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Abstract. In this paper we present an implementation of an implicitization algorithm for

surfaces given by polynomial parametric equations. Several examples illustrate in detail the

implementation and some appealing perspectives for further work are briey touched upon.

1 Introduction

In [2] the authors introduced a new algorithm for implicitization of parametric curves, surfaces and

hypersurfaces. The algorithm uses essentially Linear Algebra, works in both symbolic and numeric

contexts and is applicable to a wide variety of types of parametric equations as well as families of

parametric equations indexed by a parameter di�erent than the parameterization parameter. This

algorithm has been implemented in Maple in the algcurves package.

In [3, 4] the authors used various tools from algebraic geometry, in particular sparse elimination

theory, in order to predict the support of the implicit equation of rational parametric hypersurfaces.

These ideas reduce dramatically the size of the implicitization matrices and can also be applied to

other implicitization methods based on resultants. The resulting IPSOS algorithm gives optimal

results in all of the examples tested. IPSOS is implemented in Maple and requires interfacing several

freely available C/C++ programs.

In this paper we study more closely the case of surfaces given by polynomial parametric equa-

tions. An eÆcient implementation of the algorithm using exclusively C and GMP1 arithmetic allows

us to treat relatively big examples. We also establish some structural properties of the implicitiza-

tion matrices that could potentially lead to more eÆcient strategies to compute their nullspaces as

well as other optimizations. We show that the implicitization matrices exhibit a Hankel-like struc-

ture when we consider blocks with respect to the degrees of the monomials. A similar Hankel-like

manifests itself in the case of curves as described in [7].

2 Surfaces Given by Polynomial Parametric Equations

In this section we give an overview of the implicitization algorithm in [2] emphasizing the case of

algebraic curves given by polynomial parametric equations.

Suppose that a surface is given by polynomial parametric equations of the form

x = P (s; t); y = Q(s; t); z = R(s; t)

where P , Q, R are bivariate polynomials with integer (or rational) coeÆcients and of total

degrees p, q, r respectively. The variables s, t are called the parameters of the parameterization

of the surface.

After denoting the (total) degree m of the sought implicit equation, we need to generate all the

monomials in the three variables x, y, z up to total degree 2m. These are:

`2m = [ 1|{z}
deg 0

; x; y; z| {z }
deg 1

; x
2
; xy; xz; y

2
; yz; z

2| {z }
deg 2

; : : : ; (1)

1 See http://www.swox.com/gmp/ for more details
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A simple counting argument shows that the number of these monomials is equal to

j`2mj =

�
2m+ 3

3

�

For each of the
�
2m+3

3

�
monomials of the form x

i
y
j
z
k of the list `2m we need to compute

integrals of the form

Z
�

�

Z
Æ



x
i
y
j
z
k
dsdt =

Z
�

�

Z
Æ



P (s; t)iQ(s; t)jR(s; t)kdsdt (2)

We can choose for example � =  = 0; � = Æ = 1, since we are dealing with polynomial

functions only. The computation of integral (2) requires two steps:

{ Expand the polynomial to be integrated, that is: P (s; t)iQ(s; t)jR(s; t)k. The degree of this

expanded bivariate polynomial in s, t will be equal to p� i+ q � j + r � k.
{ Integrate the expanded polynomial by using the simple rule to integrate monomials.

We construct a matrix M , starting with the list of monomials in x; y; z up to total degree m,

`m = [1; x; y; z; x2; xy; xz; y2; yz; z2; : : : ; xm; xm�1y; : : : ; zm] (3)

Then we form the product M = `
t

m
`m. In detail we have:

M =

0
BBBBBBBBBBBB@
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(4)

We call matrices of the form (4), Implicitization Matrices. Implicitization Matrices are

symmetric (by construction) of dimension d =
�
m+3

3

�
. It contains only

�
2m+3

3

�
di�erent elements,

which are exactly the elements of the list (1). Moreover, as m increases,
�
2m+3

3

�
becomes much less

than d
2.

A matrix G is constructed by placing the results of the integrations of the elements of the list

`2m into the matrix M . This raises some interesting combinatorial and programming problems. If

an implicit equation of degree m exists, its coeÆcients will be given by a nullvector of the matrix

G. For a more detailed presentation of the implicitization algorithm as well as many fully worked

out examples, the reader can consult [2].

