3 Algebraic Approach of Nonlinear Filter Generator

3.1 Algebraic model

We may suppose that f is a boolean function on L variables. With this notation, the output
sequence can be written with the LFSR state expression U = (Un)

1
n=0 : zn = f(Un) =

f(AnU0); n � 0
An algebraic attack of the nonlinear �lter generator, if we knowN bits of the key-stream,

is to solve the system :

z0 = f(U0); z1 = f(A:U0); � � � ; zN�1 = f(AN�1:U0) (1)

Gröbner basis provides an e�cient tool for solving systems of polynomial equations.
We associate to (1) the ideal JN spanned by JN =< z0 � f(X); z1 � f(A:X); : : : ; zN�1 �
f(AN�1:X) > where X the vector (x0; : : : ; xL�1). The Gröbner basis computation gives a
simpler list of generators of the ideal JN .

The Gröbner basis of (1) give the solutions of this system in the algebraic closure F2 of
F2 . Since we only want solutions in F2 , we add the �eld equations x2i + xi for i = 1; : : : ; L.
Hence, we have to compute the Gröbner basis of

IN =< x20+x0; : : : ; x
2
L�1+xL�1; z0�f(x0; : : : ; xL�1); : : : ; zN�1�f(A

N�1 (x0; : : : ; xL�1)) >

An equivalent method is to work in the ringR = F2 [x0; : : : ; xL�1]= < x20+x0; : : : ; x
2
L�1+

xL�1 >, and to consider the ideal IN in R (in R, all polynomial have degree one in in each
variable):

IN =< z0 � f(x0; : : : ; xL�1); : : : ; zN�1 � f(AN�1 (x0; : : : ; xL�1)) > (2)

In the rest of the paper S(f;N) denote this algebraic system. We can notice that if we
take N > L, the algebraic system S(f;N) (2) is over-de�ned: it has more equations than
variables.

INRIA



Algebraic cryptanalysis of LFSR 7

3.2 De�nitions of Gröbner bases

First we introduce some de�nitions on Gröbner bases. For more details, we refer to [4] or
[10]. Let us consider a �eld K .

De�nition 1 A monomial ordering on K [x1 ; : : : ; xL] is a relation � on the set of monomials
x�, � = (�1; : : : ; �L) 2 Z

L, satisfying :
(i) � is a total ordering.
(ii) If x� � x� and  2 ZL then x�+ � x�+ .
(iii) � is a well-ordering, i.e. every nonempty subset of the monomial set has a smallest

element under �.

Example 1 The DRL order (Degree Reverse Lexicographic order):

Let x� and x� two monomials. We say x� � x� if j�j =
PL

i=1 �i > j�j =
PL

i=1 �i or
j�j = j�j and 9i 2 f1; : : : ; Lg s.t. �i < �i and 8i < j � L; �j = �j .
In practice, a DRL Gröbner basis leads to faster computation.

The elimination order [x0; : : : ; xL�1], [z0; : : : ; zN�1]: (we will use this order in section 8)
For any monomial m we can write m = mxmz where mx (resp. mz) depends only on xi
(resp zj). We say that m = mxmz � m0 = m0

xm
0
z if and only if mx � m0

x or (mx = m0
x

and mz � m0
z).

Let f =
P

� a�x
� be a nonzero polynomial in K [x1 ; : : : ; xL], the leading monomial is

LM(f) = max�fx
�g and the leading coe�cient is LC(f) = a� so that LM(f) = x�.

De�nition 2 Let us �x a monomial ordering �. A �nite subset G = fg1; : : : ; gsg of an
ideal I is said to be a Gröbner basis if 8f 2 I, 9g 2 G such that LM(g) divides LM(f).

Proposition 1 (Specialization) Let G be a Gröbner basis for the elimination order [x0; : : : ; xL�1],
[z0; : : : ; zN�1].

If we substitute in G the variables (zi)
N�1
i=0 with explicit values, we still have a DRL order

Gröbner basis of the ideal.

Proposition 2 For any monomial ordering, the (reduced) Gröbner basis of IN de�ned by
(2) for a speci�c sequence (zi)

N
i=0 is:

� < x0 + a0; : : : ; xL�1 + aL�1 > if (a0; : : : ; aL�1) is the only solution.

� < 1 > if there is no solution.

