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Abstract. We introduce concepts of \recursive polynomial remainder sequence (PRS)" and

\recursive subresultant," and investigate their properties. In calculating PRS, if there exists

the GCD (greatest common divisor) of initial polynomials, we calculate \recursively" with

new PRS for the GCD and its derivative, until a constant is derived. We call such a PRS a

recursive PRS. We de�ne recursive subresultants to be determinants representing the coef-

�cients in recursive PRS by coeÆcients of initial polynomials. Finally, we discuss usage of

recursive subresultants in approximate algebraic computation, which motivates the present

work.

1 Introduction

The polynomial remainder sequence (PRS) is one of fundamental tools in computer algebra. Al-
though the Euclidean algorithm (see Knuth ([1]) for example) for calculating PRS is simple, co-
eÆcient growth in PRS makes the Euclidean algorithm often very ineÆcient. To overcome this
problem, the mechanism of coeÆcient growth has been extensively studied through the theory of
subresultants; see Collins ([2]), Brown and Traub ([3]), Loos ([4]), etc. By the theory of subresul-
tant, we can remove extraneous factors of the elements of PRS systematically.

In this paper, we consider a variation of the subresultant. When we calculate PRS for poly-
nomials which have a nontrivial GCD, we usually stop the calculation with the GCD. However,
it is sometimes useful to continue the calculation by calculating the PRS for the GCD and its
derivative; this is necessary for calculating the number of real zeros including their multiplicities.
We call such a PRS a \recursive PRS."

Although the theory of subresultants has been developed widely, the corresponding theory for
recursive PRS is still unknown within the author's knowledge: this is the main problem which we
investigate in this paper. By \recursive subresultants," we denote determinants which represent
elements of recursive PRS by the coeÆcients of initial polynomials.

This paper is organized as follows. In Sect. 2, we introduce the concept of recursive PRS. In
Sect. 3, we de�ne recursive subresultant and show its relationship to recursive PRS. In Sect. 4, we
discuss brie
y using recursive subresultants in approximate algebraic computation.

2 Recursive Polynomial Remainder Sequence (PRS)

First, we review the PRS, then de�ne the recursive PRS. At last, we show recursive Sturm sequence
as an example of recursive PRS.

2.1 De�nition of Recursive PRS

Let R be an integral domain and polynomials F andG be in R[x]. We de�ne a polynomial remainder
sequence as follows.
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De�nition 1 (Polynomial Remainder Sequence (PRS)). Let F and G be polynomials in

R[x] of degree m and n (m > n), respectively. A sequence

(P1; : : : ; Pl) (1)

of nonzero polynomials is called a polynomial remainder sequence (PRS) for F and G, abbreviated

to prs(F;G), if it satis�es

P1 = F; P2 = G; �iPi�2 = qi�1Pi�1 + �iPi; (2)

for i = 3; : : : ; l, where �3; : : : ; �l; �3; : : : ; �l are elements of R and deg(Pi�1) > deg(Pi). A sequence

((�3; �3); : : : ; (�l; �l)) is called a division rule for prs(F;G) (see von zur Gathen and L�ucking ([6])).
If Pl is a constant, then the PRS is called complete. ut

If F and G are coprime, the last element in the complete PRS for F and G is a constant.
Otherwise, it equals the GCD of F and G up to a constant: we have prs(F;G) = (P1 = F; P2 =
G; : : : ; Pl = 
 � gcd(F;G)) for some 
 2 R. Then, we can calculate new PRS, prs(Pl;

d
dx
Pl), and if

this PRS ends with a non-constant polynomial, then calculate another PRS for the last element,
and so on. By repeating this calculation, we can calculate several PRSs \recursively" such that the
last polynomial in the last sequence is a constant. Thus, we de�ne \recursive PRS" as follows.

De�nition 2 (Recursive PRS). Let F and G be the same as in De�nition 1. Then, a sequence

(P
(1)
1 ; : : : ; P

(1)

l1
; P

(2)
1 ; : : : ; P

(2)

l2
; : : : ; P

(t)
1 ; : : : ; P

(t)

lt
) (3)

of nonzero polynomials is called a recursive polynomial remainder sequence (recursive PRS) for F
and G, abbreviated to rprs(F;G), if it satis�es

P
(1)
1 = F; P

(1)
2 = G; P

(1)

l1
= 
1 � gcd(P

(1)
1 ; P

(1)
2 ) with 
1 2 R;

(P
(1)
1 ; P

(1)
2 ; : : : ; P

(1)

l1
) = prs(P

(1)
1 ; P

(1)
2 );

P
(k)
1 = P

(k�1)

lk�1
; P

(k)
2 =

d

dx
P
(k�1)

lk�1
; P

(k)

lk
= 
k � gcd(P

(k)
1 ; P

(k)
2 ) with 
k 2 R;

(P
(k)
1 ; P

(k)
2 ; : : : ; P

(k)

lk
) = prs(P

(k)
1 ; P

(k)
2 );