3 Implementation

The algorithm outlined above was implemented in C in a program called IPSurfaces. For most

examples we tried, the Implicitization Matrices contain long rational entries with more than 100

digits in both numerators and denominators, we decided to use the GMP library to handle the base

data type. The Nullspace computations have been performed with a C program by A. Storjohann.

The program IPSurfaces provides some extra functionality that makes it easy to interface with

the Computer Algebra System Maple. In particular, IPSurfaces generates Implicitization Matri-

ces in Maple format. This functionality is important for testing purposes. The main di�erence of

IPSurfaces with the Maple implementation of [2] is the future perspective of the interfacing IPSur-

faces with IPSOS and other C/C++ programs in order to produce a software that is suitable for

Computer Aided Geometric Design(CAGD) applications.
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One important point of eÆciency improvement in IPSurfaces is the generation of the Implic-

itization Matrices not by performing the matrix multiplication on the left hand side of (4), but

by using the vector `2m and the Hankel-like structural properties of the Implicitization Matrices.

Thus IPSurfaces integrates each monomial only once and places it in the right position. Hankel-like

structural properties of the Implicitization Matrices are studied in section 6 of this paper.

4 Examples

In this section we present four examples of implicitization of algebraic surfaces given by polynomial

parametric equations using IPSurfaces. The results of these examples have been veri�ed in di�er-

ent Computer Algebra Systems, using other available methods for implicitization. For surveys of

available implicitization methods of algebraic curves and surfaces see [6] and [8]. All computations

of the following examples were done on an Intel Pentium 4, 1.8GHz machine.

Example 1. Consider the polynomial parametric equations from [1]:

x = st; y = st
2
; z = s

2

Degree arguments as detailed for instance in [3, 4] can be used to show that the total degree of

the sought implicit equation is 4. We choose m = 4.

We generate the 165 monomials in the three variables x; y; z up to total degree 2m and after

performing the integrations and the substitutions we construct a 35�35 symmetric Implicitization

Matrix, shown in the appendix. The generation of the matrix takes 0:747 second. By computing

the Nullspace of this matrix, which takes 0:098 seconds, we �nd the (irreducible) implicit equation

of total degree 4:

y
2
z � x

4 = 0

Example 2. Consider the polynomial parametric equations:

x = s� t
3
; y = s+ st; z = t+ s

2

We choose m = 6 and generate 455 monomials in three variables x; y; z up to total degree 2m.

After the integrations and substitutions we construct a 84� 84 symmetric Implicitization Matrix.

The generation of the matrix takes 7:424 seconds. By computing the Nullspace of this matrix,

which takes 26:188 seconds to compute, we �nd the (irreducible) implicit equation of total degree

6:

2x2 � 7xy + xz + 5y2 � yz � x
3 + 6xy2 + xyz � 5y3 � 4y2z + yz

2

+3x2y2 � 9xy2z � xyz
2 + 2xz3 + 11y3z + 3y2z2 � 6yz3 + z

4

�x2z3 � 3xy4 + 6xy2z2 � 3y4z � 2y3z2 + y
6 = 0

Example 3. Consider the polynomial parametric equations from [5]:

x = s
2 + t

2
; y = s

3 + t
2
; z = s

2 + t
3

We choose m = 9 and generate 1330 monomials in the three variables x; y; z up to total degree

2m. After the integrations and substitutions we construct a 220� 220 symmetric Implicitization

Matrix. The generation of the matrix takes 2 minutes and 6:743 seconds.

By computing the Nullspace of this matrix, which takes 54 minutes and 8:038 seconds, we �nd the

(irreducible) implicit equation of total degree m = 9

2x4 � 8x3y � 8x3z + 12x2y2 + 24x2yz + 12x2z2 � 8xy3

�24xy2z � 24xyz2 � 8xz3 + 2y4 + 8y3z + 12y2z2 + 8yz3 + 2z4

�5x5 + 22x4y + 22x4z � 38x3y2 � 76x3yz � 38x3z2 + 28x2y3
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+96x2y2z + 96x2yz2 + 28x2z3 � 5xy4 � 44xy3z � 78xy2z2