Another very useful property of Gröbner bases is that it is possible to �nd all the algebraic
relations among several polynomials f1; : : : fm (see [10] page 338 for a precise de�nition of
the ideal of relations). We will use this proposition to compute a �rational form� of a boolean
function.

RR n° 4739



8 Faugère & Ars

Proposition 3 ([10] page 340) Fix a monomial order in K [x1 ; : : : ; xn; y1; : : : ; ym] where any
monomial involving one of the x1; : : : ; xn is greater than all monomials in k[y1; : : : ; ym] (an
elimination ordering) and let G be the Gröbner basis for this ordering. Then G\k[y1; : : : ; ym]
describe all the relations among f1; : : : ; fm.

The previous de�nition 2 does not depend on any algorithm. The �rst hirstorical algo-
rithm for computing Gröbner bases was the Buchberger algorithm [10, 4]. More e�cient
algorithms are now available such as the algorithm F4 [11] which introduces linear algebra
in the computation. More recently, the algorithm F5 [12] which avoids reduction to zero
for generic systems. With a good implementation of this algorithm, we can solve real size
stream cipher (see section 5).

3.3 Behavior of the System according to the Number of Equations

The following proposition proves that as long as we do not have the solution, every new
equation gives useful informations.

Proposition 4 Let us �x an output sequence (zi)
1
i=0 from a nonlinear �lter generator. Let

IN be de�ned as (2).
9N0 2 N so that for all N � N0, IN = IN0 and for all 0 � N < N0, IN  IN+1.

Proof 1 Since the LFSR is periodic with a period T , zT�1�f(AT�1
U0) = z0�f(U0) with

U0 = (x0; : : : ; xL�1). So IT = IT�1.
Let us consider N0 = minfN s.t. IN = IN+1g. For all 0 � N < N0, IN  IN+1.
Since IN0 = IN0+1, zN0 � f(AN0 :U0) 2 IN0 . So 9P a polynomial such that:

zN0 � f(AN0U0) = P (z0 � f(U0); : : : ; zN0�1 � f(AN0�1U0); x
2
0 + x0; : : : ; x

2
L�1 + xL�1)

With the change of variable U0 7! AU0 = (x1; : : : ; xL�1; x0 +
PL�1

i=1 �ixi),

zN0 � f(AN0+1U0) = P (z0 � f(AU0); : : : ; zN0�1 � f(AN0U0); x
2
1 + x1; : : : ; x

2
L�1 + xL�1;

(x0 +

L�1X
i=1

�ixi)
2 + x0 +

L�1X
i=1

�ixi)

zN0+1 � f(AN0+1U0) = ~P (z1 � f(AU0); : : : ; zN0 � f(AN0U0); x20 + x0; : : : ; x
2
L�1 + xL�1)

So zN0+1 � f(AN0+1:(x0; : : : ; xL�1)) 2 IN0 ,i.e. IN0+2 = IN0+1 = IN0 .
By iteration, we deduce that 8N � N0, IN = IN0 .

4 Complexity of Gröbner Bases Computation

4.1 General Result

Recent algorithms for computing Gröbner bases (F4, F5) incrementally construct matrices
in degree 2, 3, . . .D:

INRIA



Algebraic cryptanalysis of LFSR 9

AD =

0
BB@

momoms degree � D in x1; : : : ; xL

m1 � fi1 : : :
m2 � fi2 : : :
m3 � fi3 : : :
� � � � � �

1
CCA

where m1;m2; : : : are monomials such that the total degree of mjfij is less than D.
The next step in the algorithm is to compute a row echelon of AD using linear algebra
techniques. It must be emphasized that the rows of AD is a small subset of all the possible
rows fmfi s:t: 1 � i � N and m any monomials:t: deg(m) � D � deg(fi)g.

Consequently, to estimate the complexity of the computation of a Gröbner basis, we
need to know the maximal degree of the polynomials occurring in the computation. Let
dmax be this maximal degree then the whole complexity of the algorithm is equivalent to
compute row echelon form of Admax

so that the complexity is (
Pdmax

i=0 (Li ))
! where ! � 3 is

the complexity of linear algebra.
As we work in the ring R, all the monomial have a degree 1 in each variables, hence the

total degree of a monomial is less than L. It is therefore clear that the complexity of the
Gröbner basis computation can be done in (single) exponential time. Of course this is only a
rough upper bound and must be compared to the complexity of exhaustive search O(L 2L).