(4)

for k = 2; : : : ; t. If �
(k)
i , �

(k)
i 2 R satisfy

�
(k)
i P

(k)
i�2 = q

(k)
i�1P

(k)
i�1 + �

(k)
i P

(k)
i (5)

for k = 1; : : : ; t and i = 3; : : : ; lk, then a sequence ((�
(1)
3 ; �

(1)
3 ); : : : ; (�

(t)

lt
; �

(t)

lt
)) is called a division

rule for rprs(F;G). Furthermore, if P
(t)

lt
is a constant, then the recursive PRS is called complete.

ut

2.2 Example of Recursive PRS: Recursive Sturm Sequence

Sturm sequence is a variant of PRS, which is used in Sturm's method, for calculating the number
of real zeros of univariate polynomial (for detail, see Cohen ([7]) for example). Note that Sturm's
theorem is valid for not only polynomials having simple zeros but also those having multiple zeros
(see Bochnak, Coste and Roy ([8]) for example). Here, we de�ne \recursive Sturm sequence" to
calculate the number of real zeros including multiplicities, as follows.

De�nition 3 (Recursive Sturm Sequence). Let P (x) be a real polynomial of degree m. Let a

sequence of nonzero polynomials be de�ned by a recursive PRS in De�nition 2, calculated as

(complete) rprs(P (x);
d

dx
P (x)); (6)

with division rule given by

(�
(k)
i ; �

(k)
i ) = (1;�1); (7)

for k = 1; : : : ; t and i = 3; : : : ; lk. Then, the sequence (6) is called the recursive Sturm sequence of
P (x). ut
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Example 1 (Recursive Sturm Sequence). Let P (x) = (x + 2)2f(x � 3)(x + 1)g3, and calculate

the recursive Sturm sequence of P (x). The �rst sequence L1 = (P
(1)
1 ; : : : ; P

(1)
4 ) has the following

elements:

P
(1)
1 = P (x) = (x+ 2)2f(x� 3)(x+ 1)g3;

P
(1)
2 =

d

dx
P (x) = 8x7 � 14x6 � 102x5 + 80x4 + 460x3 + 66x2 � 558x� 324;

P
(1)
3 =

75

16
x6 �

45

16
x5 � 60x4 �

225

8
x3 +

3315

16
x2 +

4815

16
x+

945

8
;

P
(1)
4 =

128

25
x5 �

256

25
x4 �

256

5
x3 +

1024

25
x2 +

4224

25
x+

2304

25
:

(8)

The second sequence L2 = (P
(2)
1 ; : : : ; P

(2)
4 ) has the following elements:

P
(2)
1 = P

(1)
4 =

128

25
x5 �

256

25
x4 �

256

5
x3 +

1024

25
x2 +

4224

25
x+

2304

25
;

P
(2)
2 =

d

dx
P
(1)
4 =

128

5
x4 �

1024

25
x3 �

768

5
x2 +

2048

25
x+

4224

25
;

P
(2)
3 =

14848

625
x3 �

1536

125
x2 �

88576

625
x�

66048

625
;

P
(2)
4 =

12800

841
x2 �

25600

841
x�

38400

841
:

(9)

The last sequence L3 = (P
(3)
1 ; : : : ; P

(3)
3 ) has the following elements:

P
(3)
1 = P

(2)
4 =

12800

841
x2 �

25600

841
x�

38400

841
;

P
(3)
2 =

d

dx
P
(2)
4 =

25600

841
x�

25600

841
;

P
(3)
3 =

51200

841
:

(10)

For PRS Lk, k = 1; 2; 3, de�ne sequences of nonzero real numbers �(Lk;�1) and �(Lk;+1) as

�(Lk;�1) = ((�1)n
(k)

1 lc(P
(k)
1 ); : : : ; (�1)

n
(k)

lk lc(P
(k)

lk
));

�(Lk;+1) = (lc(P
(k)
1 ); : : : ; lc(P

(k)

lk
));

(11)

where n
(k)
i = deg(P

(k)
i ) denotes the degree of P

(k)
i and lc(P

(k)
i ) denotes the leading coeÆcients of

P
(k)
i . Then, �(Lk;�1) and �(Lk;+1) for k = 1; 2; 3 are

�(L1;�1) = (1;�8;
75

16
;�

128

25
);

�(L2;�1) = (�
128

25
;
128

5
;�

18848

625
;
12800

841
);

�(L3;�1) = (
12800

841
;�

25600

841
;
51200

841
):

(12)

For a sequence of nonzero real numbers L = (a1; : : : ; am), let V (L) be the number of sign variations
of the elements of L. Then, we calculate the number of the real zeros of P (x), including multiplicity,
as

3X
k=1

fV (�(Lk ;�1))� V (�(Lk;+1))g = 3 + 3 + 2 = 8: (13)

ut
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3 Subresultants for Recursive PRS

Let F and G be polynomials in R[x] such that

F (x) = fmx
m + � � �+ f0x

0; G(x) = gnx
n + � � �+ g0x

0; with m � n > 0. (14)

To make this paper self-contained and to use notations for our de�nitions, we �rst review the
fundamental theorem of subresultants, then discuss subresultants for recursive PRS.

3.1 Fundamental Theorem of Subresultants

There exist several di�erent de�nitions of subresultants. Here, we follow de�nitions and notations
basically by von zur Gathen and L�ucking ([6]).