�44xyz3 � 5xz4 � 2y5 + 2y4z + 16y3z2 + 16y2z3 + 2yz4 � 2z5

�6x5y � 6x5z + 27x4y2 + 24x4yz + 27x4z2 � 38x3y3 � 60x3y2z

�60x3yz2 � 38x3z3 + 18x2y4 + 60x2y3z + 54x2y2z2

+60x2yz3 + 18x2z4 � 18xy4z � 18xy3z2 � 18xy2z3 � 18xyz4

+y6 + 3y4z2 + 3y2z4 + z
6 + 5x7 � 14x6y � 14x6z + 9x5y2

+48x5yz + 9x5z2 � 36x4y2z � 36x4yz2 � 3x3y4 + 21x3y2z2

�3x3z4 + 3x6y2 + 3x6z2 � x
9 = 0

Example 4. Consider the polynomial parametric equations:

x = t
2 + s; y = s

2 + t; z = ts
7

We choose m = 16 and generate 6545 monomials in the three variables x; y; z up to total degree

2m. After the integrations and substitutions we construct a 969� 969 symmetric Implicitization

Matrix. The generation of the matrix takes 4 hours 18 minutes and 19 seconds.

5 Experiments with SHARCNET and Comparisons

The implicitization algorithm in [2] experiences a phase of computation of de�nite integrals of

monomials. Because these integrals are independent, this phase is quite naturally parallelizable.

We run some preliminary tests with IPSurfaces in SHARCNET2. SHARCNET is a project featuring

a network of high-performance Beowulf computing clusters across several universities and other

institutions in Ontario. SHARCNET is structured as a computational grid in order to provide

supercomputing capabilities.

The following random example of a surface given by polynomial parametric equations was

tested on the SHARCNET cluster at Wilfrid Laurier University.

x = �35 + 97s+ 50s2t; y = 49t2 + 63s3t2; z = 45s2 � 8s4:

The implicit equation is of degree 33. The size of the generated �le containing the implicitization

matrix is well over 12M. The time it took to �nish the computation in IPSurfaces was 49271

minutes. This and other examples that we tested on the SHARCNET cluster show that a parallel

version of IPSurfaces will indeed be worthwhile to develop and will be able to treat much larger

examples.

A theoretical comparison of the implicitization method that we implemented in IPSurfaces with

other available methods of implicitization as described for example in [6], would take us too far

away from the purpose of this paper. An experimental comparison is equally problematic, because

at this point IPSurfaces is not optimized, i.e. it doesn't incorporate the results of recent theoretical

progress in our implicitization method. In addition, comparisons between implementations written

by di�erent programmers in di�erent languages are of questionable value regarding the eÆciency

of the underlying algorithms. However, we would like to o�er a brief comment on the eÆciency of

IPSurfaces compared with Gr�obner-based implicitization for instance. Examples 1 and 2 are easily

done using Maple's implementation of Gr�obner bases. However, example 3 runs out of memory in

Maple, as pointed out by the anonymous referee. Moreover, example 4 leads to a Gr�obner bases

computation which does not terminate neither in Maple 8 nor in Magma V2.5-1. Here is the Magma

code that we used:

Q:=RationalField();

P<s,t,x,y,z>:=PolynomialRing(Q,5);

p1:=x-s-t^2; p2:=y-s^2-t; p3:=z-t*s^7;

L:=[p1,p2,p3];

GroebnerBasis(L);

2 Shared Hierarchical Research Canadian Network, http://www.sharcnet.ca/
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6 Hankel-Like Structural Properties of Implicitization Matrices

In this section we establish some interesting properties pertaining to the structure of the Implic-

itization Matrices. In particular we show that if one uses the degree ordering to write the vector

of monomials `m as de�ned in (3), then the associated Implicitization Matrix is revealed to have

a type of Hankel-like3 structure. It is interesting to note that the Hankel structure is of a di�erent

type if we use the lexicographical ordering to write the vector of monomials `m. In general, the

Hankel structure for the degree ordering will be maintained if we group together the monomials of

same degree in the vector `m. In the sections below, we illustrate the Hankel structure by examin-

ing in detail the case of the degree ordering. Similar results hold for the case of the lexicographical

ordering.