It is very di�cult to evaluate more accurately the complexity of Gröbner basis compu-
tation and especially in the case of over determined systems of polynomial equations (that
is to say when N � L where N is the number of equations). We extract from [3] (see also
[9]) this useful result:

Result 1 Let S be an algebraic system of N = L log2(L) random equations in L variables,

then a Gröbner basis can be computed in sub-exponential time (O(e
L log(log(L))

log(L) )).

In other word, for a nonlinear �lter generator with LFSR length L, if the number N of
known zi is higher than L log2(L) then we can expect to �nd the initial state of the generator
in sub-exponential time in L. In view of the fact that we have no proof that the algebraic
equations obtained from a non linear �lter generator are random this result must also be
validated by real computer simulations. Moreover, sub-exponential time is very close to
exponential so this result does not tell us how the algebraic attack simpli�es the resolution
in practice. On the other hand, this result clearly indicates that the more equations you
have the more able you are to compute the Gröbner basis and thus to recover the secret key.

4.2 Algorithm F5 and Low Degree Relations

We have noticed by computer simulation that the Gröbner basis computation of the ideal
(2) behaves as if the function f had a lower degree d � deg(f). To understand this, we can
examine in more detail the algorithm F5.

The algorithm F5[12] is an incremental algorithm on the elements of the ideal IN =<
z0 � f(x0; : : : ; xL�1); : : : ; zN�1 � f(AN�1 (x0; : : : ; xL�1)) >: the algorithm compute �rst

RR n° 4739



10 Faugère & Ars

the DRL Gröbner basis of < z0 � f(x0; : : : ; xL�1) >, and then a Gröbner basis of < z0 �
f(x0; : : : ; xL�1); z1 � f(A (x0; : : : ; xL�1)) >, and so on . . .

So, in order to evaluate the complexity, we need to estimate �rst the degree of elements
in the ideal of relation (see proposition 3) < z0 � f(x0; : : : ; xL�1) >.

Proposition 5 Let a be in F2 . The reduced Gröbner basis of Ia =< f(x1; : : : ; xk) + a >
in R for the DRL order contains an independent linear basis of all the relation g 2 R with
minimal degree d so that:

8(x1; : : : ; xk) 2 F
k
2 ; f(x1; : : : ; xk) = a) g(x1; : : : ; xk) = 0 (3)

We note Nd the dimension of the vector space of relations g of degree d.

Proof 2 Let g be a minimal degree relation satisfying (3).

So V (Ia) = fu 2 Fk2 ; f(u) = ag � V (g) = fv 2 F2
k
; g(v) = 0g where F2 is the algebraic

closure of F2 . According to the Nullstellensatz theorem, exists m 2 N� so that gm 2 Ia. Or
gm is reduced to g by fx21 + x1; : : : ; x

2
k + xkg, so g belongs to Ia.

Let (f1; : : : ; fm) be the reduced Gröbner basis of Ia for the DRL order. First, for all
i 2 f1; : : : ;mg, fi satis�es (3). g 2 Ia. So 9i0 2 f1; : : : ;mg s.t. LM(fi0) divides LM(g).
As we work with the DRL order, we have degree(fi0)�degree(g) and as g a minimal degree
relation satisfying (3), degree(fi0)=degree(g).

In the same way, we construct (i0; : : : ; it) s.t. LM(g � fi0 � � � � � fit�1) � LM(g �
fi0 � � � � � fit) and degree(fij )=degree(g). As g 2 I, this sequence is �nite. and 9h 2 N
so that g = fi0 + � � �+ fih . So the Gröbner basis contains a linear basis of all the relations
g with minimal degree satisfying (3). As it is a reduced basis, the extract basis is linearly
independent.

This proposition proves that the DRL Gröbner basis contains all the minimal degree
relations satis�ed by the elements (x1; : : : ; xk) 2 F

k
2 solutions of the equation f(x1; : : : ; xk) =

a. So we can estimate a bound of complexity in some cases.