De�nition 4 (Sylvester Matrix). Let F and G be as in (14). The Sylvester matrix of F and

G, denoted by Syl(F;G), is an (m+n)� (m+n) matrix constructed from the coeÆcients of F and

G, such that

Syl(F;G) =

0
BBBBBB@

fm gn
...

. . .
...
. . .

f0 fm g0 gn
. . .

...
. . .

...

f0 g0

1
CCCCCCA
:

| {z }
n

| {z }
m

(15)

ut

Next, we de�ne the \subresultant matrix" to derive polynomial subresultants.

De�nition 5 (Subresultant Matrix). Let F and G be de�ned as in (14). For j < n, the j-th
subresultant matrix of F and G, denoted by N (j)(F;G), is an (m+n�j)�(m+n�2j) sub-matrix

of Syl(F;G) obtained by taking the left n�j columns of coeÆcients of F and the left m�j columns

of coeÆcients of G, such that

N (j)(F;G) =

0
BBBBBB@

fm gn
...

. . .
...
. . .

f0 fm g0 gn
. . .

...
. . .

...

f0 g0

1
CCCCCCA
:

| {z }
n�j

| {z }
m�j

(16)

ut

De�nition 6 (Subresultant). Let F and G be de�ned as in (14). For j < n and k = 0; : : : ; j,

let N
(j)

k = N
(j)

k (F;G) be a sub-matrix of N (j)(F;G) obtained by taking the top m+n� 2j� 1 rows

and the (m+ n� j � k)-th row (note that N
(j)

k (F;G) is a square matrix). Then, the polynomial

Sj(F;G) = det(N
(j)
j )xj + � � �+ det(N

(j)
0 )x0 (17)

is called the j-th subresultant of F and G. ut
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Theorem 1 (Fundamental Theorem of Subresultants [3]). Let F and G be de�ned as in

(14), (P1; : : : ; Pk) = prs(F;G) be complete PRS, and ((�3; �3); : : : ; (�k ; �k)) be its division rule.

Let ni = deg(Pi) and ci = lc(Pi) for i = 1; : : : ; k, and di = ni � ni+1 for i = 1; : : : ; k � 1. Then,
we have

Sj(F;G) = 0 for 0 � j < nk; (18)

Sni(F;G) = Pic
di�1�1

i

iY
l=3

(�
�l

�l

�nl�1�ni

c
dl�2+dl�1

l�1 (�1)(nl�2�ni)(nl�1�ni)

)
; (19)

Sj(F;G) = 0 for ni < j < ni�1 � 1; (20)

Sni�1�1(F;G) = Pic
1�di�1

i�1

iY
l=3

(�
�l

�l

�nl�1�ni�1+1

c
dl�2+dl�1

l�1 (�1)(nl�2�ni�1+1)(nl�1�ni�1+1)

)
; (21)

for i = 3; : : : ; k. ut

By the above theorem, we can express coeÆcients of PRS by determinants of matrices whose
elements are the coeÆcients of initial polynomials.

3.2 Recursive Subresultants

We construct \recursive subresultant matrix" whose determinants represent elements of recursive
PRS by the coeÆcients of initial polynomials.

To make help for readers, we �rst show an example of recursive subresultant matrix for recursive
Sturm sequence in Example 1.

Example 2 (Recursive Subresultant Matrix). We express P (x) and d
dx
P (x) in Example 1 by

P (x) = f8x
8 + � � �+ f0x

0;
d

dx
F (x) = g7x

7 + � � �+ g0x
0: (22)

Let M (1;5)(F;G) = N (1;5)(F;G), then the matrices M
(1;5)

U (F;G), M
(1;5)

L (F;G) and M
0(1;5)

L (F;G)
are given as

M (1;5)(F;G) =

 
M

(1;5)

U

M
(1;5)

L

!
=

0
BBBBBBBBBBBBBB@

f8 g7
f7 f8 g6 g7
f6 f7 g5 g6 g7
f5 f6 g4 g5 g6
f4 f5 g3 g4 g5
f3 f4 g2 g3 g4
f2 f3 g1 g2 g3
f1 f2 g0 g1 g2
f0 f1 g0 g1

f0 g0

1
CCCCCCCCCCCCCCA

; M
0(1;5)

L (F;G) =

0
BBBB@
5f4 5f5 5g3 5g4 5g5
4f3 4f4 4g2 4g3 4g4
3f2 3f3 3g1 3g2 3g3
2f1 2f2 2g0 2g1 2g2
f0 f1 g0 g1

1
CCCCA ; (23)

where horizontal lines in matrices divide them into the upper and the lower components. Note

that the matrix M
0(1;5)(F;G) is derived from M

(1;5)

L (F;G) by multiplying the l-th row by 6 � l

for l = 1; : : : ; 5 and deleting the lowest row. Similarly, the (2; 3)-th recursive subresultant matrix
M (2;3)(F;G) is constructed as

M (2;3)(F;G) =

0
BBBBBBBBBB@

M
(1;5)

U

M
(1;5)

U

M
(1;5)

U

0 � � � 0

M
(1;5)

L M
0(1;5)

L

M
0(1;5)

L

0 � � � 0

1
CCCCCCCCCCA
: (24)

ut
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M
(k;j)

(F;G) =
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

M
(k�1;jk�1)

U

M
(k�1;jk�1)

U

. . .