6.1 Hankel-Like Structure for the Degree Ordering

We illustrate the Hankel-like structural properties in degree 2. The corresponding general result

is easy to state and prove. We start by de�ning the vector u = [1; x; y; z; x2; xy; xz; y2; yz; z2] and

computing p = u
t � u:

p =

2
666666666666666666666664

1 x y z x
2

xy xz y
2

yz z
2

x x
2

xy xz x
3

x
2
y x

2
z xy

2
xyz xz

2

y xy y
2

yz x
2
y xy

2
xyz y

3
y
2
z yz

2

z xz yz z
2

x
2
z xyz xz

2
y
2
z yz

2
z
3

x
2
x
3
x
2
y x

2
z x

4
x
3
y x

3
z x

2
y
2
x
2
yz x

2
z
2

xy x
2
y xy

2
xyz x

3
y x

2
y
2
x
2
yz xy

3
xy

2
z xyz

2

xz x
2
z xyz xz

2
x
3
z x

2
yz x

2
z
2
xy

2
z xyz

2
xz

3

y
2
xy

2
y
3
y
2
z x

2
y
2
xy

3
xy

2
z y

4
y
3
z y

2
z
2

yz xyz y
2
z yz

2
x
2
yz xy

2
z xyz

2
y
3
z y

2
z
2
yz

3

z
2
xz

2
yz

2
z
3
x
2
z
2
xyz

2
xz

3
y
2
z
2
yz

3
z
4

3
777777777777777777777775

If we replace the elements in p with the degree of each monomial terms, then we form a new

matrix:

p =

2
666666666666666666666664

0 1 1 1 2 2 2 2 2 2

1 2 2 2 3 3 3 3 3 3

1 2 2 2 3 3 3 3 3 3

1 2 2 2 3 3 3 3 3 3

2 3 3 3 4 4 4 4 4 4

2 3 3 3 4 4 4 4 4 4

2 3 3 3 4 4 4 4 4 4

2 3 3 3 4 4 4 4 4 4

2 3 3 3 4 4 4 4 4 4

2 3 3 3 4 4 4 4 4 4

3
777777777777777777777775

Furthermore if we group each term into submatrices and denote by i a block of monomials of

total degree i, then the above matrix can be represented as follows:

3 The term Hankel-like here is used to describe a Hankel structure with respect to degrees of blocks of

monomials.
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p =

0
@0 1 2

1 2 3

2 3 4

1
A

This representation of p shows clearly its Hankel structure with respect to the degrees of blocks

of monomials. Moreover, if we examine the structure of each degree block individually, we see that

p can be rewritten as follows:

p =

0
BB@
H

0
C1 C2 C3

C
t

1 H
2
C3 C4

C
t

2 C
t

3 H
4
C5

C
t

3 C
t

4 C
t

5 H
6

1
CCA

where the t superscript denotes matrix transposition, the Ci are rectangular banded blocks formed

by monomials of total degree i and the main diagonal contains square blocks H i which are Han-

kel matrices of monomials of total degree i. Thus the Implicitization Matrices, aside from being

symmetric and usually singular, demonstrate a much richer structure.

Currently, it is not clear to us how to take advantage of the Hankel-like structure exhibited by

the Implicitization Matrices to improve the algorithm. However, since there is a vast literature on

algorithms for structured matrices and in particular for Hankel-like matrices, we believe that this

issue deserves further investigation.

Conclusions and Future Work

We presented an eÆcient implementation of the implicitization algorithm in [2] for surfaces given

by polynomial parametric equations. We also showed that the Implicitization Matrices used in this

algorithm exhibit di�erent types of Hankel-like structure according to the orderings employed to

write the monomials.

Future research directions that will result in signi�cant speed-ups in the algorithm are the

application of modulo p techniques as well as interfacing IPSurfaces with the implementation of the

IPSOS algorithm described in [3, 4]. Another direction is to capitalize on the Hankel-like structure

of the Implicitization Matrices. It might provide a useful approach in speeding up the algorithm,

via a more eÆcient nullspace computation.

In addition, certain phases of the eigenvalue method for implicitization are naturally paralleliz-

able. By applying IPSurfaces to clusters, we will be able to solve diÆcult benchmark problems.

It is clear that numerical techniques can be applied for performing the integrations and com-

puting the nullspace. This is related to the approximate implicitization problem whose study is

outside the scope of this paper.
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