Remark 1 Another meaningful interpretation is that proposition 3 gives a �rational� rep-
resentation of the boolean function f : f =

Nf

Df
where Nf , and Df are polynomials of degree

d less than deg(f). For instance the boolean function used in LILI128 [15] is an algebraic
function of degree 6 in 10 variables but the Gröbner basis of the ideal of relations < F � f >
contains 14 relations of degree 4. For instance:

(f + x5 + x4x8 + x4x7 + x2x6 + x2x9 + x6 + x7 + x10)x1x3 = 0

another relation can be written as a fraction:

f =
x2 x3 x4 x5 + x1 x9 x3 x4 + x1 x2 x4 x5 + x1 x3 x4 x5 + x7 x3 x2 x1 + x6 x3 x2 x4 + � � �

x2 x3 x4 + x1 x3 x4 + x2 x1 x3 + x1 x2 x4 + x1 x2 + x3 x2 + x1 x4 + x1 x3

INRIA



Algebraic cryptanalysis of LFSR 11

4.3 A bound of Complexity

Let M(L; d) be the number of monomials of degree smaller than d, M(L; d) =
Pd

i=0(
L
i ). We

can easily evaluate the complexity of computing a Gröbner basis of N �M(L; d) equations
of degree d since the computation is only linear algebra on all the monomials:

Theorem 1 If N � M(L;d)
Nd

, then the Gröbner basis can be computed in O((M(L; d))!) =

O(Ld!).

Remark 2 In the previous theorem we can use for d the value given by the computation
of the ideal of relations of the boolean function given by proposition 5. For instance, for
LILI128 [15], we can use d = 4 instead of 6 and N4 = 14.

4.4 An Upper bound for d

Theorem 2 Let f be any boolean function with k inputs (k variables).
There exits a constant a 2 F2 so that the minimal degree d of the DRL Gröbner basis's

elements of Ia =< f(x1; : : : ; xk) + a > is lower than bk+12 c where byc is the whole number
portion of y.

Proof 3 To proof this theorem, we have to �nd a nonzero polynomial P 2 R so that P 2 Ia.
Let us consider R as a vector space. (1; x1; : : : ; xk; x1x2; : : : ; x1 � � �xk) is a basis of R. So
dim(R)=2k.

� Assuming that k is even (i.e. k = 2l), we consider the family

F = fm;mf 2 Rj m monomial and degree(m) � b
k + 1

2
c = lg:

#F = 2

lX
i=0

(ki ) =

lX
i=0

(ki ) +

lX
i=k

(li) = 2k + (kl )

So the family F is linearly dependent. As fmj mmonomial and degree(m) � bk+12 cg

is free, 9P;Q 2 E with P 6= 0 and degree(P ),degree(Q)� bk+12 c so that Pf +Q = 0.

� Assuming that k is odd (k = 2l+1), f(x1; : : : ; xk) = f1(x1; : : : ; xk�1)xk+f2(x1; : : : ; xk�1).
So (xk + 1)f(x1; : : : ; xk) = (xk + 1)f2(x1; : : : ; xk�1). As k � 1 is even, 9P 0; Q0 2 E

with P 0 6= 0 and degree(P 0),degree(Q0)� b (k�1)+12 c = l so that P 0f2 + Q0 = 0. For

P = (xk + 1)P 0 and Q = (xk + 1)Q0, we have degree(P )� l + 1 = bk+12 c because k is

odd. In the same way, degree(Q)� bk+12 c.

We have shown that 9(Pj ; Qj); j 2 J with degree(Pj),degree(Qj)� bk+12 c so that Pj 6= 0
and Pjf +Qj = 0. If 8j 2 J , Qj = 0, then for a = 1, Pj 2 Ia and Pj 6= 0. Else 9J1 � J so
that 8j 2 J1; Qj 6= 0 and for a = O, Qj 2 Ia.
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12 Faugère & Ars

Remark 3 We can �nd boolean functions that satis�ed this theorem for a but not for a =
a+ 1.

Let us consider the boolean function f(x1; x2) = 1 + x1 + x2 + x1x2. The DRL Gröbner
bases of < f(x1; x2) + a > in R is < x1; x2 > for a = 1 and < f(x1; x2) > for a = 0.

Corollary 1 If we have M(L; bk+12 c) output elements, then the complexity of the Gröbner

basis computation is O((
Pb k+1

2 c
i=0 (iL))

!) = O(Lb
k+1
2 c!).

Proof 4 From the previous proof, there is at least one equation with degree bk+12 c. Then
the proof is similar to the proof of theorem 1.