M
(k�1;jk�1)

U

M
(k�1;jk�1)

U

M
(k�1;jk�1)

U

. . .

M
(k�1;jk�1)

U

0 � � � � � � 0 0 � � � � � � 0

M
(k�1;jk�1)

L
M

0(k�1;jk�1)

L

M
(k�1;jk�1)

L
M

0(k�1;jk�1)

L

� � � � � �

M
(k�1;jk�1)

L
M

(0k�1;jk�1)

L

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Fig. 1. Illustration of M (k;j)(F;G). Note that the number of blocks M
(k�1;jk�1)

L
is jk�1 � j � 1, whereas

that of M
0(k�1;jk�1)

L
is jk�1 � j; see De�nition 7 for details.

De�nition 7 (Recursive Subresultant Matrix). Let F and G be de�ned as in (14), and let

(P
(1)
1 ; : : : ; P

(1)

l1
; : : : ; P

(t)
1 ; : : : ; P

(t)

lt
) be complete recursive PRS for F and G as in De�nition 2. Let

j0 = m and jk = n
(k)

l for k = 1; : : : ; t. Then, for each tuple of numbers (k; j) with k = 1; : : : ; t and
j = jk�1 � 2; : : : ; 0, de�ne matrix M (k;j)(F;G) as follows.

1. For k = 1, let M (1;j)(F;G) = N (j)(F;G).
2. For k > 1, let M (k;j)(F;G) consist of the upper block and the lower block, de�ned as follows:

(a) The upper block is partitioned into (jk�1�jk�1)�(jk�1�jk�1) blocks with diagonal blocks

�lled with M
(k�1;jk�1)

U , where M
(k�1;jk�1)

U is a sub-matrix of M (k�1;jk�1)(F;G) obtained by

deleting the bottom jk�1 + 1 rows.

(b) Let M
(k�1;jk�1)

L be a sub-matrix of M (k�1;jk�1)(F;G) obtained by taking the bottom jk�1+1

rows, and let M
0(k�1;jk�1)

L be a sub-matrix of M
(k�1;jk�1)

L by multiplying the (jk�1+1� �)-
th rows by � for � = jk�1; : : : ; 1, then by deleting the bottom row. Then, the lower block

consists of jk�1 � j � 1 blocks of M
(k�1;jk�1)

L such that the leftmost block is placed at the

top row of the container block and the right-side block is placed down by 1 row from the

left-side block, then followed by jk�1 � j blocks of M
0(k�1;jk�1)

L placed by the same manner

as M
(k�1;jk�1)

L .

As a result, M (k;j)(F;G) becomes as shown in Fig. 1. Then, M (k;j)(F;G) is called the (k; j)-th
recursive subresultant matrix of F and G. ut

Proposition 1. For k = 1; : : : ; t and j < jk�1�1, the numbers of rows and columns ofM (k;j)(F;G),
the (k; j)-th recursive subresultant matrix of F and G are

(m+ n� 2j1)

(
k�1Y
l=2

(2jl�1 � 2jl � 1)

)
(2jk�1 � 2j � 1) + j (25)

and

(m+ n� 2j1)

(
k�1Y
l=2

(2jl�1 � 2jl � 1)

)
(2jk�1 � 2j � 1); (26)
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respectively.

Proof. By induction on k. For k = 1, by de�nition of the subresultant matrix, we see that
M (1;j)(F;G) is a (m+ n� j) � (m+ n� 2j) matrix. Let us assume that equations (25) and (26)
are valid for 1; : : : ; k� 1. Then, we calculate the numbers of the rows and columns of M (k;j)(F;G)
as follows.

1. The numbers of rows of M
(k�1;jk�1)

L and M
0(k�1;jk�1)

L are equal to jk�1 + 1 and jk�1, respec-

tively, hence the number of rows a block which consists of M
(k�1;jk�1)

L and M
0(k�1;jk�1)

L in
M (k;j)(F;G) equals

2jk�1 � j � 1: (27)

On the other hand, the number of rows of M
(k�1;jk�1)

U is equal to (m+n� 2j1)f
Qk�1

l=2 (2jl�1�
2jl � 1)g � 1, hence the number of rows of diagonal blocks in M (k;jk)(F;G) is equal to

(m+ n� 2j1)

(
k�1Y
l=2

(2jl�1 � 2jl � 1)� 1

)
(2jk�1 � 2j � 1): (28)

By adding formulas (27) and (28), we obtain (25).

2. The number of columns of M (k�1;jk�1)(F;G) is equal to (m+n� 2j1)f
Qk�1

l=2 (2jl�1� 2jl� 1)g,
hence the number of columns of M (k;j)(F;G) is equal to (26).

This proves the proposition. ut

Now, we de�ne recursive subresultants by recursive subresultant matrices.

De�nition 8 (Recursive Subresultant). Let F and G be de�ned as in (14), and let (P
(1)
1 ; : : : ;

P
(1)

l1
; : : : ; P

(t)
1 ; : : : ; P

(t)

lt
) be complete recursive PRS for F and G as in De�nition 2. Let j0 = m and

jk = n
(k)

l for k = 1; : : : ; t. For j = jk�1 � 2; : : : ; 0 and � = j; : : : ; 0, let M
(k;j)
� = M

(k;j)
� (F;G) be

a sub-matrix of the (k; j)-th recursive subresultant matrix M (k;j)(F;G) obtained by taking the top

(m+n�2j1)f
Qk�1

l=2 (2jl�1�2jl�1)g(2jk�1�2j�1)�1 rows and the ((m+n�2j1)f
Qk�1

l=2 (2jl�1�

2jl�1)g(2jk�1�2j�1)+j��)-th row (note that M
(k;j)
� is a square matrix). Then, the polynomial

�Sk;j(F;G) = det(M
(k;j)

j )xj + � � �+ det(M
(k;j)
0 )x0 (29)

is called the (k; j)-th recursive subresultant of F and G. ut

Finally, we derive the relation between recursive subresultants and coeÆcients in recursive PRS.

Lemma 1. Let F and G be de�ned as in (14), and let (P
(1)
1 ; : : : ; P

(1)

l1
; : : : ; P

(t)
1 ; : : : ; P

(t)

lt
) be com-

plete recursive PRS for F and G as in De�nition 2. Let c
(k)

i = lc(P
(k)

i ), n
(k)

i = deg(P
(k)

i ), j0 = m

and jk = n
(k)

l for k = 1; : : : ; t and i = 1; : : : ; lk, and let d
(k)
i = n

(k)
i � n

(k)
i+1 for k = 1; : : : ; t and

i = 1; : : : ; lk � 1. Furthermore, for k = 1; : : : ; t� 1 and j = jk�1 � 2; : : : ; 0, de�ne

uk;j = (m+ n� 2j1)

(
k�1Y
l=2

(2jl�1 � 2jl � 1)

)
(2jk�1 � 2j � 1);

Bk = (c
(k)

lk
)
d
(k)

lk�1
�1

lkY
l=3

8<
:
 
�
(k)

l

�
(k)

l

!n
(k)

l�1
�n

(k)

lk

(c
(k)

l�1)
(d

(k)

l�2
+d

(k)

l�1
)(�1)

(n
(k)

l�2
�n

(k)

lk
)(n

(k)

l�1
�n

(k)

lk
)

9=
; ;

(30)

and let uk = uk;jk . For k = 2; : : : ; t and j = jk�1 � 2; : : : ; 0, de�ne

bk;j = 2jk�1 � 2j � 1; rk;j = (�1)(uk�1�1)(1+2+���+(bk;j�1)); (31)

and let bk = bk;jk and rk = rk;jk . Then, for the (k; j)-th recursive subresultant of F and G with

k = 1; : : : ; t and j = jk�1 � 2; : : : ; 0, we have

�Sk;j(F;G) = Rk;j � Sj(P
(k)
1 ; P

(k)
2 ); (32)

where R1;j = 1 and Rk;j = ((� � � ((Bb2
1 � r2B2)

b3 � r3B3)
b4 � � � )bk�1 � rk�1Bk�1)

bk;j � rk;j for k > 1.
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Proof. For a univariate polynomial P (x) = anx
n + � � �+ a0x

0 with aj 2 R for j = 0; : : : ; n, let us
denote the coeÆcient vector for P (x) by p = t(an; : : : ; a0).

We prove the lemma by induction on k. For k = 1, it follows immediately from the Fundamental
Theorem of subresultants (Theorem 1). Let us assume that (32) is valid for 1; : : : ; k� 1. Then, we
have

�Sk�1;jk�1
(F;G) = Rk�1;jk�1

� Sjk�1
(P

(k�1)
1 ; P

(k�1)
2 ); (33)

hence we have

det(M (k�1;jk�1)
� ) = Rk�1;jk�1

� det(N (jk�1)
� (P

(k�1)
1 ; P

(k�1)
2 )); (34)

for � = jk�1; : : : ; 0. Therefore, there exists a matrix Wk�1 such that det(Wk�1) = Rk�1;jk�1
and

that we can transform M (k�1;jk�1)(F;G) to

~M (k�1;jk�1)(F;G) =

�
Wk�1 O

� N (jk�1)(P
(k�1)
1 ; P

(k�1)
2 )

�
; (35)

by eliminations on columns. Furthermore, by eliminations and exchanges on columns

in the block N (jk�1)(P
(k�1)
1 ; P

(k�1)
2 ) as shown in Brown and Traub ([3]), we can transform

~M (k�1;jk�1)(F;G) to

�M (k�1;jk�1)(F;G) =

0
B@
Wk�1 O

�N
(jk�1)

U

� p
(k)
1

1
CA ; (36)

such that �N
(jk�1)

U is a lower triangular matrix with all diagonal elements equal to 1

and that det( ~M
(k�1;jk�1)
� (F;G)) = Bk�1 � det( �M

(k�1;jk�1)
� (F;G)), where ~M

(k�1;jk�1)
� (F;G)

and �M
(k�1;jk�1)
� (F;G) are sub-matrices of ~M (k�1;jk�1)(F;G) and �M (k�1;jk�1)(F;G)), respectively,

obtained by the same manner as we have obtained M
(k�1;jk�1)
� (F;G). Therefore, we have

det(M (k�1;jk�1)
� (F;G)) = Bk�1 � det( �M

(k�1;jk�1)
� (F;G)): (37)