Remark 4 This result is not optimal. We do not use the fact that f is balanced in the
demonstration, and so we can expect better result in practice (see Annex A). For instance,
the boolean function (x1 ; : : : ; x1 ) 7! x2 x3 x4 x5 + x2 x3 + x1 veri�es d = 2 < 3 and Nd = 2.

Since LILI128 [15] is a boolean function in 10 variables k = 10 we expect to �nd degree
5 relations. In fact we found 14 relations of degree 4.

5 Experimental Results

For the computer simulations , we use the algorithm F5([12]) modi�ed to include the Frobe-
nius map h2 = h. The algorithm is implemented in C in the program FGb (there are also
speci�c linear algebra implementation for the �eld F2 ). Furthermore, FGb integrate the
generation of the algebraic system S(f;N). Without care, this part could be the most con-
suming part of the computation (it was the case in our �rst implementation in the general
computer algebra system Maple).

We describe a simple method to generate e�ciently the equations:

Proposition 6 Let g(x0; : : : ; xL�1) = g1(x0; : : : ; xL�2)+xL�1g2(x0; : : : ; xL�2). be the m
th

equation generated.
Next the (m+ 1)th equation is given by :

zm � zm�1 + g1(x1; : : : ; xL�1)) +

L�1X
j=0

ÆcL�jxjg2(x1; : : : ; xL�1))

with c0 � c1X � c2X
2 � � � � � cL�1x

L�1 � cLX
L = PF (X) the feedback polynomial and Æb

the Kronecker's symbol.

A complexity bound of the generation of a equations is (w(PF )+1)(L�1
L+deg(f)�2)+(

deg(f)
L�1 )

with d the degree of f (and g).

We remark that the complexity of the generation of the equations depends on the weight
of PF (the number of nonzero coe�cient in the feedback polynomial PF ), whereas, the
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Algebraic cryptanalysis of LFSR 13

computation of Gröbner basis depends only on the degree of the boolean function f (see
section 4.3).

We present some simulation results for several LFSR of various size 128 � L � 40. The
running-times are given for a HP workstation with an alpha EV68 processor at 1000 Mhz.
All considered �ltered functions are balanced and can be found in the literature: all the
boolean function examples are taken from [5, 7, 6] for the CanFil examples and from [17] for
the LBGZ examples. We can �nd their algebraic normal form and their minimum degree d
in Annex A.

Example L N w(PF ) Complexity Solve
LBGZ 1 40 1071 17 L3! 18 s
LBGZ 1 80 8541 47 L3! 1 h 32 m
LBGZ 1 89 11758 53 L3! 4 h 28 m
LBGZ 2 40 3568 17 L3! 19.3 s
LBGZ 2 80 28468 39 L3! 1 h 44 s
LBGZ 2 89 39190 53 L3! 4 h 32 m
CanFil 1 80 6342 39 L2! 1.1 s
CanFil 1 128 12384 63 L2! 10.2 s
CanFil 2 80 6342 39 L2! 1.1 s
CanFil 2 128 12384 63 L2! 10.3 s
CanFil 3 80 3774 39 L2! 1.3 s
CanFil 3 128 12384 63 L2! 12.4 s
CanFil 4 80 6342 39 L2! 1 s
CanFil 4 128 12384 63 L2! 9.5 s

Example L N w(P) Complexity Solve
CanFil 5 80 1622 35 L2! 0.1 s
CanFil 5 128 4129 63 L2! 9.1 s
CanFil 6 80 1621 39 L2! 0.8 s
CanFil 6 128 4129 63 L2! 8.9 s
CanFil 7 80 1081 39 L2! 0.97 s
CanFil 7 128 2753 63 L2! 10 s
CanFil 8 40 1071 17 L3! 18.1 s
CanFil 8 80 17081 51 L3! 1 h 45 m
CanFil 8 89 23515 49 L3! 4 h 35 m
CanFil 9 40 10702 17 L3! 21.2 s
CanFil 9 70 57227 37 L3! 33 m 21 s
CanFil 10 40 1071 17 L3! 16.5 s
CanFil 10 89 11757 53 L3! 4 h 21 m

Table 1: Nonlinear �lter generator on DS25 1000 Mhz
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Example length L number N Gröbner
of LFSR of outputs

CanFil 5 40 44 22.3 s
CanFil 5 50 54 46.0 s
CanFil 5 60 66 89.0 s
CanFil 5 70 77 221.0 s

Table 2. Gröbner attack when N � L on HP DS25 1000 Mhz

7 Fast Correlation Attacks Comparison

The essential principle of attacks by correlation is to compare the research of the initial state
of a register to a problem of correction of errors on a code C.