Similarly, let M
0(k�1;jk�1)(F;G) =

 
M

(k�1;jk�1)

U

M
0(k�1;jk�1)

L

!
. Then, by the same transformations in the

above, we can transform M
0(k�1;jk�1)(F;G) to

�M
0(k�1;jk�1)(F;G) =

0
B@
Wk�1 O

�N
(jk�1)

U

� p
(k)
2

1
CA ; (38)

satisfying
det(M

0(k�1;jk�1)
� (F;G)) = Bk�1 � det( �M

0(k�1;jk�1)
� (F;G)); (39)

where M
0(k�1;jk�1)
� (F;G) and �M

0(k�1;jk�1)
� (F;G)) are sub-matrices of M

0(k�1;jk�1)(F;G) and
�M

0(k�1;jk�1)(F;G)), respectively, obtained by taking the top uk�1 � 1 rows and the (uk�1 +
jk�1 � �)-th row for � = jk�1 : : : ; 1. Therefore, for j < jk�1 � 1, we can transform M (k;j)(F;G)
to �M (k;j)(F;G) as shown in Fig. 2 by eliminations and exchanges on columns in each column

block, and let �M
(k;j)
� (F;G) be sub-matrix of �M (k;j)(F;G) obtained by the same manner as we

have obtained M
(k;j)
� (F;G). Then, we have

det(M (k;j)
� (F;G)) = (Bk�1)

bk;j � det( �M (k;j)
� (F;G)); (40)

from (37) and (39) and since there exist bk;j blocks of �M (k�1;jk�1)(F;G) and �M
0(k�1;jk�1)(F;G) in

�M (k;j)(F;G) with each of which divided into the upper and the lower block.
Furthermore, by exchanges on columns, we can transform �M (k;j)(F;G) to M̂ (k;j)(F;G) as shown

in Fig. 3, and let M̂
(k;j)
� (F;G) be sub-matrix of M̂ (k;j)(F;G) obtained by the same manner as we

have obtained M
(k;j)
� (F;G). Then, we have



Subresultants in Recursive Polynomial Remainder Sequence 371

�M
(k;j)

(F;G) =

0
BBBBBBBBBBBBBBBBBBBB@

Wk�1 O

�
�N
(k�1)
U

0

Wk�1 O

�
�N
(k�1)
U

0

.
.
.

Wk�1 O

�
�N
(k�1)
U

0

0 � � � 0

� p
(k)
1

� p
(k)
1

� � �

� p
(k)
1

Wk�1 O

�
�N
(k�1)
U

0

Wk�1 O

�
�N
(k�1)
U

0

.
.
.

Wk�1 O

�
�N
(k�1)
U

0

0 � � � 0

� p
(k)
2

� p
(k)
2

� � �

� p
(k)
2

1
CCCCCCCCCCCCCCCCCCCCA

:

Fig. 2. Illustration of �M (k;j)(F;G). See Lemma 1 for details.

det( �M (k;j)
� (F;G)) = rk;j � det(M̂

(k;j)
� (F;G)); (41)

because the (uk;j � (l � 1)uk�1)-th column in �M (k;j)(F;G) was moved to the (uk;j � (l � 1))-th

column in M̂ (k;j)(F;G) for l = 1; : : : ; bk;j . Furthermore, we have

det(M̂ (k;j)
� (F;G)) = (Rk�1;jk�1

Bk�1)
bk;j �N (j)

� (P
(k)
1 ; P

(k)
2 ); (42)

because the lower-right block of p
(k)
1 and p

(k)
2 in M̂ (k;j)(F;G) is equal to N (j)(P

(k)
1 ; P

(k)
2 ).

Finally, from (40), (41) and (42), we have

det(M (k;j)
� (F;G)) = rk;j � (Rk�1;jk�1

Bk�1)
bk;j � det(N (j)

� (P
(k)
1 ; P

(k)
2 ))

= Rk;j � det(N
(j)
� (P

(k)
1 ; P

(k)
2 )):

(43)

Therefore, by the de�nitions of recursive subresultant, we obtain (32). This proves the lemma. ut
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M̂
(k;j)

(F;G) =

0
BBBBBBBBBBBBBBBBBBBB@

Wk�1 O

�
�N
(k�1)
U

Wk�1 O

�
�N
(k�1)
U

.
.
.

Wk�1 O

�
�N
(k�1)
U

0 � � � 0

�

�

� � �

�

Wk�1 O

�
�N
(k�1)
U

Wk�1 O

�
�N
(k�1)
U

.
.
.

Wk�1 O

�
�N
(k�1)
U

0 � � � 0 0 0

� p
(k)
1

p
(k)
2

� p
(k)
1

p
(k)
2

� � �

.
.
.

.
.
.

� p
(k)
1

p
(k)
2

1
CCCCCCCCCCCCCCCCCCCCCCA

Fig. 3. Illustration of M̂ (k;j)(F;G). Note that the lower-right block which consists of p
(k)
1 and p

(k)
2 is equal

to N (jk)(P
(k)
1 ; P

(k)
2 ), and the number of blocks Wk�1 and �N

(k�1)
U

is bk;j = 2jk�1 � 2j � 1: see Lemma 1

for details.

Theorem 2. With the same conditions as in Lemma 1, and for k = 1; : : : ; t and i = 3; 4; : : : ; lk,
we have

�Sk;j(F;G) = 0 for 0 � j < n
(k)

lk
; (44)

�S
k;n

(k)

i

(F;G) = P
(k)
i (c

(k)
i )d

(k)

i�1�1R
k;n

(k)

i

�

iY
l=3

8<
:
 
�
(k)

l

�
(k)

l

!n
(k)

l�1
�n

(k)

i

(c
(k)

l�1)
(d

(k)

l�2
+d

(k)

l�1
)(�1)(n

(k)

l�2
�n

(k)

i
)(n

(k)

l�1
�n

(k)

i
)

9=
; ; (45)

�Sk;j(F;G) = 0 for n
(k)
i < j < n

(k)
i�1 � 1; (46)

�S
k;n

(k)

i�1�1
(F;G) = P

(k)

i (c
(k)

i�1)
1�d

(k)

i�1R
k;n

(k)

i�1�1

�

iY
l=3

8<
:
 
�
(k)

l

�
(k)

l

!n
(k)

l�1
�n

(k)

i�1+1

(c
(k)

l�1)
(d

(k)

l�2
+d

(k)

l�1
)(�1)(n

(k)

l�2
�n

(k)

i�1+1)(n
(k)

l�1
�n

(k)

i�1+1)

9=
; : (47)

Proof. By substituting Sj(P
(k)
1 ; P

(k)
2 ) in (32) by (18){(21), we obtain (44){(47), respectively. ut

We show an example of the proof of Lemma 1 for recursive subresultant matrix in Example 2.

Example 3. Let us express P
(k)
i in Example 1 by

P
(k)
i (x) = a

(k)

i;n
(k)

i

xn
(k)

i + � � �+ a
(k)
i;0 x

0; (48)
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with n
(k)
i = deg(P

(k)
i ). By eliminations and exchanges of columns as shown in Brown and Traub ([3]),

we can transformM (1;5)(F;G) =

 
M

(1;5)

U

M
(1;5)

L

!
andM

0(1;5)(F;G) =

 
M

(1;5)

U

M
0(1;5)

L

!
in (24) to �M (1;5)(F;G)

and �M
0(1;5)(F;G), respectively, as

�M (1;5)(F;G) =

 
�N
(5)

U 0

� p
(2)
1

!
=

0
BBBBBBBBBBBBBBBBB@

1

�a
(1)
2;6 1

�a
(1)
2;5 �a

(1)
2;6 1

�a
(1)
2;4 �a

(1)
2;5 �a

(1)
3;5 1

�a
(1)
2;3 �a

(1)
2;4 �a

(1)
3;4 �a

(1)
3;5 a

(1)
4;5

�a
(1)
2;2 �a

(1)
2;3 �a

(1)
3;3 �a

(1)
3;4 a

(1)
4;4

�a
(1)
2;1 �a

(1)
2;2 �a

(1)
3;2 �a

(1)
3;3 a

(1)
4;3

�a
(1)
2;0 �a

(1)
2;1 �a

(1)
3;1 �a

(1)
3;2 a

(1)
4;2

�a
(1)
2;0 �a

(1)
3;0 �a

(1)
3;1 a

(1)
4;1

�a
(1)
3;0 a

(1)
4;0

1
CCCCCCCCCCCCCCCCCA

;

�M
0(1;5)(F;G) =

 
�N
(5)

U 0

� p
(2)
2

!
=

0
BBBBBBBBBBBBBBB@

1

�a
(1)
2;6 1

�a
(1)
2;5 �a

(1)
2;6 1

�a
(1)
2;4 �a

(1)
2;5 �a

(1)
3;5 1

5�a
(1)
2;3 5�a

(1)
2;4 5�a

(1)
3;4 5�a

(1)
3;5 5a

(1)
4;5

4�a
(1)
2;2 4�a

(1)
2;3 4�a

(1)
3;3 4�a

(1)
3;4 4a

(1)
4;4

3�a
(1)
2;1 3�a

(1)
2;2 3�a

(1)
3;2 3�a

(1)
3;3 3a

(1)
4;3

2�a
(1)
2;0 2�a

(1)
2;1 2�a

(1)
3;1 2�a

(1)
3;2 2a

(1)
4;2

�a
(1)
2;0 �a

(1)
3;0 �a

(1)
3;1 a

(1)
4;1

1
CCCCCCCCCCCCCCCA

;

(49)

where �a
(1)
i;j = a

(1)
i;j =a

(1)
2;7. Furthermore, we have

det(M (1;5)
� (F;G)) = B1 � det( �M

(1;5)
� (F;G)) for � = 5; : : : ; 0;

det(M
0(1;5)
� (F;G)) = B1 � det( �M

0(1;5)
� (F;G)) for � = 5; : : : ; 1;

(50)

with

B1 = �(a
(1)
2;7)