These attacks imply change in the design criteria of nonlinear �lter register. To prevent
from fast correlation, the boolean function f must be m-resilient,i.e. if for m variables �xed
in F2 , the k �m variables boolean function ~f deduced from f is still balanced.

These particular boolean functions have an important propriety demonstrated by Siegen-
thaler [18]: a m-resilient function f over Fk2 satis�es the relation deg(f) � k �m� 1.

So the choice of a m-resilient function decreases the degree of f . Then, it is easier to
solve the system with an algebraic attack which depends on the degree. In other way, the
functions f which are strongly secure for algebraic attack have a high degree and then they
are correlate. So it is easy to solve them with correlation attacks. We can say that the two
attacks are complementary.

In [6], the boolean function is approximated by a linear function x 7! �:x, � 2 FL2 . This
approximation give a linear relation for an output. Fast correlation attacks derive from
C a new code C0 having a lower dimension � < L, for which a fast decoding method is
feasible. Then they �nd the � �rst elements of the initial state.Such a code C0 is obtained by
computing all linear combination of Æ relations which vanish on the last (L � �) positions.
Parameter Æ does usually not exceed 4 or 5.

The fast correlation algorithm have two parts:

� A precomputation part, in which we �nd all the Æ relations which vanish on the last
(L� �) positions if they are combined.

� A decoding part, in which we �nd the � �rst elements of the initial state.

The minimum number of outputs required by the attack is given by:

(Æ!�)
1
Æ 2

L��
Æ < Nmin � (2ln(2)Æ!�)

1
Æ 2

L��
Æ

So fast correlation attacks �nd � elements of the initial state where Gröbner basis com-
putation �nd the whole state. Furthermore, correlation attack have a probabilistic rate of
success whereas Gröbner basis computation always �nd the result.

The most important point is that number of equation needed by correlation attacks is
exponential whereas Gröbner basis attacks need only polynomial number of outputs. On the
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16 Faugère & Ars

other hand a drawback of the Gröbner attack is that this number depends strongly on the
choice of the boolean functions f . So in general, Gröbner basis computation need a lower
number of outputs as is made clear by the table 3.

We present the number of outputs needed for LFSR of length 40 with Æ = 2 and � = 20
according to examples proposed in [6]. We can remark that for the example 9, Gröbner
basis method needs more outputs than Correlation attacks. It comes from the fact that for
a small L, the number Ld is higher than 2L. But for real size L, Gröbner basis method
would need less outputs then Correlation attacks.

Example 1 2 3 4 5 6 7 8 9 10
Gröbner basis 821 821 821 412 412 or 44 412 274 1071 10701 1071
Correlation 7625 7625 7625 7625 7625 7625 7625 7625 7625 7625

Table 3. Number of required output bits

8 Gröbner attack with Precomputation Phase

For now, we have computed a DRL Gröbner basis for an explicit output sequence (zi)
N�1
i=0 .

Thus, for another explicit output sequence, we need to compute again the Gröbner basis
whereas only the constants in equations S(f;N) have been modi�ed.

Another solution is to add new variables (zi)
N�1
i=0 and to compute a �symbolic Gröbner

basis�. Then for all explicit sequences we need only to substitute the values of zi in the
Gröbner basis.

More precisely, we have to compute a Gröbner basis for the elimination ordering � intro-
duced in section 3.2. The polynomial ring is now R0

N = F2 [x0; : : : ; xL�1; z0; : : : ; zN�1]= <
x20 + x0; : : : ; x

2
L�1 + xL�1; z

2
0 + z0; : : : ; z

2
N�1 + zN�1 >

From proposition 1, we know that if we substitute the variables (zi)
N�1
i=0 with explicit

values, we still have a Gröbner basis of the ideal IN (but not necessarily a minimal Gröbner
basis).

So to evaluate the complexity we have to bound the complexity of the precomputation
phase and the complexity of the substitution stage.

Theorem 3 If we take N equations with N high enough to have only one solution for all
possible outputs sequences, we �nd, in the computed Gröbner basis, equations with a degree
one for the variables xj , 0 � j � L� 1. These linear equations can be written

CX = B

where C and B are matrices with polynomial coe�cients. C is of rank L for a given output
(zi)

N�1
i=0 .

Proof 5 After the substitution in the Gröbner basis, we still have a Gröbner basis. As we
have only one solution for the system, the new basis contains equations of degree 1 for all
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the xj . Hence the Gröbner basis contains linear equations, CX = B where C and B are
polynomial matrices in the variables (zi)

N�1
i=0 .

Moreover, if for all outputs, we only have only one solution, the matrix C have rank L
for a given output (zi)

N�1
i=0 .

Let d0 be the minimal degree of the relations PF+Q in the ideal < F�f(x0; : : : ; xL�1) >
(there relations appear during the computation of the Gröbner basis for an elimination
ordering).

Theorem 4 If N � M(L;d0)
Nd0

, the precomputation phase can be done in

(Nd0 + L+ 1)N2
d0N

3

operations. The cost of substitution is

L(L+ 1)N

where M(L; d0) is the number of monomials in F2 [x0; : : : ; xL�1] of degree less than d0.

Proof 6 Similarly to section 4.3, the Gröbner basis computation reduces to linear algebra
on a matrix with NNd0 lines and M(L; d0) + (L + 1)N columns. So a complexity bound is
(NNd0)

2(NNd0 + (L+ 1)N) = (Nd0 + L+ 1)N2
d0N

3.
Furthermore, we obtain a polynomial matrix C with only linear equations as for B.

With such relations, the resolution is only the substitution of (zi)
N�1
i=0 in C and B which

have complexity at most L(L+ 1)N and then an inversion of a L� L matrix in F2 .

9 Conclusion

We have a presented a cryptanalysis of non linear �lter generators based on fast algorithms
for computing Gröbner bases. We proof theoretically and experimentally that non linear
boolean functions of degree D behave, from an algebraic of point, as a fonction of lower
degree d < D (and in practice d � 4 for all the functions we have tested). Then we have
established that with only Ld bits of the running key we can recover e�ciently the secret
key. For some examples, we were able to recover the secret key with only L + � bits of
the running-key. However, it is an open issue to predict the complexity of the Gröbner
computation when the number of output bits is L+ � and it is not clear if it can be done in
polynomial time.
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A Annex : list of boolean functions

� LBGZ 1 [17], the boolean function f is 1+x1+x2+x3+x4+x5+x6+x1x7+x2x3+
x7x2 + x1x2x3 + x1x2x6 + y1x2x7

� LBGZ 2, the boolean function f is x1 + x4 + x5 + x6 + x7 + x1x2 + x1x7 + x6x2 +
x6x3 + x3x8 + x1x2x4 + x1x2x6 + x1x2x7 + x8x1x2 + x1x2x3 + x6x1x3 + x1x2x3x4 +
x1x2x3x5 + x8x3x2x1

� Examples from articles [5, 7, 6].

� CanFil 1, the boolean function f is x1 x2 x3 + x1 x4 + x2 x5 + x3

� CanFil 2, the boolean function f is x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 +
x3 + x4 + x5

� CanFil 3, the boolean function f is x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

� CanFil 4, the boolean function f is x1x2x3 + x1x4x5 + x2x3 + x1

� CanFil 5, the boolean function f is x2 x3 x4 x5 + x2 x3 + x1

� CanFil 6, the boolean function f is x1x2x3x5 + x2x3 + x4

� CanFil 7, the boolean function f is x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3

� CanFil 8, the boolean function f is x1 x2 x3 + x2 x3 x6 + x1 x2 + x3 x4 + x5 x6 +
x4 + x5

� CanFil 9, the boolean function f (2-resilient function with maximal nonlinearity)
is x1+x2+x5+x6+x2x4x5x7+x2x5x6x7+x3x4x6x7+x1x2x4x7+x1x3x4x7+
x1x3x6x7+x1x4x5x7+x1x2x5x7+x1x2x6x7+x1x4x6x7+x3x4x5x7+x2x4x6x7+
x3x5x6x7+x6x7+x4x6+x4x7+x5x7+x2x5+x3x4+x3x5+x3x4x5+x3x4x7+
x3x6x7+x5x6x7+x2x6x7+x1x4x6+x1x5x7+x2x4x5+x1x4+x2x7+x2x3x7+
x1x3x5x7 + x1x2x7 + x1x4x5 + x1x2x3x7