2(a
(1)
3;6)

2; (51)

where M
(1;5)
� (F;G) and M

0(1;5)
� (F;G)) are sub-matrices of M (1;5)(F;G) and M

0(1;5)(F;G), respec-
tively, obtained by taking the top 4 rows and the (10� �)-th row. Therefore, by eliminations and
exchanges on columns, we can transform M (2;3)(F;G) in (24) to �M (2;3)(F;G) as

�M (2;3)(F;G) =

0
BBBBBBBBB@

�N
(5)

U 0

�N
(5)

U 0

�N
(5)

U 0

0 � � � 0

� p
(2)
1 � p

(2)
2

� p
(2)
2

0 � � � 0

1
CCCCCCCCCA
; (52)
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satisfying det(M
(2;3)
� (F;G)) = (B1)

3 � det( �M
(2;3)
� (F;G)). Furthermore, by exchanges on columns,

we can transform �M (2;3)(F;G) to M̂ (2;3)(F;G) as

M̂ (2;3)(F;G) =

0
BBBBBBBBB@

�N
(5)

U

�N
(5)

U

�N
(5)

U

0 � � � 0 0

� � � p
(2)
1 p

(2)
2

p
(2)
2

0 � � � 0 0

1
CCCCCCCCCA

=

0
BBB@

�N
(5)

U

�N
(5)

U

�N
(5)

U

� N (3)(P
(2)
1 ; P

(2)
2 )

1
CCCA ;

(53)

satisfying det( �M
(2;3)
� (F;G)) = r2;3 � det(M̂

(2;3)
� (F;G)) = r2;3 � det(N

(3)
� (P

(2)
1 ; P

(2)
2 )). Therefore, we

have

det(M (2;3)
� (F;G)) = (B1)

3r2;3 � det(N
(3)
� (P

(2)
1 ; P

(2)
2 )) = R2;3 � det(N

(3)
� (P

(2)
1 ; P

(2)
2 )); (54)

for � = 3; : : : ; 0, and we have

�S2;3(F;G) = R2;3 � S3(P
(2)
1 ; P

(2)
2 ) = f(a

(1)
2;7)

2(a
(1)
3;6)

2g3(a
(2)
2;4)

2 � P
(2)
3 : (55)

ut

4 Conclusion and Motivation

In this paper, we have de�ned recursive PRS as well as recursive subresultants, and proved a similar
theorem as the fundamental theorem of subresultant.

The concept of recursive subresultant is inspired, in approximate algebraic computation, by
representing coeÆcients in recursive PRS by the coeÆcients of initial polynomials. For example,
consider calculating recursive Sturm sequence of a polynomial with 
oating-point number coeÆ-
cients by 
oating-point arithmetic. In the case the initial polynomial has multiple or close zeros,
there may exist a polynomial in the sequence such that it is diÆcult to decide whether the poly-
nomial becomes zero or not. Also, zero recognition of very small leading coeÆcient is another
important problem because it plays crucial role in calculating the number of real zeros.

For the problem of zero recognition of very small leading coeÆcients, the present author and
Sasaki ([5]) have proposed a criterion for calculating the number of real zeros correctly by Sturm's
method: if the Sturm sequence satisfy certain condition on Sylvester matrix, then we can neglect
the small leading coeÆcient which makes computation of the Sturm sequence more stable. We
expect that the recursive subresultant (matrix) will be useful for zero recognition of a polynomial
in recursive Sturm sequence, by representing its coeÆcients by the coeÆcients of initial polynomials
then analyzing it by numerical methods; this is the problem on which we are working now.

Acknowledgements

The author thank Prof. Tateaki Sasaki very much for revising the original manuscript, and the
referees for their helpful suggestions.

References

1. Knuth, D.: The Art of Computer Programming. Third edn. Volume 2: Seminumerical Algorithms.

Addison-Wesley (1998)



Subresultants in Recursive Polynomial Remainder Sequence 375

2. Collins, G.E.: Subresultants and Reduced Polynomial Remainder Sequences. J. ACM 14 (1967)

128{142

3. Brown, W.S., Traub, J.F.: On Euclid's Algorithm and the Theory of Subresultants. J. ACM 18 (1971)

505{514

4. Loos, R.: Generalized polynomial remainder sequences. In Buchberger, B., Collins, G.E., Loos, R.,

eds.: Computer Algebra: Symbolic and Algebraic Computation. Second edn. Springer-Verlag (1983)

115{137

5. Terui, A., Sasaki, T.: \Approximate zero-points" of Real univariate polynomial with large error terms.

IPSJ J. 41 (2000) 974{989

6. von zur Gathen, J., L�ucking, T.: Subresultants revisited (extended abstract). In Gonnet, G.H., Panario,

D., Viola, A., eds.: LATIN 2000: Theoretical Informatics. Volume 1776 of Lecture Notes in Computer

Science. Springer (2000) 318{342

7. Cohen, H.: A Course in Computational Algebraic Number Theory. Volume 138 of Graduate Texts in

Mathematics. Springer-Verlag, Berlin (1993)

8. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Volume 36 of A Series of Modern Surveys

in Mathematics. Springer-Verlag, Berlin Heidelberg (1998)