� CanFil 10, the boolean function f is x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3 + x6x7
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� Fontaine 1 [13], the boolean function f is x1+x2+x3+x4+x5+x6+x7+x3x4x5x6+
x2x3x4x5 + x2x3x4x7 + x2x3x5x6 + x2x3x6x7 + x2x4x5x6 + x2x4x5x7 + x2x5x6x7 +
x3x4x6x7 + x1x2x5x7 + x1x3x4x5 + x1x3x4x6 + x1x3x4x7 + x1x3x5x6 + x1x3x6x7 +
x1x4x5x7 + x1x5x6x7 + x1x2x4x6 + x1x2x4x7 + x1x2x5x6 + x1x2x6x7 + x1x4x6x7 +
x3x4x5x7 +x2x4x6x7+x3x5x6x7+x6x7+x5x6+x2x3x4x5x6 +x4x5+x4x7+x5x7+
x2x5+x3x4+x3x5+x4x5x6+x3x4x6+x3x5x6+x3x5x7+x3x6x7+x5x6x7+x2x4x7+
x4x6x7+x1x5x6+x1x4x6+x1x5x7 +x1x2x5 +x1x2x6 +x1x3x4+x1x3x5+x2x3x6+
x2x4x5 + x1x2 + x1x3 + x1x4 + x1x7 + x3x6 + x2x3 + x2x4 + x3x7 + x1x3x4x5x6 +
x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x4x7 + x1x2x3x5x6 + x1x2x3x5x7 + x1x2x3x6x7 +
x1x2x4x5x6+x1x2x4x5x7+x1x2x5x6x7+x1x3x4x6x7+x1x4x5x6x7+x1x2x3x4x5x6+
x2x3x4x5x7 + x2x3x4x6x7 + x8 + x9

� LILI 128 [15] The boolean function f is x1 x4 x5 + x1 x7 + x2 x8 + x3 x9 + x3 x10 +
x10 x2+x7+x8+x9+x6+x2 x3 x5+x1 x4 x7+x2 x4 x7+x1 x2 x8+x1 x3 x8+x2 x3 x8+
x2 x4 x8 + x9 x1 x2 + x7 x3 x1 + x2 x4 x5 + x6 x2 x1 + x6 x4 x1 + x7 x1 x2 + x1 x2 x3 x7 +
x1 x5 +x1 x2 x3 x8 +x1 x2 x3 x10 +x7 x5 x4 x2 +x9 x1 x2 x4 +x4 x9 x3 x2 +x5 x1 x2 x4 +
x2 x3 x5 x1 + x6 x1 x2 x4 x5 + x5 x1 x7 x4 x2 + x7 x4 x3 x2 + x5 x4 + x7 x3 x2 x4 x1 +
x8 x1 x4 x3+x6 x2 x3 x5 x4 x1+x7 x3 x2 x5 x4 x1+x6 x1 x4 x3+x6 x4 x5 x3 x2+x6 x4 x5 x2+
x7 x5 x4 x3 x2 + x8 x3 x2 x4 x1 + x7 x4 x1 x2

with degree 6 and  = [1; 2; 4; 8; 13; 21; 31; 45; 66; 81]

Example For a=0 or a=1

Name deg(f) k bk+12 c d Nd

LBGZ 1 3 7 4 3 10
LBGZ 2 4 8 4 3 3
CanFil 1 3 5 3 2 1
CanFil 2 3 5 3 2 1
CanFil 3 4 5 3 2 1
CanFil 4 3 5 3 2 2
CanFil 5 4 5 3 2 2
CanFil 6 4 5 3 2 2
CanFil 7 3 5 3 2 3
CanFil 8 3 6 3 3 10
CanFil 9 4 7 4 3 1
CanFil 10 3 7 3 3 10
Fontaine 1 6 9 5 4 35
LILI 128 6 10 5 4 14

With :

� k the number of variable of f

� d the degree of the low-degree relations in Ia =< f(x1; : : : ; xk) + a >
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� Nd the number of linearly independent low-degree relations.
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